Search results for: spatial optimization
358 A Few Descriptive and Optimization Issues on the Material Flow at a Research-Academic Institution: The Role of Simulation
Authors: D. R. Delgado Sobrino, P. Košťál, J. Oravcová
Abstract:
Lately, significant work in the area of Intelligent Manufacturing has become public and mainly applied within the frame of industrial purposes. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Aware of all this and due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: Intelligent Manufacturing, the present paper emerges with the main aim of contributing to the design and analysis of the material flow in either systems, cells or work stations under this new “intelligent" denomination. For this, besides offering a conceptual basis in some of the key points to be taken into account and some general principles to consider in the design and analysis of the material flow, also some tips on how to define other possible alternative material flow scenarios and a classification of the states a system, cell or workstation are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a detailed layout, other figures and a few expressions which could help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.Keywords: Flexible/Intelligent Manufacturing System/Cell (F/IMS/C), material flow/design/configuration (MF/D/C), workstation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611357 Fuzzy Population-Based Meta-Heuristic Approaches for Attribute Reduction in Rough Set Theory
Authors: Mafarja Majdi, Salwani Abdullah, Najmeh S. Jaddi
Abstract:
One of the global combinatorial optimization problems in machine learning is feature selection. It concerned with removing the irrelevant, noisy, and redundant data, along with keeping the original meaning of the original data. Attribute reduction in rough set theory is an important feature selection method. Since attribute reduction is an NP-hard problem, it is necessary to investigate fast and effective approximate algorithms. In this paper, we proposed two feature selection mechanisms based on memetic algorithms (MAs) which combine the genetic algorithm with a fuzzy record to record travel algorithm and a fuzzy controlled great deluge algorithm, to identify a good balance between local search and genetic search. In order to verify the proposed approaches, numerical experiments are carried out on thirteen datasets. The results show that the MAs approaches are efficient in solving attribute reduction problems when compared with other meta-heuristic approaches.Keywords: Rough Set Theory, Attribute Reduction, Fuzzy Logic, Memetic Algorithms, Record to Record Algorithm, Great Deluge Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937356 Generational PipeLined Genetic Algorithm (PLGA)using Stochastic Selection
Authors: Malay K. Pakhira, Rajat K. De
Abstract:
In this paper, a pipelined version of genetic algorithm, called PLGA, and a corresponding hardware platform are described. The basic operations of conventional GA (CGA) are made pipelined using an appropriate selection scheme. The selection operator, used here, is stochastic in nature and is called SA-selection. This helps maintaining the basic generational nature of the proposed pipelined GA (PLGA). A number of benchmark problems are used to compare the performances of conventional roulette-wheel selection and the SA-selection. These include unimodal and multimodal functions with dimensionality varying from very small to very large. It is seen that the SA-selection scheme is giving comparable performances with respect to the classical roulette-wheel selection scheme, for all the instances, when quality of solutions and rate of convergence are considered. The speedups obtained by PLGA for different benchmarks are found to be significant. It is shown that a complete hardware pipeline can be developed using the proposed scheme, if parallel evaluation of the fitness expression is possible. In this connection a low-cost but very fast hardware evaluation unit is described. Results of simulation experiments show that in a pipelined hardware environment, PLGA will be much faster than CGA. In terms of efficiency, PLGA is found to outperform parallel GA (PGA) also.Keywords: Hardware evaluation, Hardware pipeline, Optimization, Pipelined genetic algorithm, SA-selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443355 A Grey-Fuzzy Controller for Optimization Technique in Wireless Networks
Authors: Yao-Tien Wang, Hsiang-Fu Yu, Dung Chen Chiou
Abstract:
In wireless and mobile communications, this progress provides opportunities for introducing new standards and improving existing services. Supporting multimedia traffic with wireless networks quality of service (QoS). In this paper, a grey-fuzzy controller for radio resource management (GF-RRM) is presented to maximize the number of the served calls and QoS provision in wireless networks. In a wireless network, the call arrival rate, the call duration and the communication overhead between the base stations and the control center are vague and uncertain. In this paper, we develop a method to predict the cell load and to solve the RRM problem based on the GF-RRM, and support the present facility has been built on the application-level of the wireless networks. The GF-RRM exhibits the better adaptability, fault-tolerant capability and performance than other algorithms. Through simulations, we evaluate the blocking rate, update overhead, and channel acquisition delay time of the proposed method. The results demonstrate our algorithm has the lower blocking rate, less updated overhead, and shorter channel acquisition delay.Keywords: radio resource management, grey prediction, fuzzylogic control, wireless networks, quality of service.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717354 Optimal and Critical Path Analysis of State Transportation Network Using Neo4J
Authors: Pallavi Bhogaram, Xiaolong Wu, Min He, Onyedikachi Okenwa
Abstract:
A transportation network is a realization of a spatial network, describing a structure which permits either vehicular movement or flow of some commodity. Examples include road networks, railways, air routes, pipelines, and many more. The transportation network plays a vital role in maintaining the vigor of the nation’s economy. Hence, ensuring the network stays resilient all the time, especially in the face of challenges such as heavy traffic loads and large scale natural disasters, is of utmost importance. In this paper, we used the Neo4j application to develop the graph. Neo4j is the world's leading open-source, NoSQL, a native graph database that implements an ACID-compliant transactional backend to applications. The Southern California network model is developed using the Neo4j application and obtained the most critical and optimal nodes and paths in the network using centrality algorithms. The edge betweenness centrality algorithm calculates the critical or optimal paths using Yen's k-shortest paths algorithm, and the node betweenness centrality algorithm calculates the amount of influence a node has over the network. The preliminary study results confirm that the Neo4j application can be a suitable tool to study the important nodes and the critical paths for the major congested metropolitan area.
Keywords: Transportation network, critical path, connectivity reliability, network model, Neo4J application, optimal path, critical path, edge betweenness centrality index, node betweenness centrality index, Yen’s k-shortest paths.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 853353 Review of Downscaling Methods in Climate Change and Their Role in Hydrological Studies
Authors: Nishi Bhuvandas, P. V. Timbadiya, P. L. Patel, P. D. Porey
Abstract:
Recent perceived climate variability raises concerns with unprecedented hydrological phenomena and extremes. Distribution and circulation of the waters of the Earth become increasingly difficult to determine because of additional uncertainty related to anthropogenic emissions. The world wide observed changes in the large-scale hydrological cycle have been related to an increase in the observed temperature over several decades. Although the effect of change in climate on hydrology provides a general picture of possible hydrological global change, new tools and frameworks for modelling hydrological series with nonstationary characteristics at finer scales, are required for assessing climate change impacts. Of the downscaling techniques, dynamic downscaling is usually based on the use of Regional Climate Models (RCMs), which generate finer resolution output based on atmospheric physics over a region using General Circulation Model (GCM) fields as boundary conditions. However, RCMs are not expected to capture the observed spatial precipitation extremes at a fine cell scale or at a basin scale. Statistical downscaling derives a statistical or empirical relationship between the variables simulated by the GCMs, called predictors, and station-scale hydrologic variables, called predictands. The main focus of the paper is on the need for using statistical downscaling techniques for projection of local hydrometeorological variables under climate change scenarios. The projections can be then served as a means of input source to various hydrologic models to obtain streamflow, evapotranspiration, soil moisture and other hydrological variables of interest.
Keywords: Climate Change, Downscaling, GCM, RCM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3375352 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration
Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith
Abstract:
Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.Keywords: Multimodal image registration, GAN, cycle consistency, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810351 Meanings and Construction: Evolution of Inheriting the Traditions in Chinese Modern Architecture in the 1980s
Authors: Wei Wang
Abstract:
Queli Hotel, Xixi Scenery Spot Reception and Square Pagoda Garden are three important landmarks of localized Chinese modern architecture (LCMA) in the architectural design context of "Inheriting the Traditions in Modern Architecture" in the 1980s. As the most representative cases of LCMA in the 1980s, they interpret the traditions of Chinese garden and imperial roof from different perspectives. Based on the research text, conceptual drawings, construction drawings and site investigation, this paper extracts two groups of prominent contradictions in practice ("Pattern-Material-Structure" and "Type-Topography-Body") for keyword-based analysis to compare and examine different choices and balances by architects. Based on this, this paper attempts to indicate that the ideographic form derived from macro-narrative and the innovative investigation in construction is a pair of inevitable contradictions that must be handled and coordinated in these practices. The collision of the contradictions under specific conditions results in three cognitive attitudes and practical strategies towards traditions: Formal symbolism, spatial abstraction and construction-based narrative. These differentiated thoughts about Localization and Chineseness reflect various professional ideologies and value standpoints in the transition of Chinese Architecture discipline in the 1980s. The great variety in this particular circumstance suggests tremendous potential and possibilities of the future LCMA.Keywords: Construction, Meaning, Queli Hotel, Square Pagoda Garden, Tradition, Xixi Scenery Spot Reception.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 673350 Multi-Agent System for Irrigation Using Fuzzy Logic Algorithm and Open Platform Communication Data Access
Authors: T. Wanyama, B. Far
Abstract:
Automatic irrigation systems usually conveniently protect landscape investment. While conventional irrigation systems are known to be inefficient, automated ones have the potential to optimize water usage. In fact, there is a new generation of irrigation systems that are smart in the sense that they monitor the weather, soil conditions, evaporation and plant water use, and automatically adjust the irrigation schedule. In this paper, we present an agent based smart irrigation system. The agents are built using a mix of commercial off the shelf software, including MATLAB, Microsoft Excel and KEPServer Ex5 OPC server, and custom written code. The Irrigation Scheduler Agent uses fuzzy logic to integrate the information that affect the irrigation schedule. In addition, the Multi-Agent system uses Open Platform Connectivity (OPC) technology to share data. OPC technology enables the Irrigation Scheduler Agent to communicate over the Internet, making the system scalable to a municipal or regional agent based water monitoring, management, and optimization system. Finally, this paper presents simulation and pilot installation test result that show the operational effectiveness of our system.
Keywords: Community water usage, fuzzy logic, irrigation, multi-agent system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338349 On Adaptive Optimization of Filter Performance Based on Markov Representation for Output Prediction Error
Authors: Hong Son Hoang, Remy Baraille
Abstract:
This paper addresses the problem of how one can improve the performance of a non-optimal filter. First the theoretical question on dynamical representation for a given time correlated random process is studied. It will be demonstrated that for a wide class of random processes, having a canonical form, there exists a dynamical system equivalent in the sense that its output has the same covariance function. It is shown that the dynamical approach is more effective for simulating and estimating a Markov and non- Markovian random processes, computationally is less demanding, especially with increasing of the dimension of simulated processes. Numerical examples and estimation problems in low dimensional systems are given to illustrate the advantages of the approach. A very useful application of the proposed approach is shown for the problem of state estimation in very high dimensional systems. Here a modified filter for data assimilation in an oceanic numerical model is presented which is proved to be very efficient due to introducing a simple Markovian structure for the output prediction error process and adaptive tuning some parameters of the Markov equation.Keywords: Statistical simulation, canonical form, dynamical system, Markov and non-Markovian processes, data assimilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298348 Q-Net: A Novel QoS Aware Routing Algorithm for Future Data Networks
Authors: Maassoumeh Javadi Baygi, Abdul Rahman B Ramli, Borhanuddin Mohd Ali, Syamsiah Mashohor
Abstract:
The expectation of network performance from the early days of ARPANET until now has been changed significantly. Every day, new advancement in technological infrastructure opens the doors for better quality of service and accordingly level of perceived quality of network services have been increased over the time. Nowadays for many applications, late information has no value or even may result in financial or catastrophic loss, on the other hand, demands for some level of guarantee in providing and maintaining quality of service are ever increasing. Based on this history, having a QoS aware routing system which is able to provide today's required level of quality of service in the networks and effectively adapt to the future needs, seems as a key requirement for future Internet. In this work we have extended the traditional AntNet routing system to support QoS with multiple metrics such as bandwidth and delay which is named Q-Net. This novel scalable QoS routing system aims to provide different types of services in the network simultaneously. Each type of service can be provided for a period of time in the network and network nodes do not need to have any previous knowledge about it. When a type of quality of service is requested, Q-Net will allocate required resources for the service and will guarantee QoS requirement of the service, based on target objectives.Keywords: Quality of Service, Routing, Ant Colony Optimization, Ant-based algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327347 Localization of Geospatial Events and Hoax Prediction in the UFO Database
Authors: Harish Krishnamurthy, Anna Lafontant, Ren Yi
Abstract:
Unidentified Flying Objects (UFOs) have been an interesting topic for most enthusiasts and hence people all over the United States report such findings online at the National UFO Report Center (NUFORC). Some of these reports are a hoax and among those that seem legitimate, our task is not to establish that these events confirm that they indeed are events related to flying objects from aliens in outer space. Rather, we intend to identify if the report was a hoax as was identified by the UFO database team with their existing curation criterion. However, the database provides a wealth of information that can be exploited to provide various analyses and insights such as social reporting, identifying real-time spatial events and much more. We perform analysis to localize these time-series geospatial events and correlate with known real-time events. This paper does not confirm any legitimacy of alien activity, but rather attempts to gather information from likely legitimate reports of UFOs by studying the online reports. These events happen in geospatial clusters and also are time-based. We look at cluster density and data visualization to search the space of various cluster realizations to decide best probable clusters that provide us information about the proximity of such activity. A random forest classifier is also presented that is used to identify true events and hoax events, using the best possible features available such as region, week, time-period and duration. Lastly, we show the performance of the scheme on various days and correlate with real-time events where one of the UFO reports strongly correlates to a missile test conducted in the United States.
Keywords: Time-series clustering, feature extraction, hoax prediction, geospatial events.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851346 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II
Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang
Abstract:
To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.
Keywords: Waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 524345 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology
Authors: Weinian Wang, Joseph C. Chen
Abstract:
The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.
Keywords: Live tooling, surface roughness, Taguchi Parameter Design, CNC turning operation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804344 Hydrogen Sulphide Removal Using a Novel Biofilter Media
Authors: Z. M. Shareefdeen, A. Aidan, W.Ahmed, M. B. Khatri, M. Islam, R. Lecheheb, F. Shams
Abstract:
Air emissions from waste treatment plants often consist of a combination of Volatile Organic Compounds (VOCs) and odors. Hydrogen sulfide is one of the major odorous gases present in the waste emissions coming from municipal wastewater treatment facilities. Hydrogen sulfide (H2S) is odorous, highly toxic and flammable. Exposure to lower concentrations can result in eye irritation, a sore throat and cough, shortness of breath, and fluid in the lungs. Biofiltration has become a widely accepted technology for treating air streams containing H2S. When compared with other nonbiological technologies, biofilter is more cost-effective for treating large volumes of air containing low concentrations of biodegradable compounds. Optimization of biofilter media is essential for many reasons such as: providing a higher surface area for biofilm growth, low pressure drop, physical stability, and good moisture retention. In this work, a novel biofilter media is developed and tested at a pumping station of a municipality located in the United Arab Emirates (UAE). The media is found to be very effective (>99%) in removing H2S concentrations that are expected in pumping stations under steady state and shock loading conditions.Keywords: biofilter media, hydrogen sulphide, pumping station, biofiltration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952343 Decomposition of the Customer-Server Interaction in Grocery Shops
Authors: Andreas Ahrens, Ojaras Purvinis Jelena Zāšcerinska
Abstract:
A successful shopping experience without overcrowded shops and long waiting times undoubtedly leads to the release of happiness hormones and is generally considered as the goal of any optimization. Factors influencing the shopping experience can be divided into internal and external ones. External factors are related e. g. to the arrival of the customers to the shop whereas internal factors are linked with the service process itself when checking out (waiting in the queue to the cash register and the scanning of the goods as well as the payment process itself) or any other non-expected delay when changing the status from a visitor to a buyer by choosing goods or items. This paper divides the customer-server interaction in five phases starting with the customer arrival at the shop, the selection of goods, the buyer waiting in the queue to the cash register, the payment process and ending with the customer or buyer departure. Our simulation results show how five phases are intertwined and influence the overall shopping experience. Parameters for measuring the shopping experience based on a burstiness level in each of the five phases of the customer-server interaction are estimated.
Keywords: Customers’ burstiness, cash register, customers’ waiting time, gap distribution function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 350342 Co-tier and Co-channel Interference Avoidance Algorithm for Femtocell Networks
Authors: S. Padmapriya, M. Tamilarasi
Abstract:
Femtocells are regarded as a milestone for next generation cellular networks. As femtocells are deployed in an unplanned manner, there is a chance of assigning same resource to neighboring femtocells. This scenario may induce co-channel interference and may seriously affect the service quality of neighboring femtocells. In addition, the dominant transmit power of a femtocell will induce co-tier interference to neighboring femtocells. Thus to jointly handle co-tier and co-channel interference, we propose an interference-free power and resource block allocation (IFPRBA) algorithm for closely located, closed access femtocells. Based on neighboring list, inter-femto-base station distance and uplink noise power, the IFPRBA algorithm assigns non-interfering power and resource to femtocells. The IFPRBA algorithm also guarantees the quality of service to femtouser based on the knowledge of resource requirement, connection type, and the tolerable delay budget. Simulation result shows that the interference power experienced in IFPRBA algorithm is below the tolerable interference power and hence the overall service success ratio, PRB efficiency and network throughput are maximum when compared to conventional resource allocation framework for femtocell (RAFF) algorithm.
Keywords: Co-channel interference, co-tier interference, femtocells, guaranteed QoS, power optimization, resource assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2466341 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel
Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini
Abstract:
Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.
Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325340 Medical Image Registration by Minimizing Divergence Measure Based on Tsallis Entropy
Authors: Shaoyan Sun, Liwei Zhang, Chonghui Guo
Abstract:
As the use of registration packages spreads, the number of the aligned image pairs in image databases (either by manual or automatic methods) increases dramatically. These image pairs can serve as a set of training data. Correspondingly, the images that are to be registered serve as testing data. In this paper, a novel medical image registration method is proposed which is based on the a priori knowledge of the expected joint intensity distribution estimated from pre-aligned training images. The goal of the registration is to find the optimal transformation such that the distance between the observed joint intensity distribution obtained from the testing image pair and the expected joint intensity distribution obtained from the corresponding training image pair is minimized. The distance is measured using the divergence measure based on Tsallis entropy. Experimental results show that, compared with the widely-used Shannon mutual information as well as Tsallis mutual information, the proposed method is computationally more efficient without sacrificing registration accuracy.
Keywords: Multimodality images, image registration, Shannonentropy, Tsallis entropy, mutual information, Powell optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635339 An Improved Learning Algorithm based on the Conjugate Gradient Method for Back Propagation Neural Networks
Authors: N. M. Nawi, M. R. Ransing, R. S. Ransing
Abstract:
The conjugate gradient optimization algorithm usually used for nonlinear least squares is presented and is combined with the modified back propagation algorithm yielding a new fast training multilayer perceptron (MLP) algorithm (CGFR/AG). The approaches presented in the paper consist of three steps: (1) Modification on standard back propagation algorithm by introducing gain variation term of the activation function, (2) Calculating the gradient descent on error with respect to the weights and gains values and (3) the determination of the new search direction by exploiting the information calculated by gradient descent in step (2) as well as the previous search direction. The proposed method improved the training efficiency of back propagation algorithm by adaptively modifying the initial search direction. Performance of the proposed method is demonstrated by comparing to the conjugate gradient algorithm from neural network toolbox for the chosen benchmark. The results show that the number of iterations required by the proposed method to converge is less than 20% of what is required by the standard conjugate gradient and neural network toolbox algorithm.Keywords: Back-propagation, activation function, conjugategradient, search direction, gain variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838338 A Remote Sensing Approach for Vulnerability and Environmental Change in Apodi Valley Region, Northeast Brazil
Authors: Mukesh Singh Boori, Venerando Eustáquio Amaro
Abstract:
The objective of this study was to improve our understanding of vulnerability and environmental change; it's causes basically show the intensity, its distribution and human-environment effect on the ecosystem in the Apodi Valley Region, This paper is identify, assess and classify vulnerability and environmental change in the Apodi valley region using a combined approach of landscape pattern and ecosystem sensitivity. Models were developed using the following five thematic layers: Geology, geomorphology, soil, vegetation and land use/cover, by means of a Geographical Information Systems (GIS)-based on hydro-geophysical parameters. In spite of the data problems and shortcomings, using ESRI-s ArcGIS 9.3 program, the vulnerability score, to classify, weight and combine a number of 15 separate land cover classes to create a single indicator provides a reliable measure of differences (6 classes) among regions and communities that are exposed to similar ranges of hazards. Indeed, the ongoing and active development of vulnerability concepts and methods have already produced some tools to help overcome common issues, such as acting in a context of high uncertainties, taking into account the dynamics and spatial scale of asocial-ecological system, or gathering viewpoints from different sciences to combine human and impact-based approaches. Based on this assessment, this paper proposes concrete perspectives and possibilities to benefit from existing commonalities in the construction and application of assessment tools.Keywords: Vulnerability, Land use/cover, Ecosystem, Remotesensing, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946337 Modelling an Investment Portfolio with Mandatory and Voluntary Contributions under M-CEV Model
Authors: Amadi Ugwulo Chinyere, Lewis D. Gbarayorks, Emem N. H. Inamete
Abstract:
In this paper, the mandatory contribution, additional voluntary contribution (AVC) and administrative charges are merged together to determine the optimal investment strategy (OIS) for a pension plan member (PPM) in a defined contribution (DC) pension scheme under the modified constant elasticity of variance (M-CEV) model. We assume that the voluntary contribution is a stochastic process and a portfolio consisting of one risk free asset and one risky asset modeled by the M-CEV model is considered. Also, a stochastic differential equation consisting of PPM’s monthly contributions, voluntary contributions and administrative charges is obtained. More so, an optimization problem in the form of Hamilton Jacobi Bellman equation which is a nonlinear partial differential equation is obtained. Using power transformation and change of variables method, an explicit solution of the OIS and the value function are obtained under constant absolute risk averse (CARA). Furthermore, numerical simulations on the impact of some sensitive parameters on OIS were discussed extensively. Finally, our result generalizes some existing result in the literature.
Keywords: DC pension fund, modified constant elasticity of variance, optimal investment strategies, voluntary contribution, administrative charges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373336 Modeling Sustainable Truck Rental Operations Using Closed-Loop Supply Chain Network
Authors: Khaled S. Abdallah, Abdel-Aziz M. Mohamed
Abstract:
Moving industries consume numerous resources and dispose masses of used packaging materials. Proper sorting, recycling and disposing the packaging materials is necessary to avoid a sever pollution disaster. This research paper presents a conceptual model to propose sustainable truck rental operations instead of the regular one. An optimization model was developed to select the locations of truck rental centers, collection sites, maintenance and repair sites, and identify the rental fees to be charged for all routes that maximize the total closed supply chain profits. Fixed costs of vehicle purchasing, costs of constructing collection centers and repair centers, as well as the fixed costs paid to use disposal and recycling centers are considered. Operating costs include the truck maintenance, repair costs as well as the cost of recycling and disposing the packing materials, and the costs of relocating the truck are presented in the model. A mixed integer model is developed followed by a simulation model to examine the factors affecting the operation of the model.Keywords: Modeling, truck rental, supply chains management, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 821335 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.
Keywords: Microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284334 Extracting Terrain Points from Airborne Laser Scanning Data in Densely Forested Areas
Authors: Ziad Abdeldayem, Jakub Markiewicz, Kunal Kansara, Laura Edwards
Abstract:
Airborne Laser Scanning (ALS) is one of the main technologies for generating high-resolution digital terrain models (DTMs). DTMs are crucial to several applications, such as topographic mapping, flood zone delineation, geographic information systems (GIS), hydrological modelling, spatial analysis, etc. Laser scanning system generates irregularly spaced three-dimensional cloud of points. Raw ALS data are mainly ground points (that represent the bare earth) and non-ground points (that represent buildings, trees, cars, etc.). Removing all the non-ground points from the raw data is referred to as filtering. Filtering heavily forested areas is considered a difficult and challenging task as the canopy stops laser pulses from reaching the terrain surface. This research presents an approach for removing non-ground points from raw ALS data in densely forested areas. Smoothing splines are exploited to interpolate and fit the noisy ALS data. The presented filter utilizes a weight function to allocate weights for each point of the data. Furthermore, unlike most of the methods, the presented filtering algorithm is designed to be automatic. Three different forested areas in the United Kingdom are used to assess the performance of the algorithm. The results show that the generated DTMs from the filtered data are accurate (when compared against reference terrain data) and the performance of the method is stable for all the heavily forested data samples. The average root mean square error (RMSE) value is 0.35 m.
Keywords: Airborne laser scanning, digital terrain models, filtering, forested areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 718333 Optimization of Turbocharged Diesel Engines
Authors: Ebrahim Safarian, Kadir Bilen, Akif Ceviz
Abstract:
The turbocharger and turbocharging have been the inherent component of diesel engines, so that critical parameters of such engines, as BSFC (Brake Specific Fuel Consumption) or thermal efficiency, fuel consumption, BMEP (Brake Mean Effective Pressure), the power density output and emission level have been improved extensively. In general, the turbocharger can be considered as the most complex component of diesel engines, because it has closely interrelated turbomachinery concepts of the turbines and the compressors to thermodynamic fundamentals of internal combustion engines and stress analysis of all components. In this paper, a waste gate for a conventional single stage radial turbine is investigated by consideration of turbochargers operation constrains and engine operation conditions, without any detail designs in the turbine and the compressor. Amount of opening waste gate which extended between the ranges of full opened and closed valve, is demonstrated by limiting compressor boost pressure ratio. Obtaining of an optimum point by regard above mentioned items is surveyed by three linked meanline modeling programs together which consist of Turbomatch®, Compal®, Rital® madules in concepts NREC® respectively.
Keywords: Turbocharger, Wastegate, diesel engine, CONCEPT NREC programs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3421332 Air Dispersion Model for Prediction Fugitive Landfill Gaseous Emission Impact in Ambient Atmosphere
Authors: Moustafa Osman Mohammed
Abstract:
This paper will explore formation of HCl aerosol at atmospheric boundary layers and encourages the uptake of environmental modeling systems (EMSs) as a practice evaluation of gaseous emissions (“framework measures”) from small and medium-sized enterprises (SMEs). The conceptual model predicts greenhouse gas emissions to ecological points beyond landfill site operations. It focuses on incorporation traditional knowledge into baseline information for both measurement data and the mathematical results, regarding parameters influence model variable inputs. The paper has simplified parameters of aerosol processes based on the more complex aerosol process computations. The simple model can be implemented to both Gaussian and Eulerian rural dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds is taken into account photochemical formulation with exposure effects according to HCl concentrations as starting point of risk assessment. The discussion set out distinctly aspect of sustainability in reflection inputs, outputs, and modes of impact on the environment. Thereby, models incorporate abiotic and biotic species to broaden the scope of integration for both quantification impact and assessment risks. The later environmental obligations suggest either a recommendation or a decision of what is a legislative should be achieved for mitigation measures of landfill gas (LFG) ultimately.Keywords: Air dispersion model, landfill management, spatial analysis, environmental impact and risk assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558331 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology
Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur
Abstract:
Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.
Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913330 Social Interaction Dynamics Exploration: The Case Study of El Sherouk City
Authors: Nardine El Bardisy, Wolf Reuter, Ayat Ismail
Abstract:
In Egypt, there is continuous housing demand as a result of rapid population growth. In 1979, this forced the government to establish new urban communities in order to decrease stress around delta. New Urban Communities Authority (NUCA) was formulated to take the responsibly of this new policy. These communities suffer from social life deficiency due to their typology, which is separated island with barriers. New urban communities’ typology results from the influence of neoliberalism movement and modern city planning forms. The lack of social interaction in these communities at present should be enhanced in the future. On a global perspective, sustainable development calls for creating more sustainable communities which include social, economic and environmental aspects. From 1960, planners were highly focusing on the promotion of the social dimension in urban development plans. The research hypothesis states: “It is possible to promote social interaction in new urban communities through a set of socio-spatial recommended strategies that are tailored for Greater Cairo Region context”. In order to test this hypothesis, the case of El-Sherouk city is selected, which represents the typical NUCA development plans. Social interaction indicators were derived from literature and used to explore different social dynamics in the selected case. The tools used for exploring case study are online questionnaires, face to face questionnaires, interviews, and observations. These investigations were analyzed, conclusions and recommendations were set to improve social interaction.
Keywords: New urban communities, modern planning, social Interaction, Social life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761329 QoS Expectations in IP Networks: A Practical View
Authors: S. Arrizabalaga, A. Salterain, M. Domínguez, I. Alvaro
Abstract:
Traditionally, Internet has provided best-effort service to every user regardless of its requirements. However, as Internet becomes universally available, users demand more bandwidth and applications require more and more resources, and interest has developed in having the Internet provide some degree of Quality of Service. Although QoS is an important issue, the question of how it will be brought into the Internet has not been solved yet. Researches, due to the rapid advances in technology are proposing new and more desirable capabilities for the next generation of IP infrastructures. But neither all applications demand the same amount of resources, nor all users are service providers. In this way, this paper is the first of a series of papers that presents an architecture as a first step to the optimization of QoS in the Internet environment as a solution to a SMSE's problem whose objective is to provide public service to internet with certain Quality of Service expectations. The service provides new business opportunities, but also presents new challenges. We have designed and implemented a scalable service framework that supports adaptive bandwidth based on user demands, and the billing based on usage and on QoS. The developed application has been evaluated and the results show that traffic limiting works at optimum and so it does exceeding bandwidth distribution. However, some considerations are done and currently research is under way in two basic areas: (i) development and testing new transfer protocols, and (ii) developing new strategies for traffic improvements based on service differentiation.
Keywords: Differentiated Services, Linux, Quality of Service, queueing disciplines, web application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1923