Search results for: stochastic simulation algorithm.
6291 Hybrid Gravity Gradient Inversion-Ant Colony Optimization Algorithm for Motion Planning of Mobile Robots
Authors: Meng Wu
Abstract:
Motion planning is a common task required to be fulfilled by robots. A strategy combining Ant Colony Optimization (ACO) and gravity gradient inversion algorithm is proposed for motion planning of mobile robots. In this paper, in order to realize optimal motion planning strategy, the cost function in ACO is designed based on gravity gradient inversion algorithm. The obstacles around mobile robot can cause gravity gradient anomalies; the gradiometer is installed on the mobile robot to detect the gravity gradient anomalies. After obtaining the anomalies, gravity gradient inversion algorithm is employed to calculate relative distance and orientation between mobile robot and obstacles. The relative distance and orientation deduced from gravity gradient inversion algorithm is employed as cost function in ACO algorithm to realize motion planning. The proposed strategy is validated by the simulation and experiment results.
Keywords: Motion planning, gravity gradient inversion algorithm, ant colony optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11616290 Multiple Sensors and JPDA-IMM-UKF Algorithm for Tracking Multiple Maneuvering Targets
Authors: Wissem Saidani, Yacine Morsly, Mohand Saïd Djouadi
Abstract:
In this paper, we consider the problem of tracking multiple maneuvering targets using switching multiple target motion models. With this paper, we aim to contribute in solving the problem of model-based body motion estimation by using data coming from visual sensors. The Interacting Multiple Model (IMM) algorithm is specially designed to track accurately targets whose state and/or measurement (assumed to be linear) models changes during motion transition. However, when these models are nonlinear, the IMM algorithm must be modified in order to guarantee an accurate track. In this paper we propose to avoid the Extended Kalman filter because of its limitations and substitute it with the Unscented Kalman filter which seems to be more efficient especially according to the simulation results obtained with the nonlinear IMM algorithm (IMMUKF). To resolve the problem of data association, the JPDA approach is combined with the IMM-UKF algorithm, the derived algorithm is noted JPDA-IMM-UKF.Keywords: Estimation, Kalman filtering, Multi-Target Tracking, Visual servoing, data association.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25696289 Simulation Modeling of Manufacturing Systems for the Serial Route and the Parallel One
Authors: Tadeusz Witkowski, Paweł Antczak, Arkadiusz Antczak
Abstract:
In the paper we discuss the influence of the route flexibility degree, the open rate of operations and the production type coefficient on makespan. The flexible job-open shop scheduling problem FJOSP (an extension of the classical job shop scheduling) is analyzed. For the analysis of the production process we used a hybrid heuristic of the GRASP (greedy randomized adaptive search procedure) with simulated annealing algorithm. Experiments with different levels of factors have been considered and compared. The GRASP+SA algorithm has been tested and illustrated with results for the serial route and the parallel one.Keywords: Makespan, open shop, route flexibility, serial and parallel route, simulation modeling, type of production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18166288 A Tutorial on Dynamic Simulation of DC Motor and Implementation of Kalman Filter on a Floating Point DSP
Authors: Padmakumar S., Vivek Agarwal, Kallol Roy
Abstract:
With the advent of inexpensive 32 bit floating point digital signal processor-s availability in market, many computationally intensive algorithms such as Kalman filter becomes feasible to implement in real time. Dynamic simulation of a self excited DC motor using second order state variable model and implementation of Kalman Filter in a floating point DSP TMS320C6713 is presented in this paper with an objective to introduce and implement such an algorithm, for beginners. A fractional hp DC motor is simulated in both Matlab® and DSP and the results are included. A step by step approach for simulation of DC motor in Matlab® and “C" routines in CC Studio® is also given. CC studio® project file details and environmental setting requirements are addressed. This tutorial can be used with 6713 DSK, which is based on floating point DSP and CC Studio either in hardware mode or in simulation mode.
Keywords: DC motor, DSP, Dynamic simulation, Kalman Filter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30176287 Analog Circuit Design using Genetic Algorithm: Modified
Authors: Amod P. Vaze
Abstract:
Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to analog circuit design automation. These researches show a better performance due to the nature of Genetic Algorithm. In this paper a modified Genetic Algorithm is applied for analog circuit design automation. The modifications are made to the topology of the circuit. These modifications will lead to a more computationally efficient algorithm.
Keywords: Genetic algorithm, analog circuits, design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22956286 Heuristics Analysis for Distributed Scheduling using MONARC Simulation Tool
Authors: Florin Pop
Abstract:
Simulation is a very powerful method used for highperformance and high-quality design in distributed system, and now maybe the only one, considering the heterogeneity, complexity and cost of distributed systems. In Grid environments, foe example, it is hard and even impossible to perform scheduler performance evaluation in a repeatable and controllable manner as resources and users are distributed across multiple organizations with their own policies. In addition, Grid test-beds are limited and creating an adequately-sized test-bed is expensive and time consuming. Scalability, reliability and fault-tolerance become important requirements for distributed systems in order to support distributed computation. A distributed system with such characteristics is called dependable. Large environments, like Cloud, offer unique advantages, such as low cost, dependability and satisfy QoS for all users. Resource management in large environments address performant scheduling algorithm guided by QoS constrains. This paper presents the performance evaluation of scheduling heuristics guided by different optimization criteria. The algorithms for distributed scheduling are analyzed in order to satisfy users constrains considering in the same time independent capabilities of resources. This analysis acts like a profiling step for algorithm calibration. The performance evaluation is based on simulation. The simulator is MONARC, a powerful tool for large scale distributed systems simulation. The novelty of this paper consists in synthetic analysis results that offer guidelines for scheduler service configuration and sustain the empirical-based decision. The results could be used in decisions regarding optimizations to existing Grid DAG Scheduling and for selecting the proper algorithm for DAG scheduling in various actual situations.Keywords: Scheduling, Simulation, Performance Evaluation, QoS, Distributed Systems, MONARC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17526285 Solving Stochastic Eigenvalue Problem of Wick Type
Authors: Hassan Manouzi, Taous-Meriem Laleg-Kirati
Abstract:
In this paper we study mathematically the eigenvalue problem for stochastic elliptic partial differential equation of Wick type. Using the Wick-product and the Wiener-Itô chaos expansion, the stochastic eigenvalue problem is reformulated as a system of an eigenvalue problem for a deterministic partial differential equation and elliptic partial differential equations by using the Fredholm alternative. To reduce the computational complexity of this system, we shall use a decomposition method using the Wiener-Itô chaos expansion. Once the approximation of the solution is performed using the finite element method for example, the statistics of the numerical solution can be easily evaluated.
Keywords: Eigenvalue problem, Wick product, SPDEs, finite element, Wiener-Itô chaos expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20206284 The Effects of Misspecification of Stochastic Processes on Investment Appraisal
Authors: George Yungchih Wang
Abstract:
For decades financial economists have been attempted to determine the optimal investment policy by recognizing the option value embedded in irreversible investment whose project value evolves as a geometric Brownian motion (GBM). This paper aims to examine the effects of the optimal investment trigger and of the misspecification of stochastic processes on investment in real options applications. Specifically, the former explores the consequence of adopting optimal investment rules on the distributions of corporate value under the correct assumption of stochastic process while the latter analyzes the influence on the distributions of corporate value as a result of the misspecification of stochastic processes, i.e., mistaking an alternative process as a GBM. It is found that adopting the correct optimal investment policy may increase corporate value by shifting the value distribution rightward, and the misspecification effect may decrease corporate value by shifting the value distribution leftward. The adoption of the optimal investment trigger has a major impact on investment to such an extent that the downside risk of investment is truncated at the project value of zero, thereby moving the value distributions rightward. The analytical framework is also extended to situations where collection lags are in place, and the result indicates that collection lags reduce the effects of investment trigger and misspecification on investment in an opposite way.
Keywords: GBM, real options, investment trigger, misspecification, collection lags
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15156283 An Improved QRS Complex Detection for Online Medical Diagnosis
Authors: I. L. Ahmad, M. Mohamed, N. A. Ab. Ghani
Abstract:
This paper presents the work of signal discrimination specifically for Electrocardiogram (ECG) waveform. ECG signal is comprised of P, QRS, and T waves in each normal heart beat to describe the pattern of heart rhythms corresponds to a specific individual. Further medical diagnosis could be done to determine any heart related disease using ECG information. The emphasis on QRS Complex classification is further discussed to illustrate the importance of it. Pan-Tompkins Algorithm, a widely known technique has been adapted to realize the QRS Complex classification process. There are eight steps involved namely sampling, normalization, low pass filter, high pass filter (build a band pass filter), derivation, squaring, averaging and lastly is the QRS detection. The simulation results obtained is represented in a Graphical User Interface (GUI) developed using MATLAB.Keywords: ECG, Pan Tompkins Algorithm, QRS Complex, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25756282 An Effective Algorithm for Minimum Weighted Vertex Cover Problem
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Weighted Vertex Cover (MWVC) problem is a classic graph optimization NP - complete problem. Given an undirected graph G = (V, E) and weighting function defined on the vertex set, the minimum weighted vertex cover problem is to find a vertex set S V whose total weight is minimum subject to every edge of G has at least one end point in S. In this paper an effective algorithm, called Support Ratio Algorithm (SRA), is designed to find the minimum weighted vertex cover of a graph. Computational experiments are designed and conducted to study the performance of our proposed algorithm. Extensive simulation results show that the SRA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.
Keywords: Weighted vertex cover, vertex support, approximation algorithms, NP-complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38866281 Computational Simulations on Stability of Model Predictive Control for Linear Discrete-time Stochastic Systems
Authors: Tomoaki Hashimoto
Abstract:
Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial time and a moving terminal time. This paper examines the stability of model predictive control for linear discrete-time systems with additive stochastic disturbances. A sufficient condition for the stability of the closed-loop system with model predictive control is derived by means of a linear matrix inequality. The objective of this paper is to show the results of computational simulations in order to verify the effectiveness of the obtained stability condition.Keywords: Computational simulations, optimal control, predictive control, stochastic systems, discrete-time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18476280 Solving the Economic Dispatch Problem by Using Differential Evolution
Authors: S. Khamsawang, S. Jiriwibhakorn
Abstract:
This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.Keywords: Differential evolution, Economic dispatch problem, Valve-point loading effect, Optimization method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16916279 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.
Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12356278 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8476277 Improvement of Central Composite Design in Modeling and Optimization of Simulation Experiments
Authors: A. Nuchitprasittichai, N. Lerdritsirikoon, T. Khamsing
Abstract:
Simulation modeling can be used to solve real world problems. It provides an understanding of a complex system. To develop a simplified model of process simulation, a suitable experimental design is required to be able to capture surface characteristics. This paper presents the experimental design and algorithm used to model the process simulation for optimization problem. The CO2 liquefaction based on external refrigeration with two refrigeration circuits was used as a simulation case study. Latin Hypercube Sampling (LHS) was purposed to combine with existing Central Composite Design (CCD) samples to improve the performance of CCD in generating the second order model of the system. The second order model was then used as the objective function of the optimization problem. The results showed that adding LHS samples to CCD samples can help capture surface curvature characteristics. Suitable number of LHS sample points should be considered in order to get an accurate nonlinear model with minimum number of simulation experiments.Keywords: Central composite design, CO2 liquefaction, Latin Hypercube Sampling, simulation – based optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7436276 Simulating Economic Order Quantity and Reorder Point Policy for a Repairable Items Inventory System
Authors: Mojahid F. Saeed Osman
Abstract:
Repairable items inventory system is a management tool used to incorporate all information concerning inventory levels and movements for repaired and new items. This paper presents development of an effective simulation model for managing the inventory of repairable items for a production system where production lines send their faulty items to a repair shop considering the stochastic failure behavior and repair times. The developed model imitates the process of handling the on-hand inventory of repaired items and the replenishment of the inventory of new items using Economic Order Quantity and Reorder Point ordering policy in a flexible and risk-free environment. We demonstrate the appropriateness and effectiveness of the proposed simulation model using an illustrative case problem. The developed simulation model can be used as a reliable tool for estimating a healthy on-hand inventory of new and repaired items, backordered items, and downtime due to unavailability of repaired items, and validating and examining Economic Order Quantity and Reorder Point ordering policy, which would further be compared with other ordering strategies as future work.
Keywords: Inventory system, repairable items, simulation, maintenance, economic order quantity, reorder point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6796275 Stochastic Impact Analysis of COVID-19 on Karachi Stock Exchange
Authors: Syeda Maria Ali Shah, Asif Mansoor, Talat Sharafat Rehmani, Safia Mirza
Abstract:
The stock market of any country acts as a predictor of the economy. The spread of the COVID-19 pandemic has severely impacted the global financial markets. Besides, it has also critically affected the economy of Pakistan. In this study, we consider the role of the Karachi Stock Exchange (KSE) with regard to the Pakistan Stock Exchange and quantify the impact on macroeconomic variables in presence of COVID-19. The suitable macroeconomic variables are used to quantify the impact of COVID-19 by developing the stochastic model. The sufficiency of the computed model is attained by means of available techniques in the literature. The estimated equations are used to forecast the impact of pandemic on macroeconomic variables. The constructed model can help the policymakers take counteractive measures for restricting the influence of viruses on the Karachi Stock Market.
Keywords: COVID-19, Karachi Stock Market, macroeconomic variables, stochastic model, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7376274 Fuzzy Controller Design for Ball and Beam System with an Improved Ant Colony Optimization
Authors: Yeong-Hwa Chang, Chia-Wen Chang, Hung-Wei Lin, C.W. Tao
Abstract:
In this paper, an improved ant colony optimization (ACO) algorithm is proposed to enhance the performance of global optimum search. The strategy of the proposed algorithm has the capability of fuzzy pheromone updating, adaptive parameter tuning, and mechanism resetting. The proposed method is utilized to tune the parameters of the fuzzy controller for a real beam and ball system. Simulation and experimental results indicate that better performance can be achieved compared to the conventional ACO algorithms in the aspect of convergence speed and accuracy.Keywords: Ant colony algorithm, Fuzzy control, ball and beamsystem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21976273 A New Particle Filter Inspired by Biological Evolution: Genetic Filter
Authors: S. Park, J. Hwang, K. Rou, E. Kim
Abstract:
In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.Keywords: Particle filter, genetic algorithm, evolutionary algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25006272 Application of Hybrid Genetic Algorithm Based on Simulated Annealing in Function Optimization
Authors: Panpan Xu, Shulin Sui, Zongjie Du
Abstract:
Genetic algorithm is widely used in optimization problems for its excellent global search capabilities and highly parallel processing capabilities; but, it converges prematurely and has a poor local optimization capability in actual operation. Simulated annealing algorithm can avoid the search process falling into local optimum. A hybrid genetic algorithm based on simulated annealing is designed by combining the advantages of genetic algorithm and simulated annealing algorithm. The numerical experiment represents the hybrid genetic algorithm can be applied to solve the function optimization problems efficiently.Keywords: Genetic algorithm, Simulated annealing, Hybrid genetic algorithm, Function optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25536271 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.
Keywords: Decentralized, optimal control, output, singular perturb.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15706270 Optimization of Unweighted Minimum Vertex Cover
Authors: S. Balaji, V. Swaminathan, K. Kannan
Abstract:
The Minimum Vertex Cover (MVC) problem is a classic graph optimization NP - complete problem. In this paper a competent algorithm, called Vertex Support Algorithm (VSA), is designed to find the smallest vertex cover of a graph. The VSA is tested on a large number of random graphs and DIMACS benchmark graphs. Comparative study of this algorithm with the other existing methods has been carried out. Extensive simulation results show that the VSA can yield better solutions than other existing algorithms found in the literature for solving the minimum vertex cover problem.Keywords: vertex cover, vertex support, approximation algorithms, NP - complete problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24936269 Importance of Simulation in Manufacturing
Authors: F. Hosseinpour, H. Hajihosseini
Abstract:
Simulation is a very helpful and valuable work tool in manufacturing. It can be used in industrial field allowing the system`s behavior to be learnt and tested. Simulation provides a low cost, secure and fast analysis tool. It also provides benefits, which can be reached with many different system configurations. Topics to be discussed include: Applications, Modeling, Validating, Software and benefits of simulation. This paper provides a comprehensive literature review on research efforts in simulation.Keywords: Manufacturing, modeling, simulation, training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 80176268 Convergence Analysis of an Alternative Gradient Algorithm for Non-Negative Matrix Factorization
Authors: Chenxue Yang, Mao Ye, Zijian Liu, Tao Li, Jiao Bao
Abstract:
Non-negative matrix factorization (NMF) is a useful computational method to find basis information of multivariate nonnegative data. A popular approach to solve the NMF problem is the multiplicative update (MU) algorithm. But, it has some defects. So the columnwisely alternating gradient (cAG) algorithm was proposed. In this paper, we analyze convergence of the cAG algorithm and show advantages over the MU algorithm. The stability of the equilibrium point is used to prove the convergence of the cAG algorithm. A classic model is used to obtain the equilibrium point and the invariant sets are constructed to guarantee the integrity of the stability. Finally, the convergence conditions of the cAG algorithm are obtained, which help reducing the evaluation time and is confirmed in the experiments. By using the same method, the MU algorithm has zero divisor and is convergent at zero has been verified. In addition, the convergence conditions of the MU algorithm at zero are similar to that of the cAG algorithm at non-zero. However, it is meaningless to discuss the convergence at zero, which is not always the result that we want for NMF. Thus, we theoretically illustrate the advantages of the cAG algorithm.
Keywords: Non-negative matrix factorizations, convergence, cAG algorithm, equilibrium point, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16976267 Supplier Selection in a Scenario Based Stochastic Model with Uncertain Defectiveness and Delivery Lateness Rates
Authors: Abeer Amayri, Akif A. Bulgak
Abstract:
Due to today’s globalization as well as outsourcing practices of the companies, the Supply Chain (SC) performances have become more dependent on the efficient movement of material among places that are geographically dispersed, where there is more chance for disruptions. One such disruption is the quality and delivery uncertainties of outsourcing. These uncertainties could lead the products to be unsafe and, as is the case in a number of recent examples, companies may have to end up in recalling their products. As a result of these problems, there is a need to develop a methodology for selecting suppliers globally in view of risks associated with low quality and late delivery. Accordingly, we developed a two-stage stochastic model that captures the risks associated with uncertainty in quality and delivery as well as a solution procedure for the model. The stochastic model developed simultaneously optimizes supplier selection and purchase quantities under price discounts over a time horizon. In particular, our target is the study of global organizations with multiple sites and multiple overseas suppliers, where the pricing is offered in suppliers’ local currencies. Our proposed methodology is applied to a case study for a US automotive company having two assembly plants and four potential global suppliers to illustrate how the proposed model works in practice.Keywords: Global supply chains, quality, stochastic programming, supplier selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15686266 Sensitivity of Small Disturbance Angle Stability to the System Parameters of Future Power Networks
Authors: Nima Farkhondeh Jahromi, George Papaefthymiou, Lou van der Sluis
Abstract:
The incorporation of renewable energy sources for the sustainable electricity production is undertaking a more prominent role in electric power systems. Thus, it will be an indispensable incident that the characteristics of future power networks, their prospective stability for instance, get influenced by the imposed features of sustainable energy sources. One of the distinctive attributes of the sustainable energy sources is exhibiting the stochastic behavior. This paper investigates the impacts of this stochastic behavior on the small disturbance rotor angle stability in the upcoming electric power networks. Considering the various types of renewable energy sources and the vast variety of system configurations, the sensitivity analysis can be an efficient breakthrough towards generalizing the effects of new energy sources on the concept of stability. In this paper, the definition of small disturbance angle stability for future power systems and the iterative-stochastic way of its analysis are presented. Also, the effects of system parameters on this type of stability are described by performing a sensitivity analysis for an electric power test system.
Keywords: Power systems stability, Renewable energy sources, Stochastic behavior, Small disturbance rotor angle stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20816265 Genetic Mining: Using Genetic Algorithm for Topic based on Concept Distribution
Authors: S. M. Khalessizadeh, R. Zaefarian, S.H. Nasseri, E. Ardil
Abstract:
Today, Genetic Algorithm has been used to solve wide range of optimization problems. Some researches conduct on applying Genetic Algorithm to text classification, summarization and information retrieval system in text mining process. This researches show a better performance due to the nature of Genetic Algorithm. In this paper a new algorithm for using Genetic Algorithm in concept weighting and topic identification, based on concept standard deviation will be explored.Keywords: Genetic Algorithm, Text Mining, Term Weighting, Concept Extraction, Concept Distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37156264 Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines
Authors: Wahyudin P. Syam, Ibrahim M. Al-Harkan
Abstract:
This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.
Keywords: Flow shop, genetic algorithm, simulated annealing, tabu search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20686263 Distributed Estimation Using an Improved Incremental Distributed LMS Algorithm
Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili
Abstract:
In this paper we consider the problem of distributed adaptive estimation in wireless sensor networks for two different observation noise conditions. In the first case, we assume that there are some sensors with high observation noise variance (noisy sensors) in the network. In the second case, different variance for observation noise is assumed among the sensors which is more close to real scenario. In both cases, an initial estimate of each sensor-s observation noise is obtained. For the first case, we show that when there are such sensors in the network, the performance of conventional distributed adaptive estimation algorithms such as incremental distributed least mean square (IDLMS) algorithm drastically decreases. In addition, detecting and ignoring these sensors leads to a better performance in a sense of estimation. In the next step, we propose a simple algorithm to detect theses noisy sensors and modify the IDLMS algorithm to deal with noisy sensors. For the second case, we propose a new algorithm in which the step-size parameter is adjusted for each sensor according to its observation noise variance. As the simulation results show, the proposed methods outperforms the IDLMS algorithm in the same condition.
Keywords: Distributes estimation, sensor networks, adaptive filter, IDLMS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14476262 An Analysis of Dynamic Economic Dispatch Using Search Space Reduction Based Gravitational Search Algorithm
Authors: K. C. Meher, R. K. Swain, C. K. Chanda
Abstract:
This paper presents the performance analysis of dynamic search space reduction (DSR) based gravitational search algorithm (GSA) to solve dynamic economic dispatch of thermal generating units with valve point effects. Dynamic economic dispatch basically dictates the best setting of generator units with anticipated load demand over a definite period of time. In this paper, the presented technique is considered that deals an inequality constraints treatment mechanism known as DSR strategy to accelerate the optimization process. The presented method is demonstrated through five-unit test systems to verify its effectiveness and robustness. The simulation results are compared with other existing evolutionary methods reported in the literature. It is intuited from the comparison that the fuel cost and other performances of the presented approach yield fruitful results with marginal value of simulation time.Keywords: Dynamic economic dispatch, dynamic search space reduction strategy, gravitational search algorithm, ramp rate limits, valve-point effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1496