Search results for: random drift particle swarm optimization
2828 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems
Authors: M. Senthil Arumugam, M.V.C. Rao
Abstract:
This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.
Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18992827 Losses Analysis in TEP Considering Uncertainity in Demand by DPSO
Authors: S. Jalilzadeh, A. Kimiyaghalam, A. Ashouri
Abstract:
This paper presents a mathematical model and a methodology to analyze the losses in transmission expansion planning (TEP) under uncertainty in demand. The methodology is based on discrete particle swarm optimization (DPSO). DPSO is a useful and powerful stochastic evolutionary algorithm to solve the large-scale, discrete and nonlinear optimization problems like TEP. The effectiveness of the proposed idea is tested on an actual transmission network of the Azerbaijan regional electric company, Iran. The simulation results show that considering the losses even for transmission expansion planning of a network with low load growth is caused that operational costs decreases considerably and the network satisfies the requirement of delivering electric power more reliable to load centers.Keywords: DPSO, TEP, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14762826 Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks
Authors: A. Alirezaei, S. Vahdani
Abstract:
This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.
Keywords: Deformation demand, drift, setback, tall building.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22692825 A Hybrid Nature Inspired Algorithm for Generating Optimal Query Plan
Authors: R. Gomathi, D. Sharmila
Abstract:
The emergence of the Semantic Web technology increases day by day due to the rapid growth of multiple web pages. Many standard formats are available to store the semantic web data. The most popular format is the Resource Description Framework (RDF). Querying large RDF graphs becomes a tedious procedure with a vast increase in the amount of data. The problem of query optimization becomes an issue in querying large RDF graphs. Choosing the best query plan reduces the amount of query execution time. To address this problem, nature inspired algorithms can be used as an alternative to the traditional query optimization techniques. In this research, the optimal query plan is generated by the proposed SAPSO algorithm which is a hybrid of Simulated Annealing (SA) and Particle Swarm Optimization (PSO) algorithms. The proposed SAPSO algorithm has the ability to find the local optimistic result and it avoids the problem of local minimum. Experiments were performed on different datasets by changing the number of predicates and the amount of data. The proposed algorithm gives improved results compared to existing algorithms in terms of query execution time.
Keywords: Semantic web, RDF, Query optimization, Nature inspired algorithms, PSO, SA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22392824 A Proposed Optimized and Efficient Intrusion Detection System for Wireless Sensor Network
Authors: Abdulaziz Alsadhan, Naveed Khan
Abstract:
In recent years intrusions on computer network are the major security threat. Hence, it is important to impede such intrusions. The hindrance of such intrusions entirely relies on its detection, which is primary concern of any security tool like Intrusion detection system (IDS). Therefore, it is imperative to accurately detect network attack. Numerous intrusion detection techniques are available but the main issue is their performance. The performance of IDS can be improved by increasing the accurate detection rate and reducing false positive. The existing intrusion detection techniques have the limitation of usage of raw dataset for classification. The classifier may get jumble due to redundancy, which results incorrect classification. To minimize this problem, Principle component analysis (PCA), Linear Discriminant Analysis (LDA) and Local Binary Pattern (LBP) can be applied to transform raw features into principle features space and select the features based on their sensitivity. Eigen values can be used to determine the sensitivity. To further classify, the selected features greedy search, back elimination, and Particle Swarm Optimization (PSO) can be used to obtain a subset of features with optimal sensitivity and highest discriminatory power. This optimal feature subset is used to perform classification. For classification purpose, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) are used due to its proven ability in classification. The Knowledge Discovery and Data mining (KDD’99) cup dataset was considered as a benchmark for evaluating security detection mechanisms. The proposed approach can provide an optimal intrusion detection mechanism that outperforms the existing approaches and has the capability to minimize the number of features and maximize the detection rates.
Keywords: Particle Swarm Optimization (PSO), Principle component analysis (PCA), Linear Discriminant Analysis (LDA), Local Binary Pattern (LBP), Support Vector Machine (SVM), Multilayer Perceptron (MLP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27662823 Optimal Generation Expansion Planning Strategy with Carbon Trading
Authors: Tung-Sheng Zhan, Chih-Cheng Kao, Chin-Der Yang, Jong-Ian Tsai
Abstract:
Fossil fuel-firing power plants dominate electric power generation in Taiwan, which are also the major contributor to Green House gases (GHG). CO2 is the most important greenhouse gas that cause global warming. This paper penetrates the relationship between carbon trading for GHG reduction and power generation expansion planning (GEP) problem for the electrical utility. The Particle Swarm Optimization (PSO) Algorithm is presented to deal with the generation expansion planning strategy of the utility with independent power providers (IPPs). The utility has to take both the IPPs- participation and environment impact into account when a new generation unit is considering expanded from view of supply side.Keywords: Carbon Trading, CO2 Emission, GenerationExpansion Planning (GEP), Green House gases (GHG), ParticleSwarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16762822 Expert System for Sintering Process Control based on the Information about solid-fuel Flow Composition
Authors: Yendiyarov Sergei, Zobnin Boris, Petrushenko Sergei
Abstract:
Usually, the solid-fuel flow of an iron ore sinter plant consists of different types of the solid-fuels, which differ from each other. Information about the composition of the solid-fuel flow usually comes every 8-24 hours. It can be clearly seen that this information cannot be used to control the sintering process in real time. Due to this, we propose an expert system which uses indirect measurements from the process in order to obtain the composition of the solid-fuel flow by solving an optimization task. Then this information can be used to control the sintering process. The proposed technique can be successfully used to improve sinter quality and reduce the amount of solid-fuel used by the process.Keywords: sintering process, particle swarm optimization, optimal control, expert system, solid-fuel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19482821 Evolutionary Program Based Approach for Manipulator Grasping Color Objects
Authors: Y. Harold Robinson, M. Rajaram, Honey Raju
Abstract:
Image segmentation and color identification is an important process used in various emerging fields like intelligent robotics. A method is proposed for the manipulator to grasp and place the color object into correct location. The existing methods such as PSO, has problems like accelerating the convergence speed and converging to a local minimum leading to sub optimal performance. To improve the performance, we are using watershed algorithm and for color identification, we are using EPSO. EPSO method is used to reduce the probability of being stuck in the local minimum. The proposed method offers the particles a more powerful global exploration capability. EPSO methods can determine the particles stuck in the local minimum and can also enhance learning speed as the particle movement will be faster.Keywords: Color information, EPSO, hue, saturation, value (HSV), image segmentation, particle swarm optimization (PSO). Active Contour, GMM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15812820 Real-Coded Genetic Algorithm for Robust Power System Stabilizer Design
Authors: Sidhartha Panda, C. Ardil
Abstract:
Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, real-coded genetic algorithm (RCGA) optimization technique is applied to design robust power system stabilizer for both singlemachine infinite-bus (SMIB) and multi-machine power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented under wide range of operating conditions; disturbances at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.
Keywords: Particle swarm optimization, power system stabilizer, low frequency oscillations, power system stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20612819 Simulated Annealing Application for Structural Optimization
Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh
Abstract:
Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19562818 Evaluation of a PSO Approach for Optimum Design of a First-Order Controllers for TCP/AQM Systems
Authors: Sana Testouri, Karim Saadaoui, Mohamed Benrejeb
Abstract:
This paper presents a Particle Swarm Optimization (PSO) method for determining the optimal parameters of a first-order controller for TCP/AQM system. The model TCP/AQM is described by a second-order system with time delay. First, the analytical approach, based on the D-decomposition method and Lemma of Kharitonov, is used to determine the stabilizing regions of a firstorder controller. Second, the optimal parameters of the controller are obtained by the PSO algorithm. Finally, the proposed method is implemented in the Network Simulator NS-2 and compared with the PI controller.Keywords: AQM, first-order controller, time delay, stability, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17632817 Hierarchical Operation Strategies for Grid Connected Building Microgrid with Energy Storage and Photovoltatic Source
Authors: Seon-Ho Yoon, Jin-Young Choi, Dong-Jun Won
Abstract:
This paper presents hierarchical operation strategies which are minimizing operation error between day ahead operation plan and real time operation. Operating power systems between centralized and decentralized approaches can be represented as hierarchical control scheme, featured as primary control, secondary control and tertiary control. Primary control is known as local control, featuring fast response. Secondary control is referred to as microgrid Energy Management System (EMS). Tertiary control is responsible of coordinating the operations of multi-microgrids. In this paper, we formulated 3 stage microgrid operation strategies which are similar to hierarchical control scheme. First stage is to set a day ahead scheduled output power of Battery Energy Storage System (BESS) which is only controllable source in microgrid and it is optimized to minimize cost of exchanged power with main grid using Particle Swarm Optimization (PSO) method. Second stage is to control the active and reactive power of BESS to be operated in day ahead scheduled plan in case that State of Charge (SOC) error occurs between real time and scheduled plan. The third is rescheduling the system when the predicted error is over the limited value. The first stage can be compared with the secondary control in that it adjusts the active power. The second stage is comparable to the primary control in that it controls the error in local manner. The third stage is compared with the secondary control in that it manages power balancing. The proposed strategies will be applied to one of the buildings in Electronics and Telecommunication Research Institute (ETRI). The building microgrid is composed of Photovoltaic (PV) generation, BESS and load and it will be interconnected with the main grid. Main purpose of that is minimizing operation cost and to be operated in scheduled plan. Simulation results support validation of proposed strategies.
Keywords: Battery energy storage system, energy management system, microgrid, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10932816 Pin type Clamping Attachment for Remote Setup of Machining Process
Authors: Afzeri, R. Muhida, Darmawan, A. N. Berahim
Abstract:
Sharing the manufacturing facility through remote operation and monitoring of a machining process is challenge for effective use the production facility. Several automation tools in term of hardware and software are necessary for successfully remote operation of a machine. This paper presents a prototype of workpiece holding attachment for remote operation of milling process by self configuration the workpiece setup. The prototype is designed with mechanism to reorient the work surface into machining spindle direction with high positioning accuracy. Variety of parts geometry is hold by attachment to perform single setup machining. Pin type with array pattern additionally clamps the workpiece surface from two opposite directions for increasing the machining rigidity. Optimum pins configuration for conforming the workpiece geometry with minimum deformation is determined through hybrid algorithms, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Prototype with intelligent optimization technique enables to hold several variety of workpiece geometry which is suitable for machining low of repetitive production in remote operation.Keywords: Optimization, Remote machining, GeneticAlgorithms, Machining Fixture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26392815 Bee Optimized Fuzzy Geographical Routing Protocol for VANET
Authors: P. Saravanan, T. Arunkumar
Abstract:
Vehicular Adhoc Network (VANET) is a new technology which aims to ensure intelligent inter-vehicle communications, seamless internet connectivity leading to improved road safety, essential alerts, and access to comfort and entertainment. VANET operations are hindered by mobile node’s (vehicles) uncertain mobility. Routing algorithms use metrics to evaluate which path is best for packets to travel. Metrics like path length (hop count), delay, reliability, bandwidth, and load determine optimal route. The proposed scheme exploits link quality, traffic density, and intersections as routing metrics to determine next hop. This study enhances Geographical Routing Protocol (GRP) using fuzzy controllers while rules are optimized with Bee Swarm Optimization (BSO). Simulations results are compared to conventional GRP.
Keywords: Bee Swarm Optimization (BSO), Geographical Routing Protocol (GRP), Vehicular Adhoc Network (VANET).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24582814 Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem
Authors: Tarek Aboueldah, Hanan Farag
Abstract:
Parallel Job Shop Scheduling Problem (JSSP) is a multi-objective and multi constrains NP-optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution. Thus, we propose a hybrid Artificial Intelligence (AI) model with Discrete Breeding Swarm (DBS) added to traditional AI to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.
Keywords: Parallel Job Shop Scheduling Problem, Artificial Intelligence, Discrete Breeding Swarm, Car Sequencing and Operator Allocation, cost minimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6122813 Swarm Navigation in a Complex Environment
Authors: Jai Raj, Jito Vanualailai, Bibhya Sharma, Shonal Singh
Abstract:
This paper proposes a solution to the motion planning and control problem of car-like mobile robots which is required to move safely to a designated target in a priori known workspace cluttered with swarm of boids exhibiting collective emergent behaviors. A generalized algorithm for target convergence and swarm avoidance is proposed that will work for any number of swarms. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws are demonstrated via computer simulations of an emergent behavior.Keywords: Swarm, practical stability, motion planning, emergent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13962812 Applying Autonomic Computing Concepts to Parallel Computing using Intelligent Agents
Authors: Blesson Varghese, Gerard T. McKee
Abstract:
The work reported in this paper is motivated by the fact that there is a need to apply autonomic computing concepts to parallel computing systems. Advancing on prior work based on intelligent cores [36], a swarm-array computing approach, this paper focuses on 'Intelligent agents' another swarm-array computing approach in which the task to be executed on a parallel computing core is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and is seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed swarm-array computing approach is validated on a multi-agent simulator.
Keywords: Autonomic computing, intelligent agents, swarm-array computing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15922811 A Hybrid CamShift and l1-Minimization Video Tracking Algorithm
Authors: Clark Van Dam, Gagan Mirchandani
Abstract:
The Continuously Adaptive Mean-Shift (CamShift) algorithm, incorporating scene depth information is combined with the l1-minimization sparse representation based method to form a hybrid kernel and state space-based tracking algorithm. We take advantage of the increased efficiency of the former with the robustness to occlusion property of the latter. A simple interchange scheme transfers control between algorithms based upon drift and occlusion likelihood. It is quantified by the projection of target candidates onto a depth map of the 2D scene obtained with a low cost stereo vision webcam. Results are improved tracking in terms of drift over each algorithm individually, in a challenging practical outdoor multiple occlusion test case.Keywords: CamShift, l1-minimization, particle filter, stereo vision, video tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20432810 A New Model for Economic Optimization of Water Diversion System during Dam Construction using PSO Algorithm
Authors: Saeed Sedighizadeh, Abbas Mansoori, Mohammad Reza Pirestani, Davoud Sedighizadeh
Abstract:
The usual method of river flow diversion involves construction of tunnels and cofferdams. Given the fact that the cost of diversion works could be as high as 10-20% of the total dam construction cost, due attention should be paid to optimum design of the diversion works. The cost of diversion works depends, on factors, such as: the tunnel dimensions and the intended tunneling support measures during and after excavation; quality and characterizes of the rock through which the tunnel should be excavated; the dimensions of the upstream (and downstream) cofferdams; and the magnitude of river flood the system is designed to divert. In this paper by use of the cost of unit prices for tunnel excavation, tunnel lining, tunnel support (rock bolt + shotcrete) and cofferdam fill the cost function was determined. The function is then minimized by the aid of PSO Algorithm (particle swarm optimization). It is found that the optimum diameter and the total diversion cost are directly related to the river flood discharge (Q). It has also shown that in addition to optimum diameter design discharge (Q), river length, tunnel length, is mainly a function of the ratios (not the absolute values) of the unit prices and does not depend on the overall price levels in the respective country. The results of optimization use in some of the case study lead us to significant changes in the cost.
Keywords: Diversion Tunnel, Optimization, PSO Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27322809 Column Size for R.C. Frames with High Drift
Authors: Sunil S. Mayengbam, S. Choudhury
Abstract:
A method to predict the column size for displacement based design of reinforced concrete frame buildings with higher target inter storey drift is reported here. The column depth derived from empirical relation as a function of given beam section, target inter-story drift, building plan features and common displacement based design parameters is used. Regarding the high drift requirement, a minimum column-beam moment capacity ratio is maintained during capacity design. The method is used in designing four, eight and twelve story frame buildings with displacement based design for three percent target inter storey drift. Non linear time history analysis of the designed buildings are performed under five artificial ground motions to show that the columns are found elastic enough to avoid column sway mechanism assuring that for the design the column size can be used with or without minor changes.
Keywords: Column size, point of contra flexure, displacement based design, capacity design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 273162808 Obstacle and Collision Avoidance Control Laws of a Swarm of Boids
Authors: Bibhya Sharma, Jito Vanualailai, Jai Raj
Abstract:
This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations
Keywords: Lyapunov-based Control Scheme, Motion planning, Practical stability, Swarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24952807 Half-Circle Fuzzy Number Threshold Determination via Swarm Intelligence Method
Authors: P.-W. Tsai, J.-W. Chen, C.-W. Chen, C.-Y. Chen
Abstract:
In recent years, many researchers are involved in the field of fuzzy theory. However, there are still a lot of issues to be resolved. Especially on topics related to controller design such as the field of robot, artificial intelligence, and nonlinear systems etc. Besides fuzzy theory, algorithms in swarm intelligence are also a popular field for the researchers. In this paper, a concept of utilizing one of the swarm intelligence method, which is called Bacterial-GA Foraging, to find the stabilized common P matrix for the fuzzy controller system is proposed. An example is given in in the paper, as well.
Keywords: Half-circle fuzzy numbers, predictions, swarm intelligence, Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19212806 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11762805 IPSO Based UPFC Robust Output Feedback Controllers for Damping of Low Frequency Oscillations
Authors: A. Safari, H. Shayeghi, H. A. Shayanfar
Abstract:
On the basis of the linearized Phillips-Herffron model of a single-machine power system, a novel method for designing unified power flow controller (UPFC) based output feedback controller is presented. The design problem of output feedback controller for UPFC is formulated as an optimization problem according to with the time domain-based objective function which is solved by iteration particle swarm optimization (IPSO) that has a strong ability to find the most optimistic results. To ensure the robustness of the proposed damping controller, the design process takes into account a wide range of operating conditions and system configurations. The simulation results prove the effectiveness and robustness of the proposed method in terms of a high performance power system. The simulation study shows that the designed controller by Iteration PSO performs better than Classical PSO in finding the solution.
Keywords: UPFC, IPSO, output feedback Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14342804 Water Quality Trading with Equitable Total Maximum Daily Loads
Authors: S. Jamshidi, E. Feizi Ashtiani, M. Ardestani
Abstract:
Waste Load Allocation (WLA) strategies usually intend to find economic policies for water resource management. Water quality trading (WQT) is an approach that uses discharge permit market to reduce total environmental protection costs. This primarily requires assigning discharge limits known as total maximum daily loads (TMDLs). These are determined by monitoring organizations with respect to the receiving water quality and remediation capabilities. The purpose of this study is to compare two approaches of TMDL assignment for WQT policy in small catchment area of Haraz River, in north of Iran. At first, TMDLs are assigned uniformly for the whole point sources to keep the concentrations of BOD and dissolved oxygen (DO) at the standard level at checkpoint (terminus point). This was simply simulated and controlled by Qual2kw software. In the second scenario, TMDLs are assigned using multi objective particle swarm optimization (MOPSO) method in which the environmental violation at river basin and total treatment costs are minimized simultaneously. In both scenarios, the equity index and the WLA based on trading discharge permits (TDP) are calculated. The comparative results showed that using economically optimized TMDLs (2nd scenario) has slightly more cost savings rather than uniform TMDL approach (1st scenario). The former annually costs about 1 M$ while the latter is 1.15 M$. WQT can decrease these annual costs to 0.9 and 1.1 M$, respectively. In other word, these approaches may save 35 and 45% economically in comparison with command and control policy. It means that using multi objective decision support systems (DSS) may find more economical WLA, however its outcome is not necessarily significant in comparison with uniform TMDLs. This may be due to the similar impact factors of dischargers in small catchments. Conversely, using uniform TMDLs for WQT brings more equity that makes stakeholders not feel that much envious of difference between TMDL and WQT allocation. In addition, for this case, determination of TMDLs uniformly would be much easier for monitoring. Consequently, uniform TMDL for TDP market is recommended as a sustainable approach. However, economical TMDLs can be used for larger watersheds.Keywords: Waste load allocation (WLA), Water quality trading (WQT), Total maximum daily loads (TMDLs), Haraz River, Multi objective particle swarm optimization (MOPSO), Equity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20622803 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed. F. Zobaa
Abstract:
Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.
Keywords: Incremental Conductance (IncCond) Method, Perturb and Observe (P&O) Method, Photovoltaic Systems (PV) and Practical Swarm Optimization Algorithm (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57312802 A New Particle Filter Inspired by Biological Evolution: Genetic Filter
Authors: S. Park, J. Hwang, K. Rou, E. Kim
Abstract:
In this paper, we consider a new particle filter inspired by biological evolution. In the standard particle filter, a resampling scheme is used to decrease the degeneracy phenomenon and improve estimation performance. Unfortunately, however, it could cause the undesired the particle deprivation problem, as well. In order to overcome this problem of the particle filter, we propose a novel filtering method called the genetic filter. In the proposed filter, we embed the genetic algorithm into the particle filter and overcome the problems of the standard particle filter. The validity of the proposed method is demonstrated by computer simulation.Keywords: Particle filter, genetic algorithm, evolutionary algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24992801 Structural Characteristics of Three-Dimensional Random Packing of Aggregates with Wide Size Distribution
Authors: Kasthurirangan Gopalakrishnan, Naga Shashidhar
Abstract:
The mechanical properties of granular solids are dependent on the flow of stresses from one particle to another through inter-particle contact. Although some experimental methods have been used to study the inter-particle contacts in the past, preliminary work with these techniques indicated that they do not have the necessary resolution to distinguish between those contacts that transmit the load and those that do not, especially for systems with a wide distribution of particle sizes. In this research, computer simulations are used to study the nature and distribution of contacts in a compact with wide particle size distribution, representative of aggregate size distribution used in asphalt pavement construction. The packing fraction, the mean number of contacts and the distribution of contacts were studied for different scenarios. A methodology to distinguish and compute the fraction of load-bearing particles and the fraction of space-filling particles (particles that do not transmit any force) is needed for further investigation.Keywords: Computer simulation, three-dimensional particlepacking, coordination number, asphalt concrete, aggregates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21122800 A Hybrid Approach Using Particle Swarm Optimization and Simulated Annealing for N-queen Problem
Authors: Vahid Mohammadi Saffarzadeh, Pourya Jafarzadeh, Masoud Mazloom
Abstract:
This paper presents a hybrid approach for solving nqueen problem by combination of PSO and SA. PSO is a population based heuristic method that sometimes traps in local maximum. To solve this problem we can use SA. Although SA suffer from many iterations and long time convergence for solving some problems, By good adjusting initial parameters such as temperature and the length of temperature stages SA guarantees convergence. In this article we use discrete PSO (due to nature of n-queen problem) to achieve a good local maximum. Then we use SA to escape from local maximum. The experimental results show that our hybrid method in comparison of SA method converges to result faster, especially for high dimensions n-queen problems.
Keywords: PSO, SA, N-queen, CSP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16842799 Simulation of a Control System for an Adaptive Suspension System for Passenger Vehicles
Authors: S. Gokul Prassad, S. Aakash, K. Malar Mohan
Abstract:
In the process to cope with the challenges faced by the automobile industry in providing ride comfort, the electronics and control systems play a vital role. The control systems in an automobile monitor various parameters, controls the performances of the systems, thereby providing better handling characteristics. The automobile suspension system is one of the main systems that ensure the safety, stability and comfort of the passengers. The system is solely responsible for the isolation of the entire automobile from harmful road vibrations. Thus, integration of the control systems in the automobile suspension system would enhance its performance. The diverse road conditions of India demand the need of an efficient suspension system which can provide optimum ride comfort in all road conditions. For any passenger vehicle, the design of the suspension system plays a very important role in assuring the ride comfort and handling characteristics. In recent years, the air suspension system is preferred over the conventional suspension systems to ensure ride comfort. In this article, the ride comfort of the adaptive suspension system is compared with that of the passive suspension system. The schema is created in MATLAB/Simulink environment. The system is controlled by a proportional integral differential controller. Tuning of the controller was done with the Particle Swarm Optimization (PSO) algorithm, since it suited the problem best. Ziegler-Nichols and Modified Ziegler-Nichols tuning methods were also tried and compared. Both the static responses and dynamic responses of the systems were calculated. Various random road profiles as per ISO 8608 standard are modelled in the MATLAB environment and their responses plotted. Open-loop and closed loop responses of the random roads, various bumps and pot holes are also plotted. The simulation results of the proposed design are compared with the available passive suspension system. The obtained results show that the proposed adaptive suspension system is efficient in controlling the maximum over shoot and the settling time of the system is reduced enormously.
Keywords: Automobile suspension, MATLAB, control system, PID, PSO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1284