Search results for: visual thing recognition system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9278

Search results for: visual thing recognition system

9098 Automatic Recognition of Emotionally Coloured Speech

Authors: Theologos Athanaselis, Stelios Bakamidis, Ioannis Dologlou

Abstract:

Emotion in speech is an issue that has been attracting the interest of the speech community for many years, both in the context of speech synthesis as well as in automatic speech recognition (ASR). In spite of the remarkable recent progress in Large Vocabulary Recognition (LVR), it is still far behind the ultimate goal of recognising free conversational speech uttered by any speaker in any environment. Current experimental tests prove that using state of the art large vocabulary recognition systems the error rate increases substantially when applied to spontaneous/emotional speech. This paper shows that recognition rate for emotionally coloured speech can be improved by using a language model based on increased representation of emotional utterances.

Keywords: Statistical language model, N-grams, emotionallycoloured speech

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
9097 Improved Dynamic Bayesian Networks Applied to Arabic on Line Characters Recognition

Authors: Redouane Tlemsani, Abdelkader Benyettou

Abstract:

Work is in on line Arabic character recognition and the principal motivation is to study the Arab manuscript with on line technology.

This system is a Markovian system, which one can see as like a Dynamic Bayesian Network (DBN). One of the major interests of these systems resides in the complete models training (topology and parameters) starting from training data.

Our approach is based on the dynamic Bayesian Networks formalism. The DBNs theory is a Bayesians networks generalization to the dynamic processes. Among our objective, amounts finding better parameters, which represent the links (dependences) between dynamic network variables.

In applications in pattern recognition, one will carry out the fixing of the structure, which obliges us to admit some strong assumptions (for example independence between some variables). Our application will relate to the Arabic isolated characters on line recognition using our laboratory database: NOUN. A neural tester proposed for DBN external optimization.

The DBN scores and DBN mixed are respectively 70.24% and 62.50%, which lets predict their further development; other approaches taking account time were considered and implemented until obtaining a significant recognition rate 94.79%.

Keywords: Arabic on line character recognition, dynamic Bayesian network, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
9096 Reducing the False Rejection Rate of Iris Recognition Using Textural and Topological Features

Authors: M. Vatsa, R. Singh, A. Noore

Abstract:

This paper presents a novel iris recognition system using 1D log polar Gabor wavelet and Euler numbers. 1D log polar Gabor wavelet is used to extract the textural features, and Euler numbers are used to extract topological features of the iris. The proposed decision strategy uses these features to authenticate an individual-s identity while maintaining a low false rejection rate. The algorithm was tested on CASIA iris image database and found to perform better than existing approaches with an overall accuracy of 99.93%.

Keywords: Iris recognition, textural features, topological features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944
9095 Landscape Visual Classification Using Land use and Contour Data for Tourism and Planning Decision Making in Cameron Highlands District

Authors: Hosni, N., Shinozaki, M.

Abstract:

Cameron Highlands is known for upland tourism area with vast natural wealth, mountainous landscape endowed with rich diverse species as well as people traditions and cultures. With these various resources, CH possesses an interesting visual and panorama that can be offered to the tourist. However this benefit may not be utilized without obtaining the understanding of existing landscape structure and visual. Given a limited data, this paper attempts to classify landscape visual of Cameron Highlands using land use and contour data. Visual points of view were determined from the given tourist attraction points in the CH Local Plan 2003-2015. The result shows landscape visual and structure categories offered in the study area. The result can be used for further analysis to determine the best alternative tourist trails for tourism planning and decision making using readily available data.

Keywords: Visibility, landscape visual, urban planning, GIS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
9094 Puff Noise Detection and Cancellation for Robust Speech Recognition

Authors: Sangjun Park, Jungpyo Hong, Byung-Ok Kang, Yun-keun Lee, Minsoo Hahn

Abstract:

In this paper, an algorithm for detecting and attenuating puff noises frequently generated under the mobile environment is proposed. As a baseline system, puff detection system is designed based on Gaussian Mixture Model (GMM), and 39th Mel Frequency Cepstral Coefficient (MFCC) is extracted as feature parameters. To improve the detection performance, effective acoustic features for puff detection are proposed. In addition, detected puff intervals are attenuated by high-pass filtering. The speech recognition rate was measured for evaluation and confusion matrix and ROC curve are used to confirm the validity of the proposed system.

Keywords: Gaussian mixture model, puff detection and cancellation, speech enhancement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2233
9093 Automatic Feature Recognition for GPR Image Processing

Authors: Yi-an Cui, Lu Wang, Jian-ping Xiao

Abstract:

This paper presents an automatic feature recognition method based on center-surround difference detecting and fuzzy logic that can be applied in ground-penetrating radar (GPR) image processing. Adopted center-surround difference method, the salient local image regions are extracted from the GPR images as features of detected objects. And fuzzy logic strategy is used to match the detected features and features in template database. This way, the problem of objects detecting, which is the key problem in GPR image processing, can be converted into two steps, feature extracting and matching. The contributions of these skills make the system have the ability to deal with changes in scale, antenna and noises. The results of experiments also prove that the system has higher ratio of features sensing in using GPR to image the subsurface structures.

Keywords: feature recognition, GPR image, matching strategy, salient image

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
9092 Visual Hull with Imprecise Input

Authors: Peng He

Abstract:

Imprecision is a long-standing problem in CAD design and high accuracy image-based reconstruction applications. The visual hull which is the closed silhouette equivalent shape of the objects of interest is an important concept in image-based reconstruction. We extend the domain-theoretic framework, which is a robust and imprecision capturing geometric model, to analyze the imprecision in the output shape when the input vertices are given with imprecision. Under this framework, we show an efficient algorithm to generate the 2D partial visual hull which represents the exact information of the visual hull with only basic imprecision assumptions. We also show how the visual hull from polyhedra problem can be efficiently solved in the context of imprecise input.

Keywords: Geometric Domain, Computer Vision, Computational Geometry, Visual Hull, Image-Based reconstruction, Imprecise Input, CAD object

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1476
9091 Recognition of Tifinagh Characters with Missing Parts Using Neural Network

Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui

Abstract:

In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.

Keywords: Tifinagh character recognition, Neural networks, Local cost computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1286
9090 On-line Handwritten Character Recognition: An Implementation of Counterpropagation Neural Net

Authors: Muhammad Faisal Zafar, Dzulkifli Mohamad, Razib M. Othman

Abstract:

On-line handwritten scripts are usually dealt with pen tip traces from pen-down to pen-up positions. Time evaluation of the pen coordinates is also considered along with trajectory information. However, the data obtained needs a lot of preprocessing including filtering, smoothing, slant removing and size normalization before recognition process. Instead of doing such lengthy preprocessing, this paper presents a simple approach to extract the useful character information. This work evaluates the use of the counter- propagation neural network (CPN) and presents feature extraction mechanism in full detail to work with on-line handwriting recognition. The obtained recognition rates were 60% to 94% using the CPN for different sets of character samples. This paper also describes a performance study in which a recognition mechanism with multiple thresholds is evaluated for counter-propagation architecture. The results indicate that the application of multiple thresholds has significant effect on recognition mechanism. The method is applicable for off-line character recognition as well. The technique is tested for upper-case English alphabets for a number of different styles from different peoples.

Keywords: On-line character recognition, character digitization, counter-propagation neural networks, extreme coordinates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2430
9089 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features

Authors: Rabab M. Ramadan, Elaraby A. Elgallad

Abstract:

With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.

Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 883
9088 The Comprehensive Study Based on Ultrasonic and X-ray Visual Technology for GIS Equipment Detection

Authors: Wei Zhang, Hong Yu, Xian-ping Zhao, Da-da Wang, Fei Xue

Abstract:

For lack of the visualization of the ultrasonic detection method of partial discharge (PD), the ultrasonic detection technology combined with the X-ray visual detection method (UXV) is proposed. The method can conduct qualitative analysis accurately and conduct reliable positioning diagnosis to the internal insulation defects of GIS, and while it could make up the blindness of the X-ray visual detection method and improve the detection rate. In this paper, an experimental model of GIS is used as the trial platform, a variety of insulation defects are set inside the GIS cavity. With the proposed method, the ultrasonic method is used to conduct the preliminary detection, and then the X-ray visual detection is used to locate and diagnose precisely. Therefore, the proposed UXV technology is feasible and practical.

Keywords: GIS, ultrasonic, visual detection, X-ray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
9087 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
9086 An Improved Face Recognition Algorithm Using Histogram-Based Features in Spatial and Frequency Domains

Authors: Qiu Chen, Koji Kotani, Feifei Lee, Tadahiro Ohmi

Abstract:

In this paper, we propose an improved face recognition algorithm using histogram-based features in spatial and frequency domains. For adding spatial information of the face to improve recognition performance, a region-division (RD) method is utilized. The facial area is firstly divided into several regions, then feature vectors of each facial part are generated by Binary Vector Quantization (BVQ) histogram using DCT coefficients in low frequency domains, as well as Local Binary Pattern (LBP) histogram in spatial domain. Recognition results with different regions are first obtained separately and then fused by weighted averaging. Publicly available ORL database is used for the evaluation of our proposed algorithm, which is consisted of 40 subjects with 10 images per subject containing variations in lighting, posing, and expressions. It is demonstrated that face recognition using RD method can achieve much higher recognition rate.

Keywords: Face recognition, Binary vector quantization (BVQ), Local Binary Patterns (LBP), DCT coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
9085 A New Pattern for Handwritten Persian/Arabic Digit Recognition

Authors: A. Harifi, A. Aghagolzadeh

Abstract:

The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.

Keywords: Pattern recognition, Persian digits, NeuralNetwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
9084 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network

Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah

Abstract:

Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.

Keywords: CNN, deep-learning, facial emotion recognition, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 709
9083 Video Quality Assessment using Visual Attention Approach for Sign Language

Authors: Julia Kucerova, Jaroslav Polec, Darina Tarcsiova

Abstract:

Visual information is very important in human perception of surrounding world. Video is one of the most common ways to capture visual information. The video capability has many benefits and can be used in various applications. For the most part, the video information is used to bring entertainment and help to relax, moreover, it can improve the quality of life of deaf people. Visual information is crucial for hearing impaired people, it allows them to communicate personally, using the sign language; some parts of the person being spoken to, are more important than others (e.g. hands, face). Therefore, the information about visually relevant parts of the image, allows us to design objective metric for this specific case. In this paper, we present an example of an objective metric based on human visual attention and detection of salient object in the observed scene.

Keywords: sign language, objective video quality, visual attention, saliency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
9082 Face Recognition using a Kernelization of Graph Embedding

Authors: Pang Ying Han, Hiew Fu San, Ooi Shih Yin

Abstract:

Linearization of graph embedding has been emerged as an effective dimensionality reduction technique in pattern recognition. However, it may not be optimal for nonlinearly distributed real world data, such as face, due to its linear nature. So, a kernelization of graph embedding is proposed as a dimensionality reduction technique in face recognition. In order to further boost the recognition capability of the proposed technique, the Fisher-s criterion is opted in the objective function for better data discrimination. The proposed technique is able to characterize the underlying intra-class structure as well as the inter-class separability. Experimental results on FRGC database validate the effectiveness of the proposed technique as a feature descriptor.

Keywords: Face recognition, Fisher discriminant, graph embedding, kernelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701
9081 Spine Evaluation Device with Visual Feedback

Authors: T. Hirata, G. H. Yokoyama, L. H. M. Duque

Abstract:

The posteroanterior manipulation technique is usually include in the procedure of the lumbar spine to evaluate the intervertebral motion according to mechanical resistance. The mechanical device with visual feedback was proposed that allows one to analysis the lumbar segments mobility “in vivo" facilitating for the therapist to take its treatment evolution. The measuring system uses load cell and displacement sensor to estimate spine stiffness. In this work, the device was tested by 2 therapists, female, applying posteroanterior force techniques to 5 volunteers, female, with frequency of approximately 1.2-1.8 Hz. A test-retest procedure was used for 2 periods of day. The visual feedback results small variation of forces and cycle time during 6 cycles rhythmic application. The stiffness values showed good agreement between test-retest procedures when used same order of maximum forces.

Keywords: Biomechanics, lumber spine stiffness, intervertebral manipulation device, visual feedback

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
9080 Performance Comparison and Evaluation of AdaBoost and SoftBoost Algorithms on Generic Object Recognition

Authors: Doaa Hegazy, Joachim Denzler

Abstract:

SoftBoost is a recently presented boosting algorithm, which trades off the size of achieved classification margin and generalization performance. This paper presents a performance evaluation of SoftBoost algorithm on the generic object recognition problem. An appearance-based generic object recognition model is used. The evaluation experiments are performed using a difficult object recognition benchmark. An assessment with respect to different degrees of label noise as well as a comparison to the well known AdaBoost algorithm is performed. The obtained results reveal that SoftBoost is encouraged to be used in cases when the training data is known to have a high degree of noise. Otherwise, using Adaboost can achieve better performance.

Keywords: SoftBoost algorithm, AdaBoost algorithm, Generic object recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828
9079 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, stereotypical motor movements, repetitive gesture, kinect, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1906
9078 Recognition of Noisy Words Using the Time Delay Neural Networks Approach

Authors: Khenfer-Koummich Fatima, Mesbahi Larbi, Hendel Fatiha

Abstract:

This paper presents a recognition system for isolated words like robot commands. It’s carried out by Time Delay Neural Networks; TDNN. To teleoperate a robot for specific tasks as turn, close, etc… In industrial environment and taking into account the noise coming from the machine. The choice of TDNN is based on its generalization in terms of accuracy, in more it acts as a filter that allows the passage of certain desirable frequency characteristics of speech; the goal is to determine the parameters of this filter for making an adaptable system to the variability of speech signal and to noise especially, for this the back propagation technique was used in learning phase. The approach was applied on commands pronounced in two languages separately: The French and Arabic. The results for two test bases of 300 spoken words for each one are 87%, 97.6% in neutral environment and 77.67%, 92.67% when the white Gaussian noisy was added with a SNR of 35 dB.

Keywords: Neural networks, Noise, Speech Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
9077 Morphological Description of Cervical Cell Images for the Pathological Recognition

Authors: N. Lassouaoui, L. Hamami, N. Nouali

Abstract:

The tracking allows to detect the tumor affections of cervical cancer, it is particularly complex and consuming time, because it consists in seeking some abnormal cells among a cluster of normal cells. In this paper, we present our proposed computer system for helping the doctors in tracking the cervical cancer. Knowing that the diagnosis of the malignancy is based in the set of atypical morphological details of all cells, herein, we present an unsupervised genetic algorithm for the separation of cell components since the diagnosis is doing by analysis of the core and the cytoplasm. We give also the various algorithms used for computing the morphological characteristics of cells (Ratio core/cytoplasm, cellular deformity, ...) necessary for the recognition of illness.

Keywords: Cervical cell, morphological analysis, recognition, segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
9076 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach

Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh

Abstract:

Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system.  This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.

Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
9075 Video-based Face Recognition: A Survey

Authors: Huafeng Wang, Yunhong Wang, Yuan Cao

Abstract:

During the past several years, face recognition in video has received significant attention. Not only the wide range of commercial and law enforcement applications, but also the availability of feasible technologies after several decades of research contributes to the trend. Although current face recognition systems have reached a certain level of maturity, their development is still limited by the conditions brought about by many real applications. For example, recognition images of video sequence acquired in an open environment with changes in illumination and/or pose and/or facial occlusion and/or low resolution of acquired image remains a largely unsolved problem. In other words, current algorithms are yet to be developed. This paper provides an up-to-date survey of video-based face recognition research. To present a comprehensive survey, we categorize existing video based recognition approaches and present detailed descriptions of representative methods within each category. In addition, relevant topics such as real time detection, real time tracking for video, issues such as illumination, pose, 3D and low resolution are covered.

Keywords: Face recognition, video-based, survey

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4120
9074 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology

Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong

Abstract:

This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.

Keywords: Energy Transition, geographic information system, fossil energy, power systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
9073 Rotation Invariant Face Recognition Based on Hybrid LPT/DCT Features

Authors: Rehab F. Abdel-Kader, Rabab M. Ramadan, Rawya Y. Rizk

Abstract:

The recognition of human faces, especially those with different orientations is a challenging and important problem in image analysis and classification. This paper proposes an effective scheme for rotation invariant face recognition using Log-Polar Transform and Discrete Cosine Transform combined features. The rotation invariant feature extraction for a given face image involves applying the logpolar transform to eliminate the rotation effect and to produce a row shifted log-polar image. The discrete cosine transform is then applied to eliminate the row shift effect and to generate the low-dimensional feature vector. A PSO-based feature selection algorithm is utilized to search the feature vector space for the optimal feature subset. Evolution is driven by a fitness function defined in terms of maximizing the between-class separation (scatter index). Experimental results, based on the ORL face database using testing data sets for images with different orientations; show that the proposed system outperforms other face recognition methods. The overall recognition rate for the rotated test images being 97%, demonstrating that the extracted feature vector is an effective rotation invariant feature set with minimal set of selected features.

Keywords: Discrete Cosine Transform, Face Recognition, Feature Extraction, Log Polar Transform, Particle SwarmOptimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
9072 Various Speech Processing Techniques For Speech Compression And Recognition

Authors: Jalal Karam

Abstract:

Years of extensive research in the field of speech processing for compression and recognition in the last five decades, resulted in a severe competition among the various methods and paradigms introduced. In this paper we include the different representations of speech in the time-frequency and time-scale domains for the purpose of compression and recognition. The examination of these representations in a variety of related work is accomplished. In particular, we emphasize methods related to Fourier analysis paradigms and wavelet based ones along with the advantages and disadvantages of both approaches.

Keywords: Time-Scale, Wavelets, Time-Frequency, Compression, Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
9071 Deep Learning Application for Object Image Recognition and Robot Automatic Grasping

Authors: Shiuh-Jer Huang, Chen-Zon Yan, C. K. Huang, Chun-Chien Ting

Abstract:

Since the vision system application in industrial environment for autonomous purposes is required intensely, the image recognition technique becomes an important research topic. Here, deep learning algorithm is employed in image system to recognize the industrial object and integrate with a 7A6 Series Manipulator for object automatic gripping task. PC and Graphic Processing Unit (GPU) are chosen to construct the 3D Vision Recognition System. Depth Camera (Intel RealSense SR300) is employed to extract the image for object recognition and coordinate derivation. The YOLOv2 scheme is adopted in Convolution neural network (CNN) structure for object classification and center point prediction. Additionally, image processing strategy is used to find the object contour for calculating the object orientation angle. Then, the specified object location and orientation information are sent to robotic controller. Finally, a six-axis manipulator can grasp the specific object in a random environment based on the user command and the extracted image information. The experimental results show that YOLOv2 has been successfully employed to detect the object location and category with confidence near 0.9 and 3D position error less than 0.4 mm. It is useful for future intelligent robotic application in industrial 4.0 environment.

Keywords: Deep learning, image processing, convolution neural network, YOLOv2, 7A6 series manipulator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1094
9070 Printed Arabic Sub-Word Recognition Using Moments

Authors: Ibrahim A. El rube, Mohamed T. El Sonni, Soha S. Saleh

Abstract:

the cursive nature of the Arabic writing makes it difficult to accurately segment characters or even deal with the whole word efficiently. Therefore, in this paper, a printed Arabic sub-word recognition system is proposed. The suggested algorithm utilizes geometrical moments as descriptors for the separated sub-words. Three types of moments are investigated and applied to the printed sub-word images after dividing each image into multiple parts using windowing. Since moments are global descriptors, the windowing mechanism allows the moments to be applied to local regions of the sub-word. The local-global mixture of the proposed scheme increases the discrimination power of the moments while keeping the simplicity and ease of use of moments.

Keywords: Arabic sub-word recognition, windowing, aspectratio, moments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
9069 Visual Inspection of Work Piece with a Complex Shape by Means of Robot Manipulator

Authors: A. Y. Bani Hashim, N. S. A. Ramdan

Abstract:

Inconsistency in manual inspection is real because humans get tired after some time. Recent trends show that automatic inspection is more appealing for mass production inspections. In such as a case, a robot manipulator seems the best candidate to run a dynamic visual inspection. The purpose of this work is to estimate the optimum workspace where a robot manipulator would perform a visual inspection process onto a work piece where a camera is attached to the end effector. The pseudo codes for the planned path are derived from the number of tool transit points, the delay time at the transit points, the process cycle time, and the configuration space that the distance between the tool and the work piece. It is observed that express start and swift end are acceptable in a robot program because applicable works usually in existence during these moments. However, during the mid-range cycle, there are always practical tasks programmed to be executed. For that reason, it is acceptable to program the robot such as that speedy alteration of actuator displacement is avoided. A dynamic visual inspection system using a robot manipulator seems practical for a work piece with a complex shape.

Keywords: Robot manipulator, Visual inspection, Work piece, Trajectory planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661