Search results for: positive count data.
6366 Attenuation in Transferred RF Power to a Biomedical Implant due to the Misalignment Coils
Authors: Batel Noureddine, Mehenni Mohamed, Dekar Lies
Abstract:
In biomedical implant field, a new formula is given for the study of Radio Frequency power attenuation by simultaneous effects of side and angular misalignment of the supply/data transfer coils. A confrontation with the practical measurements done into a Faraday cage, allowed a checking of the obtained theoretical results. The DC supply systems without material connection and the data transmitters used in the case of biomedical implants, can be well dimensioned by taking into account the possibility of power attenuation by misalignment of transfer coilsKeywords: Biomedical implant field, misalignment coils, powerattenuation, transmitter and receiver coils.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16886365 Extracting Attributes for Twitter Hashtag Communities
Authors: Ashwaq Alsulami, Jianhua Shao
Abstract:
Various organisations often need to understand discussions on social media, such as what trending topics are and characteristics of the people engaged in the discussion. A number of approaches have been proposed to extract attributes that would characterise a discussion group. However, these approaches are largely based on supervised learning, and as such they require a large amount of labelled data. We propose an approach in this paper that does not require labelled data, but rely on lexical sources to detect meaningful attributes for online discussion groups. Our findings show an acceptable level of accuracy in detecting attributes for Twitter discussion groups.
Keywords: Attributed community, attribute detection, community, social network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5076364 On the Performance of Information Criteria in Latent Segment Models
Authors: Jaime R. S. Fonseca
Abstract:
Nevertheless the widespread application of finite mixture models in segmentation, finite mixture model selection is still an important issue. In fact, the selection of an adequate number of segments is a key issue in deriving latent segments structures and it is desirable that the selection criteria used for this end are effective. In order to select among several information criteria, which may support the selection of the correct number of segments we conduct a simulation study. In particular, this study is intended to determine which information criteria are more appropriate for mixture model selection when considering data sets with only categorical segmentation base variables. The generation of mixtures of multinomial data supports the proposed analysis. As a result, we establish a relationship between the level of measurement of segmentation variables and some (eleven) information criteria-s performance. The criterion AIC3 shows better performance (it indicates the correct number of the simulated segments- structure more often) when referring to mixtures of multinomial segmentation base variables.Keywords: Quantitative Methods, Multivariate Data Analysis, Clustering, Finite Mixture Models, Information Theoretical Criteria, Simulation experiments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15196363 A Growing Natural Gas Approach for Evaluating Quality of Software Modules
Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur
Abstract:
The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.
Keywords: Growing Neural Gas, data clustering, fault prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18656362 Prediction of Dissolved Oxygen in Rivers Using a Wang-Mendel Method – Case Study of Au Sable River
Authors: Mahmoud R. Shaghaghian
Abstract:
Amount of dissolve oxygen in a river has a great direct affect on aquatic macroinvertebrates and this would influence on the region ecosystem indirectly. In this paper it is tried to predict dissolved oxygen in rivers by employing an easy Fuzzy Logic Modeling, Wang Mendel method. This model just uses previous records to estimate upcoming values. For this purpose daily and hourly records of eight stations in Au Sable watershed in Michigan, United States are employed for 12 years and 50 days period respectively. Calculations indicate that for long period prediction it is better to increase input intervals. But for filling missed data it is advisable to decrease the interval. Increasing partitioning of input and output features influence a little on accuracy but make the model too time consuming. Increment in number of input data also act like number of partitioning. Large amount of train data does not modify accuracy essentially, so, an optimum training length should be selected.
Keywords: Dissolved oxygen, Au Sable, fuzzy logic modeling, Wang Mendel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18916361 Using Set Up Candid Clips as Viral Marketing via New Media
Authors: P. Suparada, D. Eakapotch
Abstract:
This research’s objectives were to analyze the using of new media in the form of set up candid clip that affects the product and presenter, to study the effectiveness of using new media in the form of set up candid clip in order to increase the circulation and audience satisfaction and to use the earned information and knowledge to develop the communication for publicizing and advertising via new media. This research is qualitative research based on questionnaire from 50 random sampling representative samples and in-depth interview from experts in publicizing and advertising fields. The findings indicated the positive and negative effects to the brands’ image and presenters’ image of product named “Scotch 100” and “Snickers” that used set up candid clips via new media for publicizing and advertising in Thailand. It will be useful for fields of publicizing and advertising in the new media forms.
Keywords: Candid Clip, Effect, New Media, Social Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16296360 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.
Keywords: Angle of internal friction, Cone penetrating test, General regression neural network, Soil modulus of elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22826359 Direct Measurements of Wind Data over 100 Meters above the Ground in the Site of Lendinara, Italy
Authors: A. Dal Monte, M. Raciti Castelli, G. B. Bellato, L. Stevanato, E. Benini
Abstract:
The wind resource in the Italian site of Lendinara (RO) is analyzed through a systematic anemometric campaign performed on the top of the bell tower, at an altitude of over 100 m above the ground. Both the average wind speed and the Weibull distribution are computed. The resulting average wind velocity is in accordance with the numerical predictions of the Italian Wind Atlas, confirming the accuracy of the extrapolation of wind data adopted for the evaluation of wind potential at higher altitudes with respect to the commonly placed measurement stations.Keywords: Anemometric campaign, wind resource, Weibull distribution, wind atlas
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19586358 A Numerical Description of a Fibre Reinforced Concrete Using a Genetic Algorithm
Authors: Henrik L. Funke, Lars Ulke-Winter, Sandra Gelbrich, Lothar Kroll
Abstract:
This work reports about an approach for an automatic adaptation of concrete formulations based on genetic algorithms (GA) to optimize a wide range of different fit-functions. In order to achieve the goal, a method was developed which provides a numerical description of a fibre reinforced concrete (FRC) mixture regarding the production technology and the property spectrum of the concrete. In a first step, the FRC mixture with seven fixed components was characterized by varying amounts of the components. For that purpose, ten concrete mixtures were prepared and tested. The testing procedure comprised flow spread, compressive and bending tensile strength. The analysis and approximation of the determined data was carried out by GAs. The aim was to obtain a closed mathematical expression which best describes the given seven-point cloud of FRC by applying a Gene Expression Programming with Free Coefficients (GEP-FC) strategy. The seven-parametric FRC-mixtures model which is generated according to this method correlated well with the measured data. The developed procedure can be used for concrete mixtures finding closed mathematical expressions, which are based on the measured data.
Keywords: Concrete design, fibre reinforced concrete, genetic algorithms, GEP-FC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9906357 Applications of Stable Distributions in Time Series Analysis, Computer Sciences and Financial Markets
Authors: Mohammad Ali Baradaran Ghahfarokhi, Parvin Baradaran Ghahfarokhi
Abstract:
In this paper, first we introduce the stable distribution, stable process and theirs characteristics. The a -stable distribution family has received great interest in the last decade due to its success in modeling data, which are too impulsive to be accommodated by the Gaussian distribution. In the second part, we propose major applications of alpha stable distribution in telecommunication, computer science such as network delays and signal processing and financial markets. At the end, we focus on using stable distribution to estimate measure of risk in stock markets and show simulated data with statistical softwares.
Keywords: stable distribution, SaS, infinite variance, heavy tail networks, VaR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20636356 Cognitive Behaviour Therapy to Treat Social Anxiety Disorder: A Psychology Case
Authors: Yasmin Binti Othman Mydin, Mohd. Fadzillah Abdul Razak
Abstract:
Rational Emotive Behaviour Therapy is the first cognitive behavior therapy which was introduced by Albert Ellis. This is a systematic and structured psychotherapy which is effective in treating various psychological problems. A patient, 25 years old male, experienced intense fear and situational panic attack to return to his faculty and to face his class-mates after a long absence (2 years). This social anxiety disorder was a major factor that impeded the progress of his study. He was treated with the use of behavioural technique such as relaxation breathing technique and cognitive techniques such as imagery, cognitive restructuring, rationalization technique and systematic desensitization. The patient reported positive improvement in the anxiety disorder, able to progress well in studies and lead a better quality of life as a student.Keywords: Anxiety, behaviour, cognitive, therapy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21886355 Model-Free Distributed Control of Dynamical Systems
Authors: Javad Khazaei, Rick S. Blum
Abstract:
Distributed control is an efficient and flexible approach for coordination of multi-agent systems. One of the main challenges in designing a distributed controller is identifying the governing dynamics of the dynamical systems. Data-driven system identification is currently undergoing a revolution. With the availability of high-fidelity measurements and historical data, model-free identification of dynamical systems can facilitate the control design without tedious modeling of high-dimensional and/or nonlinear systems. This paper develops a distributed control design using consensus theory for linear and nonlinear dynamical systems using sparse identification of system dynamics. Compared with existing consensus designs that heavily rely on knowing the detailed system dynamics, the proposed model-free design can accurately capture the dynamics of the system with available measurements and input data and provide guaranteed performance in consensus and tracking problems. Heterogeneous damped oscillators are chosen as examples of dynamical system for validation purposes.
Keywords: Consensus tracking, distributed control, model-free control, sparse identification of dynamical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5356354 Improving Classification in Bayesian Networks using Structural Learning
Authors: Hong Choon Ong
Abstract:
Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25996353 Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ
Authors: Khaled Abduesslam. M, Mohammed Ali, Basher H Alsdai, Muhammad Nizam, Inayati
Abstract:
This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.
Keywords: IEEE 39 bus, Least Squares Support Vector Machine, Learning Vector Quantization, Voltage Collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24056352 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context
Authors: Mangesh R. Phate, V. H. Tatwawadi
Abstract:
This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.
The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.
Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19706351 Electricity Load Modeling: An Application to Italian Market
Authors: Giovanni Masala, Stefania Marica
Abstract:
Forecasting electricity load plays a crucial role regards decision making and planning for economical purposes. Besides, in the light of the recent privatization and deregulation of the power industry, the forecasting of future electricity load turned out to be a very challenging problem. Empirical data about electricity load highlights a clear seasonal behavior (higher load during the winter season), which is partly due to climatic effects. We also emphasize the presence of load periodicity at a weekly basis (electricity load is usually lower on weekends or holidays) and at daily basis (electricity load is clearly influenced by the hour). Finally, a long-term trend may depend on the general economic situation (for example, industrial production affects electricity load). All these features must be captured by the model. The purpose of this paper is then to build an hourly electricity load model. The deterministic component of the model requires non-linear regression and Fourier series while we will investigate the stochastic component through econometrical tools. The calibration of the parameters’ model will be performed by using data coming from the Italian market in a 6 year period (2007- 2012). Then, we will perform a Monte Carlo simulation in order to compare the simulated data respect to the real data (both in-sample and out-of-sample inspection). The reliability of the model will be deduced thanks to standard tests which highlight a good fitting of the simulated values.Keywords: ARMA-GARCH process, electricity load, fitting tests, Fourier series, Monte Carlo simulation, non-linear regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14866350 A Study on Creation of Human-Based Co-Design Service Platform
Authors: Chiung-Hui Chen
Abstract:
With the approaching of digital era, various interactive service platforms and systems support human beings- needs in lives by different contents and measures. Design strategies have gradually turned from function-based to user-oriented, and are often customized. In other words, how designers include users- value reaction in creation becomes the goal. Creative design service of interior design requires positive interaction and communication to allow users to obtain full design information, recognize the style and process of personal needs, develop creative service design, lower communication time and cost and satisfy users- sense of achievement. Thus, by constructing a co-design method, based on the communication between interior designers and users, this study recognizes users- real needs and provides the measure of co-design for designers and users.Keywords: Co-Design, Customized, Design Service, Interactive Genetic Algorithm, Interior Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14966349 An Approach for Coagulant Dosage Optimization Using Soft Jar Test: A Case Study of Bangkhen Water Treatment Plant
Authors: Ninlawat Phuangchoke, Waraporn Viyanon, Setta Sasananan
Abstract:
The most important process of the water treatment plant process is coagulation, which uses alum and poly aluminum chloride (PACL). Therefore, determining the dosage of alum and PACL is the most important factor to be prescribed. This research applies an artificial neural network (ANN), which uses the Levenberg–Marquardt algorithm to create a mathematical model (Soft Jar Test) for chemical dose prediction, as used for coagulation, such as alum and PACL, with input data consisting of turbidity, pH, alkalinity, conductivity, and, oxygen consumption (OC) of the Bangkhen Water Treatment Plant (BKWTP), under the authority of the Metropolitan Waterworks Authority of Thailand. The data were collected from 1 January 2019 to 31 December 2019 in order to cover the changing seasons of Thailand. The input data of ANN are divided into three groups: training set, test set, and validation set. The coefficient of determination and the mean absolute errors of the alum model are 0.73, 3.18 and the PACL model are 0.59, 3.21, respectively.
Keywords: Soft jar test, jar test, water treatment plant process, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6646348 Distributional Impacts of Changes in Value Added Tax Rates in the Czech Republic
Authors: Ondřej Bayer
Abstract:
The paper evaluates the ongoing reform of VAT in the Czech Republic in terms of impacts on individual households. The main objective is to analyse the impact of given changes on individual households. The adopted method is based on the data related to household consumption by individual household quintiles; obtained data are subjected to micro-simulation examining. Results are discussed in terms of vertical tax justice. Results of the analysis reveal that VAT behaves regressively and a sole consolidation of rates at a higher level only increases the regression of this tax in the Czech Republic.
Keywords: Consolidation of rates, household quintiles, tax impact, VAT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18566347 An Efficient Iterative Updating Method for Damped Structural Systems
Authors: Jiashang Jiang
Abstract:
Model updating is an inverse eigenvalue problem which concerns the modification of an existing but inaccurate model with measured modal data. In this paper, an efficient gradient based iterative method for updating the mass, damping and stiffness matrices simultaneously using a few of complex measured modal data is developed. Convergence analysis indicates that the iterative solutions always converge to the unique minimum Frobenius norm symmetric solution of the model updating problem by choosing a special kind of initial matrices.
Keywords: Model updating, iterative algorithm, damped structural system, optimal approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20846346 Potential of Solar Energy in Zarqa Region
Authors: Ali M. Jawarneh, Ahmad S. AL-Shyyab
Abstract:
The purpose of this work is to present the potential of solar energy in Zarqa region. The solar radiation along year 2009 was obtained from Pyranometer which measures the global radiation over horizontal surfaces. Solar data in several different forms, over period of 5 minutes, hour-by-hour, daily and monthly data radiation have been presented. Briefly, the yearly global solar radiation in Zarqa is 7297.5 MJ/m2 (2027 kWh/m²) and the average annual solar radiation per day is 20 MJ/m2 (5.5 Kwh/m2). More specifically, the average annual solar radiation per day is 12.9 MJ/m2 (3.57 Kwh/m2) in winter and 25 MJ/m2 (7 Kwh/m2) in summer.Keywords: Solar Energy, Pyranometer, Zarqa Region
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19216345 Applications of Drones in Infrastructures: Challenges and Opportunities
Authors: Jin Fan, M. Ala Saadeghvaziri
Abstract:
Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.
Keywords: Bridge, construction, drones, infrastructure, information.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13086344 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.
Keywords: Data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25576343 Stability and HOPF Bifurcation Analysis in a Stage-structured Predator-prey system with Two Time Delays
Authors: Yongkun Li, Meng Hu
Abstract:
A stage-structured predator-prey system with two time delays is considered. By analyzing the corresponding characteristic equation, the local stability of a positive equilibrium is investigated and the existence of Hopf bifurcations is established. Formulae are derived to determine the direction of bifurcations and the stability of bifurcating periodic solutions by using the normal form theory and center manifold theorem. Numerical simulations are carried out to illustrate the theoretical results. Based on the global Hopf bifurcation theorem for general functional differential equations, the global existence of periodic solutions is established.
Keywords: Predator-prey system, stage structure, time delay, HOPF bifurcation, periodic solution, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15696342 A Semantic Web Based Ontology in the Financial Domain
Authors: S. Banerjee
Abstract:
The paper describes design of an ontology in the financial domain for mutual funds. The design of this ontology consists of four steps, namely, specification, knowledge acquisition, implementation and semantic query. Specification includes a description of the taxonomy and different types mutual funds and their scope. Knowledge acquisition involves the information extraction from heterogeneous resources. Implementation describes the conceptualization and encoding of this data. Finally, semantic query permits complex queries to integrated data, mapping of these database entities to ontological concepts.Keywords: Ontology, Semantic Web, Mutual Funds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36526341 A Frugal Bidding Procedure for Replicating WWW Content
Authors: Samee Ullah Khan, C. Ardil
Abstract:
Fine-grained data replication over the Internet allows duplication of frequently accessed data objects, as opposed to entire sites, to certain locations so as to improve the performance of largescale content distribution systems. In a distributed system, agents representing their sites try to maximize their own benefit since they are driven by different goals such as to minimize their communication costs, latency, etc. In this paper, we will use game theoretical techniques and in particular auctions to identify a bidding mechanism that encapsulates the selfishness of the agents, while having a controlling hand over them. In essence, the proposed game theory based mechanism is the study of what happens when independent agents act selfishly and how to control them to maximize the overall performance. A bidding mechanism asks how one can design systems so that agents- selfish behavior results in the desired system-wide goals. Experimental results reveal that this mechanism provides excellent solution quality, while maintaining fast execution time. The comparisons are recorded against some well known techniques such as greedy, branch and bound, game theoretical auctions and genetic algorithms.
Keywords: Internet, data content replication, static allocation, mechanism design, equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14046340 Public R and D Risk and Risk Management Policy
Authors: Youngseok Lee, Dongjin Chung, Youngjin Kim
Abstract:
R&D risk management has been suggested as one of the management approaches for accomplishing the goals of public R&D investment. The investment in basic science and core technology development is the essential roles of government for securing the social base needed for continuous economic growth. And, it is also an important role of the science and technology policy sectors to generate a positive environment in which the outcomes of public R&D can be diffused in a stable fashion by controlling the uncertainties and risk factors in advance that may arise during the application of such achievements to society and industry. Various policies have already been implemented to manage uncertainties and variables that may have negative impact on accomplishing public R& investment goals. But we may derive new policy measures for complementing the existing policies and for exploring progress direction by analyzing them in a policy package from the viewpoint of R&D risk management.Keywords: Risk management, Public R&D policy, Science andtechnology policy, Performance management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16566339 Developmental Differences in the Construction of Concepts by Children from 3 to 14-Year-Olds: Perception, Language and Instruction
Authors: Mehmet Ozcan
Abstract:
This study was designed to investigate the relationship between language and children’s construction of the concept of objects, actions, and states. Participants of this study are 120 children whose ages range from 3 to 14 years. Ten children participated from each age group and 10 adults participated as normative group. Data were collected using 28 words which were identified and grouped according to the purpose of this study. Participants were asked the question “What is x?’ for each word in a reserved room. The audio recorded data were transcribed and coded. The data were analyzed primarily qualitatively but quantitatively as well to support qualitative findings. The findings reveal that younger children rely more on their perceptual experience and linguistic input while 7-year-olds and older ones rely more on instructional language in the construction of the concepts related to objects, actions and states. Adults differ from all age groups with their usage of metaphors to refer to objects. It has been noted that linguistic, perceptual and instructional experiences work in an interwoven way but each one seems to be dominant at certain ages.
Keywords: Cognition, concept construction, first language acquisition, language, thought.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11156338 Detailed Phenomenological Study of 14N Elastically Scattered on 12C in a wide Energy Range
Authors: Sh. Hamada, N. Burtebayev, N. Amangeldi, A. Amar
Abstract:
An experiment was performed with a 24.5 MeV 14N beam on a 12C target in the cyclotron DC-60 located in Astana, Kazakhstan, to study the elastic scattering of 14N on 12C; the scattering was also analyzed at different energies for tracking the phenomenon of remarkable structure at large angles. Its aims were to extend the measurements to very large angles, and attempt to uniquely identify the elastic scattering potential. Good agreement between the theoretical and experimental data has been obtained with suitable optical potential parameters. Optical model calculations with l -dependent imaginary potentials were also applied to the data and relatively good agreement was found.Keywords: Optical Potential Codes, Elastic Scattering, SPIVALCode.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15636337 Investigating Technical and Pedagogical Considerations in Producing Screen Recorded Videos
Authors: M. Nikafrooz, J. Darsareh
Abstract:
Due to the COVID-19 pandemic, its impacts on education all over the world, and the problems arising from the use of traditional methods in education during the pandemic, it was necessary to apply alternative solutions to achieve educational goals. In this regard, electronic content production through screen recording became popular among many teachers. However, the production of screen-recorded videos requires special technical and pedagogical considerations. The purpose of this study was to extract and present the technical and pedagogical considerations for producing screen-recorded videos to provide a useful and comprehensive guideline for e-content producers. This study was applied research, the design was descriptive, and data collection has been done using qualitative method. In order to collect the data, 524 previously produced screen-recorded videos were evaluated by using an open-ended questionnaire. After collecting the data, they were categorized, and finally, 83 items as technical and pedagogical considerations in the form of 5 domains were determined. By applying such considerations, it is expected to decrease producing and editing time, increase the technical and pedagogical quality, and finally facilitate and enhance the processes of teaching and learning.
Keywords: E-learning, e-content, screen recorded-videos, screen recording software, technical and pedagogical considerations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646