Search results for: Cognitive Radio Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2345

Search results for: Cognitive Radio Networks

65 Combination of Different Classifiers for Cardiac Arrhythmia Recognition

Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari

Abstract:

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
64 Emotion Regulation: An Exploratory Cross-Sectional Study on the Change and Grow Therapeutic Model

Authors: Eduardo da Silva, Tânia Caetano, Jessica B. Lopes

Abstract:

Emotion dysregulation has been linked to psychopathology in general and, in particular, to substance abuse and other addiction-related disorders, such as eating disorders, impulsive disorder, and gambling. It has been proposed that a lessening of the difficulties in emotion regulation can have a significant positive impact on the treatment of these disorders. The present study explores the association between the progress in the Change & Grow® therapeutic model (5 stages of treatment), and the decrease in the difficulties related to emotion regulation. The Change & Grow® model has five stages of treatment according to the model’s five principles (Truth, Acceptance, Gratitude, Love and Responsibility) and incorporates different therapeutic approaches such as positive psychology, cognitive and behavioral therapy and third generation therapies. The main objective is to understand the impact of the presented therapeutic model on difficulties in emotion regulation in patients with addiction-related disorders. The exploratory study has a cross-sectional design. Participants were 44 (15 women and 29 men) Portuguese patients in the residential Villa Ramadas International Treatment Centre. The instrument used was the Portuguese version of the Difficulties in Emotion Regulation Scale (DERS), which measures six dimensions of emotion regulation (Strategies, Non-acceptance, Awareness, Impulse, Goals, and Clarity). The mean rank scores for both the DERS total score and the Impulse subscale showed statistically significant differences according to Stage of Treatment/Principles. Furthermore, Stage of Treatment/Principles held a negative correlation with the scores of the Non-acceptance and Impulse subscales, as well as the DERS total score. The results indicate that the Change & Grow® model seems to have an impact in lessening the patient’s difficulties in emotion regulation. The Impulse dimension suffered the greater impact, which supports the well-known relevance of impulse control, or related difficulties, in addiction-related disorders.

Keywords: Addiction, Change & Grow®, emotion regulation, psychopathology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1323
63 Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware

Authors: Kai Qian, Ming Yang, Minzhe Guo, Prabir Bhattacharya, Lixin Tao

Abstract:

Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience. 

Keywords: Mobile computing, android, network, labware.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
62 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil

Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis

Abstract:

A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.

Keywords: Primary health care, developing countries, policy health planning, settlement strategy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 979
61 The Security Trade-Offs in Resource Constrained Nodes for IoT Application

Authors: Sultan Alharby, Nick Harris, Alex Weddell, Jeff Reeve

Abstract:

The concept of the Internet of Things (IoT) has received much attention over the last five years. It is predicted that the IoT will influence every aspect of our lifestyles in the near future. Wireless Sensor Networks are one of the key enablers of the operation of IoTs, allowing data to be collected from the surrounding environment. However, due to limited resources, nature of deployment and unattended operation, a WSN is vulnerable to various types of attack. Security is paramount for reliable and safe communication between IoT embedded devices, but it does, however, come at a cost to resources. Nodes are usually equipped with small batteries, which makes energy conservation crucial to IoT devices. Nevertheless, security cost in terms of energy consumption has not been studied sufficiently. Previous research has used a security specification of 802.15.4 for IoT applications, but the energy cost of each security level and the impact on quality of services (QoS) parameters remain unknown. This research focuses on the cost of security at the IoT media access control (MAC) layer. It begins by studying the energy consumption of IEEE 802.15.4 security levels, which is followed by an evaluation for the impact of security on data latency and throughput, and then presents the impact of transmission power on security overhead, and finally shows the effects of security on memory footprint. The results show that security overhead in terms of energy consumption with a payload of 24 bytes fluctuates between 31.5% at minimum level over non-secure packets and 60.4% at the top security level of 802.15.4 security specification. Also, it shows that security cost has less impact at longer packet lengths, and more with smaller packet size. In addition, the results depicts a significant impact on data latency and throughput. Overall, maximum authentication length decreases throughput by almost 53%, and encryption and authentication together by almost 62%.

Keywords: Internet of Things, IEEE 802.15.4, security cost evaluation, wireless sensor network, energy consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
60 Verification and Proposal of Information Processing Model Using EEG-Based Brain Activity Monitoring

Authors: Toshitaka Higashino, Naoki Wakamiya

Abstract:

Human beings perform a task by perceiving information from outside, recognizing them, and responding them. There have been various attempts to analyze and understand internal processes behind the reaction to a given stimulus by conducting psychological experiments and analysis from multiple perspectives. Among these, we focused on Model Human Processor (MHP). However, it was built based on psychological experiments and thus the relation with brain activity was unclear so far. To verify the validity of the MHP and propose our model from a viewpoint of neuroscience, EEG (Electroencephalography) measurements are performed during experiments in this study. More specifically, first, experiments were conducted where Latin alphabet characters were used as visual stimuli. In addition to response time, ERPs (event-related potentials) such as N100 and P300 were measured by using EEG. By comparing cycle time predicted by the MHP and latency of ERPs, it was found that N100, related to perception of stimuli, appeared at the end of the perceptual processor. Furthermore, by conducting an additional experiment, it was revealed that P300, related to decision making, appeared during the response decision process, not at the end. Second, by experiments using Japanese Hiragana characters, i.e. Japan's own phonetic symbols, those findings were confirmed. Finally, Japanese Kanji characters were used as more complicated visual stimuli. A Kanji character usually has several readings and several meanings. Despite the difference, a reading-related task and a meaning-related task exhibited similar results, meaning that they involved similar information processing processes of the brain. Based on those results, our model was proposed which reflects response time and ERP latency. It consists of three processors: the perception processor from an input of a stimulus to appearance of N100, the cognitive processor from N100 to P300, and the decision-action processor from P300 to response. Using our model, an application system which reflects brain activity can be established.

Keywords: Brain activity, EEG, information processing model, model human processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690
59 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4523
58 Factors Affecting M-Government Deployment and Adoption

Authors: Saif Obaid Alkaabi, Nabil Ayad

Abstract:

Governments constantly seek to offer faster, more secure, efficient and effective services for their citizens. Recent changes and developments to communication services and technologies, mainly due the Internet, have led to immense improvements in the way governments of advanced countries carry out their interior operations Therefore, advances in e-government services have been broadly adopted and used in various developed countries, as well as being adapted to developing countries. The implementation of advances depends on the utilization of the most innovative structures of data techniques, mainly in web dependent applications, to enhance the main functions of governments. These functions, in turn, have spread to mobile and wireless techniques, generating a new advanced direction called m-government. This paper discusses a selection of available m-government applications and several business modules and frameworks in various fields. Practically, the m-government models, techniques and methods have become the improved version of e-government. M-government offers the potential for applications which will work better, providing citizens with services utilizing mobile communication and data models incorporating several government entities. Developing countries can benefit greatly from this innovation due to the fact that a large percentage of their population is young and can adapt to new technology and to the fact that mobile computing devices are more affordable. The use of models of mobile transactions encourages effective participation through the use of mobile portals by businesses, various organizations, and individual citizens. Although the application of m-government has great potential, it does have major limitations. The limitations include: the implementation of wireless networks and relative communications, the encouragement of mobile diffusion, the administration of complicated tasks concerning the protection of security (including the ability to offer privacy for information), and the management of the legal issues concerning mobile applications and the utilization of services.

Keywords: E-government, m-government, system dependability, system security, trust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
57 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: Anti-spoofing, CNN, fingerprint recognition, loss function, optimizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419
56 Fatal Road Accident Causer's Driving Aptitude in Hungary

Authors: A. Juhász, M. Fogarasi

Abstract:

Those causing fatal traffic accidents are traumatized, which negatively influences their cognitive functions and their personality. In order to clarify how much the trauma of causing a fatal accident effects their driving skills and personality traits, the results of a psychological aptitude and a personality test of drivers carelessly causing fatal accidents and of drivers not causing any accidents were compared separately. The sample (N = 354) consists of randomly selected drivers from the Transportation Aptitude and Examination Centre database who caused fatal accidents (Fatal group, n = 177) or did not cause accidents (Control group, n = 177). The aptitude tests were taken between 2014 and 2019. The comparison of the 2 groups was done according to 3 aspects: 1. Categories of aptitude (suitable, restricted, unsuited); 2. Categories of causes (ability, personality, ability and personality) within the restricted or unsuited (altogether: non-suitable subgroups); 3. Categories of ability and personality within the non-suitable subgroups regardless of the cause-category. Within ability deficiency, the two groups include those, whose ability factor is impaired or limited. This is also true in case of personality failure. Compared to the control group, the number of restricted drivers causing fatal accidents is significantly higher (p < .000) and the number of unsuited drivers is higher on a tendency-level (p = .06). Compared to the control group in the fatal non-suitable subgroup, the ratio of restricted suitability and the unsuitability due to ability factors is exclusively significantly lower (p < .000). The restricted suitability and the unsuitability due to personality factors are more significant in the fatal non-suitable subgroup (p < .000). Incapacity due to combination of ability and personality is also significantly higher in the fatal group (p = .002). Compared to the control group both ability and personality factors are also significantly higher in the fatal non-suitable subgroup (p < .000). Overall, the control group is more eligible for driving than drivers who have caused fatalities. The ability and personality factors are significantly higher in the case of fatal accident causers who are non-suitable for driving. Moreover the concomitance of ability and personality factors occur almost exclusively to drivers who caused fatal accidents. Further investigation is needed to understand the causes and how the aptitude test results for the fatal group could improve over time.

Keywords: Aptitude, unsuited, fatal accident, ability, personality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 683
55 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems

Authors: Muhammad Safi, Abdul Manan

Abstract:

In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircrafts have been a hot topic in the modern aircraft world. Electric aircrafts have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.

Keywords: AI, avionics systems, communication, electric aircrafts, Infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166
54 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5296
53 Food for Thought: Preparing the Brain to Eat New Foods through “Messy” Play

Authors: L. Bernabeo, T. Loftus

Abstract:

Many children often experience phases of picky eating, food aversions and/or avoidance. For families with children who have special needs, these experiences are often exacerbated, which can lead to feelings that negatively impact a caregiver’s relationship with their child. Within the scope of speech language pathology practice, knowledge of both emotional and feeding development is key. This paper will explore the significance of “messy play” within typical feeding development, and the challenges that may arise if a child does not have the opportunity to engage in this type of exploratory play. This paper will consider several contributing factors that can result in a “picky eater.” Further, research has shown that individuals with special needs, including autism, possess a neurological makeup that differs from that of a typical individual. Because autism is a disorder of relating and communicating due to differences in the limbic system, an individual with special needs may respond to a typical feeding experience as if it is a traumatic event. As a result, broadening one’s dietary repertoire may seem to be an insurmountable challenge. This paper suggests that introducing new foods through exploratory play can help broaden and strengthen diets, as well as improve the feeding experience, of individuals with autism. The DIRFloortimeⓇ methodology stresses the importance of following a child's lead. Within this developmental model, there is a special focus on a person’s individual differences, including the unique way they process the world around them, as well as the significance of therapy occurring within the context of a strong and motivating relationship. Using this child-centered approach, we can support our children in expanding their diets, while simultaneously building upon their cognitive and creative development through playful and respectful interactions that include exposure to foods that differ in color, texture, and smell. Further, this paper explores the importance of exploration, self-feeding and messy play on brain development, both in the context of typically developing individuals and those with disordered development.

Keywords: Autism, development, exploration, feeding, play.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
52 Assessment of Multi-Domain Energy Systems Modelling Methods

Authors: M. Stewart, Ameer Al-Khaykan, J. M. Counsell

Abstract:

Emissions are a consequence of electricity generation. A major option for low carbon generation, local energy systems featuring Combined Heat and Power with solar PV (CHPV) has significant potential to increase energy performance, increase resilience, and offer greater control of local energy prices while complementing the UK’s emissions standards and targets. Recent advances in dynamic modelling and simulation of buildings and clusters of buildings using the IDEAS framework have successfully validated a novel multi-vector (simultaneous control of both heat and electricity) approach to integrating the wide range of primary and secondary plant typical of local energy systems designs including CHP, solar PV, gas boilers, absorption chillers and thermal energy storage, and associated electrical and hot water networks, all operating under a single unified control strategy. Results from this work indicate through simulation that integrated control of thermal storage can have a pivotal role in optimizing system performance well beyond the present expectations. Environmental impact analysis and reporting of all energy systems including CHPV LES presently employ a static annual average carbon emissions intensity for grid supplied electricity. This paper focuses on establishing and validating CHPV environmental performance against conventional emissions values and assessment benchmarks to analyze emissions performance without and with an active thermal store in a notional group of non-domestic buildings. Results of this analysis are presented and discussed in context of performance validation and quantifying the reduced environmental impact of CHPV systems with active energy storage in comparison with conventional LES designs.

Keywords: CHPV, thermal storage, control, dynamic simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
51 The Impact of Video Games in Children-s Learning of Mathematics

Authors: Muhammad Ridhuan Tony Lim Abdullah, Zulqarnain Abu Bakar, Razol Mahari Ali, Ibrahima Faye, Hilmi Hasan

Abstract:

This paper describes a research project on Year 3 primary school students in Malaysia in their use of computer-based video game to enhance learning of multiplication facts (tables) in the Mathematics subject. This study attempts to investigate whether video games could actually contribute to positive effect on children-s learning or otherwise. In conducting this study, the researchers assume a neutral stand in the investigation as an unbiased outcome of the study would render reliable response to the impact of video games in education which would contribute to the literature of technology-based education as well as impact to the pedagogical aspect of formal education. In order to conduct the study, a subject (Mathematics) with a specific topic area in the subject (multiplication facts) is chosen. The study adopts a causal-comparative research to investigate the impact of the inclusion of a computer-based video game designed to teach multiplication facts to primary level students. Sample size is 100 students divided into two i.e., A: conventional group and B conventional group aided by video games. The conventional group (A) would be taught multiplication facts (timetables) and skills conventionally. The other group (B) underwent the same lessons but with supplementary activity: a computer-based video game on multiplication which is called Timez-Attack. Analysis of marks accrued from pre-test will be compared to post- test using comparisons of means, t tests, and ANOVA tests to investigate the impact of computer games as an added learning activity. The findings revealed that video games as a supplementary activity to classroom learning brings significant and positive effect on students- retention and mastery of multiplication tables as compared to students who rely only upon formal classroom instructions.

Keywords: Technology for education, Gaming for education, Computer-based video games, Cognitive learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4259
50 Classifying Turbomachinery Blade Mode Shapes Using Artificial Neural Networks

Authors: Ismail Abubakar, Hamid Mehrabi, Reg Morton

Abstract:

Currently, extensive signal analysis is performed in order to evaluate structural health of turbomachinery blades. This approach is affected by constraints of time and the availability of qualified personnel. Thus, new approaches to blade dynamics identification that provide faster and more accurate results are sought after. Generally, modal analysis is employed in acquiring dynamic properties of a vibrating turbomachinery blade and is widely adopted in condition monitoring of blades. The analysis provides useful information on the different modes of vibration and natural frequencies by exploring different shapes that can be taken up during vibration since all mode shapes have their corresponding natural frequencies. Experimental modal testing and finite element analysis are the traditional methods used to evaluate mode shapes with limited application to real live scenario to facilitate a robust condition monitoring scheme. For a real time mode shape evaluation, rapid evaluation and low computational cost is required and traditional techniques are unsuitable. In this study, artificial neural network is developed to evaluate the mode shape of a lab scale rotating blade assembly by using result from finite element modal analysis as training data. The network performance evaluation shows that artificial neural network (ANN) is capable of mapping the correlation between natural frequencies and mode shapes. This is achieved without the need of extensive signal analysis. The approach offers advantage from the perspective that the network is able to classify mode shapes and can be employed in real time including simplicity in implementation and accuracy of the prediction. The work paves the way for further development of robust condition monitoring system that incorporates real time mode shape evaluation.

Keywords: Modal analysis, artificial neural network, mode shape, natural frequencies, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907
49 Prevention of Corruption in Public Purchases

Authors: Anatoly Krivinsh

Abstract:

The results of dissertation research "Preventing and  combating corruption in public procurement" are presented in this  publication. The study was conducted 2011 till 2013 in a Member  State of the European Union– in the Republic of Latvia.  Goal of the thesis is to explore corruption prevention and  combating issues in public procurement sphere, to identify the  prevalence rates, determinants and contributing factors and  prevention opportunities in Latvia.  In the first chapter the author analyzes theoretical aspects of  understanding corruption in public procurement, with particular  emphasis on corruption definition problem, its nature, causes and  consequences. A separate section is dedicated to the public  procurement concept, mechanism and legal framework. In the first  part of this work the author presents cognitive methodology of  corruption in public procurement field, based on which the author has  carried out an analysis of corruption situation in public procurement  in Republic of Latvia.  In the second chapter of the thesis, the author analyzes the  problem of corruption in public procurement, including its historical  aspects, typology and classification of corruption subjects involved,  corruption risk elements in public procurement and their  identification. During the development of the second chapter author's  practical experience in public procurements was widely used.  The third and fourth chapter deals with issues related to the  prevention and combating corruption in public procurement, namely  the operation of the concept, principles, methods and techniques,  subjects in Republic of Latvia, as well as an analysis of foreign  experience in preventing and combating corruption. The fifth chapter  is devoted to the corruption prevention and combating perspectives  and their assessment. In this chapter the author has made the  evaluation of corruption prevention and combating measures  efficiency in Republic of Latvia, assessment of anti-corruption  legislation development stage in public procurement field in Latvia. 

Keywords: Prevention of corruption, public purchases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
48 The Impact of Quality Cost on Revenue Sharing in Supply Chain Management

Authors: Fayza Obied-Allah

Abstract:

Customer’ needs, quality, and value creation while reducing costs through supply chain management provides challenges and opportunities for companies and researchers. In the light of these challenges, modern ideas must contribute to counter these challenges and exploit opportunities. Therefore, this paper discusses the impact of the quality cost on revenue sharing as a most important incentive to configure business networks. This paper develops the quality cost approach to align with the modern era. It develops a model to measure quality costs which might enable firms to manage revenue sharing in a supply chain. The developed model includes five categories; besides the well-known four categories (namely prevention costs, appraisal costs, internal failure costs, and external failure costs), a new category has been developed in this research as a new vision of the relationship between quality costs and innovations in industry. This new category is Recycle Cost. This paper also examines whether such quality costs in supply chains influence the revenue sharing between partners. Using the author's quality cost model, the relationship between quality costs and revenue sharing among partners is examined using a case study in an Egyptian manufacturing company which is a part of a supply chain. This paper argues that the revenue-sharing proportion allocated to supplier increases as the recycle cost of supplier increases, and the revenue-sharing proportion allocated to manufacturer increases as the prevention and appraisal costs increase, as well as the failure costs, the recycle costs of manufacturer, and the recycle costs of suppliers decrease. However, the results present surprising findings. The purposes of this study are developing quality cost approach and understanding the relationships between quality costs and revenue sharing in supply chains. Therefore, the present study contributes to theory and practice by explaining how the cost of recycling can be combined in quality cost model to better understanding the revenue sharing among partners in supply chains.

Keywords: Quality cost, Recycle cost, Revenue sharing, Supply chain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
47 Laboratory Investigations on the Utilization of Recycled Construction Aggregates in Asphalt Mixtures

Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman

Abstract:

Road networks are increasingly expanding all over the world. The construction and maintenance of the road pavements require large amounts of aggregates. Considerable usage of various natural aggregates for constructing roads as well as the increasing rate at which solid waste is generated have attracted the attention of many researchers in the pavement industry to investigate the feasibility of the application of some of the waste materials as alternative materials in pavement construction. Among various waste materials, construction and demolition wastes, including Recycled Construction Aggregate (RCA) constitute a major part of the municipal solid wastes in Australia. Creating opportunities for the application of RCA in civil and geotechnical engineering applications is an efficient way to increase the market value of RCA. However, in spite of such promising potentials, insufficient and inconclusive data and information on the engineering properties of RCA had limited the reliability and design specifications of RCA to date. In light of this, this paper, as a first step of a comprehensive research, aims to investigate the feasibility of the application of RCA obtained from construction and demolition wastes for the replacement of part of coarse aggregates in asphalt mixture. As the suitability of aggregates for using in asphalt mixtures is determined based on the aggregate characteristics, including physical and mechanical properties of the aggregates, an experimental program is set up to evaluate the physical and mechanical properties of RCA. This laboratory investigation included the measurement of compressive strength and workability of RCA, particle shape, water absorption, flakiness index, crushing value, deleterious materials and weak particles, wet/dry strength variation, and particle density. In addition, the comparison of RCA properties with virgin aggregates has been included as part of this investigation and this paper presents the results of these investigations on RCA, basalt, and the mix of RCA/basalt.

Keywords: Asphalt, basalt, pavement, recycled aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 969
46 A Study on the Differential Diagnostic Model for Newborn Hearing Loss Screening

Authors: Chun-Lang Chang

Abstract:

According to the statistics, the prevalence of congenital hearing loss in Taiwan is approximately six thousandths; furthermore, one thousandths of infants have severe hearing impairment. Hearing ability during infancy has significant impact in the development of children-s oral expressions, language maturity, cognitive performance, education ability and social behaviors in the future. Although most children born with hearing impairment have sensorineural hearing loss, almost every child more or less still retains some residual hearing. If provided with a hearing aid or cochlear implant (a bionic ear) timely in addition to hearing speech training, even severely hearing-impaired children can still learn to talk. On the other hand, those who failed to be diagnosed and thus unable to begin hearing and speech rehabilitations on a timely manner might lose an important opportunity to live a complete and healthy life. Eventually, the lack of hearing and speaking ability will affect the development of both mental and physical functions, intelligence, and social adaptability. Not only will this problem result in an irreparable regret to the hearing-impaired child for the life time, but also create a heavy burden for the family and society. Therefore, it is necessary to establish a set of computer-assisted predictive model that can accurately detect and help diagnose newborn hearing loss so that early interventions can be provided timely to eliminate waste of medical resources. This study uses information from the neonatal database of the case hospital as the subjects, adopting two different analysis methods of using support vector machine (SVM) for model predictions and using logistic regression to conduct factor screening prior to model predictions in SVM to examine the results. The results indicate that prediction accuracy is as high as 96.43% when the factors are screened and selected through logistic regression. Hence, the model constructed in this study will have real help in clinical diagnosis for the physicians and actually beneficial to the early interventions of newborn hearing impairment.

Keywords: Data mining, Hearing impairment, Logistic regression analysis, Support vector machines

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
45 RF Permeability Test in SOC Structure for Establishing USN(Ubiquitous Sensor Network)

Authors: Byung – wan Jo, Jung – hoon Park, Jang - wook Kim

Abstract:

Recently, as information industry and mobile communication technology are developing, this study is conducted on the new concept of intelligent structures and maintenance techniques that applied wireless sensor network, USN (Ubiquitous Sensor Network), to social infrastructures such as civil and architectural structures on the basis of the concept of Ubiquitous Computing that invisibly provides human life with computing, along with mutually cooperating, compromising and connecting networks each other by having computers within all objects around us. Therefore, the purpose of this study is to investigate the capability of wireless communication of sensor node embedded in reinforced concrete structure with a basic experiment on an electric wave permeability of sensor node by fabricating molding with variables of concrete thickness and steel bars that are mostly used in constructing structures to determine the feasibility of application to constructing structures with USN. At this time, with putting the pitches of steel bars, the thickness of concrete placed, and the intensity of RF signal of a transmitter-receiver as variables and when wireless communication module was installed inside, the possible communication distance of plain concrete and the possible communication distance by the pitches of steel bars was measured in the horizontal and vertical direction respectively. Besides, for the precise measurement of diminution of an electric wave, the magnitude of an electric wave in the range of used frequencies was measured by using Spectrum Analyzer. The phenomenon of diminution of an electric wave was numerically analyzed and the effect of the length of wavelength of frequencies was analyzed by the properties of a frequency band area. As a result of studying the feasibility of an application to constructing structures with wireless sensor, in case of plain concrete, it shows 45cm for the depth of permeability and in case of reinforced concrete with the pitches of 5cm, it shows 37cm and 45cm for the pitches of 15cm.

Keywords: Ubiquitous, Concrete, Permeability, Wireless, Sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611
44 Robot-assisted Relaxation Training for Children with Autism Spectrum Disorders

Authors: V. Holeva, V. Aliki Nikopoulou, P. Kechayas, M. Dialechti Kerasidou, M. Papadopoulou, G. A. Papakostas, V. G. Kaburlasos, A. Evangeliou

Abstract:

Cognitive Behavioral Therapy (CBT) has been proven an effective tool to address anger and anxiety issues in children and adolescents with Autism Spectrum Disorders (ASD). Robot-enhanced therapy has been used in psychosocial and educational interventions for children with ASD with promising results. Whenever CBT-based techniques were incorporated in robot-based interventions, they were mainly performed in group sessions. Objectives: The study’s main objective was the implementation and evaluation of the effectiveness of a relaxation training intervention for children with ASD, delivered by the social robot NAO. Methods: 20 children (aged 7–12 years) were randomly assigned to 16 sessions of relaxation training implemented twice a week. Two groups were formed: the NAO group (children participated in individual sessions with the support of NAO) and the control group (children participated in individual sessions with the support of the therapist only). Participants received three different relaxation scenarios of increasing difficulty (a breathing scenario, a progressive muscle relaxation scenario and a body scan medication scenario), as well as related homework sheets for practicing. Pre- and post-intervention assessments were conducted using the Child Behavior Checklist (CBCL) and the Strengths and Difficulties Questionnaire for parents (SDQ-P). Participants were also asked to complete an open-ended questionnaire to evaluate the effectiveness of the training. Parents’ satisfaction was evaluated via a questionnaire and children satisfaction was assessed by a thermometer scale. Results: The study supports the use of relaxation training with the NAO robot as instructor for children with ASD. Parents of enrolled children reported high levels of satisfaction and provided positive ratings of the training acceptability. Children in the NAO group presented greater motivation to complete homework and adopt the learned techniques at home. Conclusions: Relaxation training could be effectively integrated in robot-assisted protocols to help children with ASD regulate emotions and develop self-control.

Keywords: Autism spectrum disorders, CBT, children relaxation training, robot-assisted therapy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
43 The Price of Knowledge in the Times of Commodification of Higher Education: A Case Study on the Changing Face of Education

Authors: Joanna Peksa, Faith Dillon-Lee

Abstract:

Current developments in the Western economies have turned some universities into corporate institutions driven by practices of production and commodity. Academia is increasingly becoming integrated into national economies as a result of students paying fees and is consequently using business practices in student retention and engagement. With these changes, pedagogy status as a priority within the institution has been changing in light of these new demands. New strategies have blurred the boundaries that separate a student from a client. This led to a change of the dynamic, disrupting the traditional idea of the knowledge market, and emphasizing the corporate aspect of universities. In some cases, where students are seen primarily as a customer, the purpose of academia is no longer to educate but sell a commodity and retain fee-paying students. This paper considers opposing viewpoints on the commodification of higher education, reflecting on the reality of maintaining a pedagogic grounding in an increasingly commercialized sector. By analysing a case study of the Student Success Festival, an event that involved academic and marketing teams, the differences are considered between the respective visions of the pedagogic arm of the university and the corporate. This study argues that the initial concept of the event, based on the principles of gamification, independent learning, and cognitive criticality, was more clearly linked to a grounded pedagogic approach. However, when liaising with the marketing team in a crucial step in the creative process, it became apparent that these principles were not considered a priority in terms of their remit. While the study acknowledges in the power of pedagogy, the findings show that a pact of concord is necessary between different stakeholders in order for students to benefit fully from their learning experience. Nevertheless, while issues of power prevail and whenever power is unevenly distributed, reaching a consensus becomes increasingly challenging and further research should closely monitor the developments in pedagogy in the UK higher education.

Keywords: Economic pressure, commodification, pedagogy, gamification, public service, marketization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 730
42 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data

Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin

Abstract:

The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.

Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
41 Scenario and Decision Analysis for Solar Energy in Egypt by 2035 Using Dynamic Bayesian Network

Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary

Abstract:

Bayesian networks are now considered to be a promising tool in the field of energy with different applications. In this study, the aim was to indicate the states of a previous constructed Bayesian network related to the solar energy in Egypt and the factors affecting its market share, depending on the followed data distribution type for each factor, and using either the Z-distribution approach or the Chebyshev’s inequality theorem. Later on, the separate and the conditional probabilities of the states of each factor in the Bayesian network were derived, either from the collected and scrapped historical data or from estimations and past studies. Results showed that we could use the constructed model for scenario and decision analysis concerning forecasting the total percentage of the market share of the solar energy in Egypt by 2035 and using it as a stable renewable source for generating any type of energy needed. Also, it proved that whenever the use of the solar energy increases, the total costs decreases. Furthermore, we have identified different scenarios, such as the best, worst, 50/50, and most likely one, in terms of the expected changes in the percentage of the solar energy market share. The best scenario showed an 85% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market, while the worst scenario showed only a 24% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market. Furthermore, we applied policy analysis to check the effect of changing the controllable (decision) variable’s states acting as different scenarios, to show how it would affect the target nodes in the model. Additionally, the best environmental and economical scenarios were developed to show how other factors are expected to be, in order to affect the model positively. Additional evidence and derived probabilities were added for the weather dynamic nodes whose states depend on time, during the process of converting the Bayesian network into a dynamic Bayesian network.

Keywords: Bayesian network, Chebyshev, decision variable, dynamic Bayesian network, Z-distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 503
40 Evaluation of Natural Drainage Flow Pattern, Necessary for Flood Control, Using Digitized Topographic Information: A Case Study of Bayelsa State Nigeria

Authors: Collins C. Chiemeke

Abstract:

The need to evaluate and understand the natural drainage pattern in a flood prone, and fast developing environment is of paramount importance. This information will go a long way to help the town planners to determine the drainage pattern, road networks and areas where prominent structures are to be located. This research work was carried out with the aim of studying the Bayelsa landscape topography using digitized topographic information, and to model the natural drainage flow pattern that will aid the understanding and constructions of workable drainages. To achieve this, digitize information of elevation and coordinate points were extracted from a global imagery map. The extracted information was modeled into 3D surfaces. The result revealed that the average elevation for Bayelsa State is 12 m above sea level. The highest elevation is 28 m, and the lowest elevation 0 m, along the coastline. In Yenagoa the capital city of Bayelsa were a detail survey was carried out showed that average elevation is 15 m, the highest elevation is 25 m and lowest is 3 m above the mean sea level. The regional elevation in Bayelsa, showed a gradation decrease from the North Eastern zone to the South Western Zone. Yenagoa showed an observed elevation lineament, were low depression is flanked by high elevation that runs from the North East to the South west. Hence, future drainages in Yenagoa should be directed from the high elevation, from South East toward the North West and from the North West toward South East, to the point of convergence which is at the center that flows from South East toward the North West. Bayelsa when considered on a regional Scale, the flow pattern is from the North East to the South West, and also North South. It is recommended that in the event of any large drainage construction at municipal scale, it should be directed from North East to the South West or from North to South. Secondly, detail survey should be carried out to ascertain the local topography and the drainage pattern before the design and construction of any drainage system in any part of Bayelsa.

Keywords: Bayelsa, Digitized Topographic Information, Drainage, Flood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
39 Resting-State Functional Connectivity Analysis Using an Independent Component Approach

Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi

Abstract:

Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.

Keywords: Independent Component Analysis, Resting State Network, refractory epilepsy, rsfMRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290
38 Dynamic Web-Based 2D Medical Image Visualization and Processing Software

Authors: Abdelhalim. N. Mohammed, Mohammed. Y. Esmail

Abstract:

In the course of recent decades, medical imaging has been dominated by the use of costly film media for review and archival of medical investigation, however due to developments in networks technologies and common acceptance of a standard digital imaging and communication in medicine (DICOM) another approach in light of World Wide Web was produced. Web technologies successfully used in telemedicine applications, the combination of web technologies together with DICOM used to design a web-based and open source DICOM viewer. The Web server allowance to inquiry and recovery of images and the images viewed/manipulated inside a Web browser without need for any preinstalling software. The dynamic site page for medical images visualization and processing created by using JavaScript and HTML5 advancements. The XAMPP ‘apache server’ is used to create a local web server for testing and deployment of the dynamic site. The web-based viewer connected to multiples devices through local area network (LAN) to distribute the images inside healthcare facilities. The system offers a few focal points over ordinary picture archiving and communication systems (PACS): easy to introduce, maintain and independently platforms that allow images to display and manipulated efficiently, the system also user-friendly and easy to integrate with an existing system that have already been making use of web technologies. The wavelet-based image compression technique on which 2-D discrete wavelet transform used to decompose the image then wavelet coefficients are transmitted by entropy encoding after threshold to decrease transmission time, stockpiling cost and capacity. The performance of compression was estimated by using images quality metrics such as mean square error ‘MSE’, peak signal to noise ratio ‘PSNR’ and compression ratio ‘CR’ that achieved (83.86%) when ‘coif3’ wavelet filter is used.

Keywords: DICOM, discrete wavelet transform, PACS, HIS, LAN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 793
37 Forms of Promotion and Dissemination of Traditional Local Wisdom: Creating Occupations among the Elderly in Noanmueng Community, Muang Sub-District, Baan Doong District, Udonthani Province

Authors: Pennapa Palapin

Abstract:

This research sought to discover the forms of promotion and dissemination of traditional local wisdom that are used to create occupations among the elderly at Noanmueng Community, Muang Sub-District, Baan Doong District, Udornthani Province. The criteria used to select the research sample group were: having a role involved in the promotion and dissemination of traditional local wisdom to create occupations among the elderly; being an experienced person who the residents of Noanmueng Community find trustworthy; and having lived in Noanmueng Community for a long time so as to be able to see the development and change that occurs. A total of 16 persons were thus selected. Data was gathered through a qualitative study, using semi-structured indepth interviews. The collected data was then summarized and discussed according to the research objectives. Finally, the data was presented in narrative format. Results found that the identifying traditional local wisdom of the community (which grew from the residents’ experience and beneficial usage in daily life, passed down from generation to generation) was the weaving of cloth and basketry. As for the manner of promotion and dissemination of traditional local wisdom, these skills were passed down through teaching by example to family members, relatives and others in the community. This was largely the initiative of the elders or elderly members of the community. In order for the promotion and dissemination of traditional local wisdom to create occupations among the elderly, the traditional local wisdom should be supported in every way through participation of the community members. For example, establish a museum of traditional local wisdom for the collection of traditional local wisdom in various fields, both from the past and present innovations. This would be a source of pride for the community, simultaneously helping traditional local wisdom to become widely known and to create income for the community’s elderly. Additional ways include organizing exhibitions of products made by traditional local wisdom, finding both domestic and international markets, as well as building both domestic and international networks aiming to find opportunities to market products made by traditional local wisdom.

Keywords: Traditional local wisdom, Occupation, Elderly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
36 Affective Robots: Evaluation of Automatic Emotion Recognition Approaches on a Humanoid Robot towards Emotionally Intelligent Machines

Authors: Silvia Santano Guillén, Luigi Lo Iacono, Christian Meder

Abstract:

One of the main aims of current social robotic research is to improve the robots’ abilities to interact with humans. In order to achieve an interaction similar to that among humans, robots should be able to communicate in an intuitive and natural way and appropriately interpret human affects during social interactions. Similarly to how humans are able to recognize emotions in other humans, machines are capable of extracting information from the various ways humans convey emotions—including facial expression, speech, gesture or text—and using this information for improved human computer interaction. This can be described as Affective Computing, an interdisciplinary field that expands into otherwise unrelated fields like psychology and cognitive science and involves the research and development of systems that can recognize and interpret human affects. To leverage these emotional capabilities by embedding them in humanoid robots is the foundation of the concept Affective Robots, which has the objective of making robots capable of sensing the user’s current mood and personality traits and adapt their behavior in the most appropriate manner based on that. In this paper, the emotion recognition capabilities of the humanoid robot Pepper are experimentally explored, based on the facial expressions for the so-called basic emotions, as well as how it performs in contrast to other state-of-the-art approaches with both expression databases compiled in academic environments and real subjects showing posed expressions as well as spontaneous emotional reactions. The experiments’ results show that the detection accuracy amongst the evaluated approaches differs substantially. The introduced experiments offer a general structure and approach for conducting such experimental evaluations. The paper further suggests that the most meaningful results are obtained by conducting experiments with real subjects expressing the emotions as spontaneous reactions.

Keywords: Affective computing, emotion recognition, humanoid robot, Human-Robot-Interaction (HRI), social robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354