Search results for: oral diagnosis.
338 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.
Keywords: Induction machine, Fault, DWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131337 Nondestructive Electrochemical Testing Method for Prestressed Concrete Structures
Authors: Tomoko Fukuyama, Osamu Senbu
Abstract:
Prestressed concrete is used a lot in infrastructures such as roads or bridges. However, poor grout filling and PC steel corrosion are currently major issues of prestressed concrete structures. One of the problems with nondestructive corrosion detection of PC steel is a plastic pipe which covers PC steel. The insulative property of pipe makes a nondestructive diagnosis difficult; therefore a practical technology to detect these defects is necessary for the maintenance of infrastructures. The goal of the research is a development of an electrochemical technique which enables to detect internal defects from the surface of prestressed concrete nondestructively. Ideally, the measurements should be conducted from the surface of structural members to diagnose non-destructively. In the present experiment, a prestressed concrete member is simplified as a layered specimen to simulate a current path between an input and an output electrode on a member surface. The specimens which are layered by mortar and the prestressed concrete constitution materials (steel, polyethylene, stainless steel, or galvanized steel plates) were provided to the alternating current impedance measurement. The magnitude of an applied electric field was 0.01-volt or 1-volt, and the frequency range was from 106 Hz to 10-2 Hz. The frequency spectrums of impedance, which relate to charge reactions activated by an electric field, were measured to clarify the effects of the material configurations or the properties. In the civil engineering field, the Nyquist diagram is popular to analyze impedance and it is a good way to grasp electric relaxation using a shape of the plot. However, it is slightly not suitable to figure out an influence of a measurement frequency which is reciprocal of reaction time. Hence, Bode diagram is also applied to describe charge reactions in the present paper. From the experiment results, the alternating current impedance method looks to be applicable to the insulative material measurement and eventually prestressed concrete diagnosis. At the same time, the frequency spectrums of impedance show the difference of the material configuration. This is because the charge mobility reflects the variety of substances and also the measuring frequency of the electric field determines migration length of charges which are under the influence of the electric field. However, it could not distinguish the differences of the material thickness and is inferred the difficulties of prestressed concrete diagnosis to identify the amount of an air void or a layer of corrosion product by the technique.
Keywords: Prestressed concrete, electric charge, impedance, phase shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723336 Computer Countenanced Diagnosis of Skin Nodule Detection and Histogram Augmentation: Extracting System for Skin Cancer
Authors: S. Zith Dey Babu, S. Kour, S. Verma, C. Verma, V. Pathania, A. Agrawal, V. Chaudhary, A. Manoj Puthur, R. Goyal, A. Pal, T. Danti Dey, A. Kumar, K. Wadhwa, O. Ved
Abstract:
Background: Skin cancer is now is the buzzing button in the field of medical science. The cyst's pandemic is drastically calibrating the body and well-being of the global village. Methods: The extracted image of the skin tumor cannot be used in one way for diagnosis. The stored image contains anarchies like the center. This approach will locate the forepart of an extracted appearance of skin. Partitioning image models has been presented to sort out the disturbance in the picture. Results: After completing partitioning, feature extraction has been formed by using genetic algorithm and finally, classification can be performed between the trained and test data to evaluate a large scale of an image that helps the doctors for the right prediction. To bring the improvisation of the existing system, we have set our objectives with an analysis. The efficiency of the natural selection process and the enriching histogram is essential in that respect. To reduce the false-positive rate or output, GA is performed with its accuracy. Conclusions: The objective of this task is to bring improvisation of effectiveness. GA is accomplishing its task with perfection to bring down the invalid-positive rate or outcome. The paper's mergeable portion conflicts with the composition of deep learning and medical image processing, which provides superior accuracy. Proportional types of handling create the reusability without any errors.
Keywords: Computer-aided system, detection, image segmentation, morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 545335 Post-Traumatic Stress Disorder: Management at the Montfort Hospital
Authors: Kay-Anne Haykal, Issack Biyong
Abstract:
The post-traumatic stress disorder (PTSD) rises from exposure to a traumatic event and appears by a persistent experience of this event. Several psychiatric co-morbidities are associated with PTSD and include mood disorders, anxiety disorders, and substance abuse. The main objective was to compare the criteria for PTSD according to the literature to those used to diagnose a patient in a francophone hospital and to check the correspondence of these two criteria. 700 medical charts of admitted patients on the medicine or psychiatric unit at the Montfort Hospital were identified with the following diagnoses: major depressive disorder, bipolar disorder, anxiety disorder, substance abuse, and PTSD for the period of time between April 2005 and March 2006. Multiple demographic criteria were assembled. Also, for every chart analyzed, the PTSD criteria, according to the Manual of Mental Disorders (DSM) IV were found, identified, and grouped according to pre-established codes. An analysis using the receiver operating characteristic (ROC) method was elaborated for the study of data. A sample of 57 women and 50 men was studied. Age was varying between 18 and 88 years with a median age of 48. According to the PTSD criteria in the DSM IV, 12 patients should have the diagnosis of PTSD in opposition to only two identified in the medical charts. The ROC method establishes that with the combination of data from PTSD and depression, the sensitivity varies between 0,127 and 0,282, and the specificity varies between 0,889 and 0,917. Otherwise, if we examine the PTSD data alone, the sensibility jumps to 0.50, and the specificity varies between 0,781 and 0,895. This study confirms the presence of an underdiagnosed and treated PTSD that causes severe perturbations for the affected individual.
Keywords: Post-Traumatic Stress Disorder, diagnosis, co-morbidities, mental health disorders.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1110334 Noninvasive Disease Diagnosis through Breath Analysis Using DNA-Functionalized SWNT Sensor Array
Authors: Wenjun Zhang, Yunqing Du, Ming L. Wang
Abstract:
Noninvasive diagnostics of diseases via breath analysis has attracted considerable scientific and clinical interest for many years and become more and more promising with the rapid advancements in nanotechnology and biotechnology. The volatile organic compounds (VOCs) in exhaled breath, which are mainly blood borne, particularly provide highly valuable information about individuals’ physiological and pathophysiological conditions. Additionally, breath analysis is noninvasive, real-time, painless, and agreeable to patients. We have developed a wireless sensor array based on single-stranded DNA (ssDNA)-functionalized single-walled carbon nanotubes (SWNT) for the detection of a number of physiological indicators in breath. Seven DNA sequences were used to functionalize SWNT sensors to detect trace amount of methanol, benzene, dimethyl sulfide, hydrogen sulfide, acetone, and ethanol, which are indicators of heavy smoking, excessive drinking, and diseases such as lung cancer, breast cancer, and diabetes. Our test results indicated that DNA functionalized SWNT sensors exhibit great selectivity, sensitivity, and repeatability; and different molecules can be distinguished through pattern recognition enabled by this sensor array. Furthermore, the experimental sensing results are consistent with the Molecular Dynamics simulated ssDNAmolecular target interaction rankings. Thus, the DNA-SWNT sensor array has great potential to be applied in chemical or biomolecular detection for the noninvasive diagnostics of diseases and personal health monitoring.
Keywords: Breath analysis, DNA-SWNT sensor array, diagnosis, noninvasive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2837333 Evaluation of the Impact of Dataset Characteristics for Classification Problems in Biological Applications
Authors: Kanthida Kusonmano, Michael Netzer, Bernhard Pfeifer, Christian Baumgartner, Klaus R. Liedl, Armin Graber
Abstract:
Availability of high dimensional biological datasets such as from gene expression, proteomic, and metabolic experiments can be leveraged for the diagnosis and prognosis of diseases. Many classification methods in this area have been studied to predict disease states and separate between predefined classes such as patients with a special disease versus healthy controls. However, most of the existing research only focuses on a specific dataset. There is a lack of generic comparison between classifiers, which might provide a guideline for biologists or bioinformaticians to select the proper algorithm for new datasets. In this study, we compare the performance of popular classifiers, which are Support Vector Machine (SVM), Logistic Regression, k-Nearest Neighbor (k-NN), Naive Bayes, Decision Tree, and Random Forest based on mock datasets. We mimic common biological scenarios simulating various proportions of real discriminating biomarkers and different effect sizes thereof. The result shows that SVM performs quite stable and reaches a higher AUC compared to other methods. This may be explained due to the ability of SVM to minimize the probability of error. Moreover, Decision Tree with its good applicability for diagnosis and prognosis shows good performance in our experimental setup. Logistic Regression and Random Forest, however, strongly depend on the ratio of discriminators and perform better when having a higher number of discriminators.
Keywords: Classification, High dimensional data, Machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384332 An Index for the Differential Diagnosis of Morbid Obese Children with and without Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Metabolic syndrome (MetS) is a severe health problem caused by morbid obesity, the severest form of obesity. The components of MetS are rather stable in adults. However, the diagnosis of MetS in morbid obese (MO) children still constitutes a matter of discussion. The aim of this study was to develop a formula, which facilitated the diagnosis of MetS in MO children and was capable of discriminating MO children with and without MetS findings. The study population comprised MO children. Age and sex-dependent body mass index (BMI) percentiles of the children were above 99. Increased blood pressure, elevated fasting blood glucose (FBG), elevated triglycerides (TRG) and/or decreased high density lipoprotein cholesterol (HDL-C) in addition to central obesity were listed as MetS components for each child. Two groups were constituted. In the first group, there were 42 MO children without MetS components. Second group was composed of 44 MO children with at least two MetS components. Anthropometric measurements including weight, height, waist and hip circumferences were performed during physical examination. BMI and homeostatic model assessment of insulin resistance (HOMA-IR) values were calculated. Informed consent forms were obtained from the parents of the children. Institutional Non-Interventional Clinical Studies Ethics Committee approved the study design. Routine biochemical analyses including FBG, insulin (INS), TRG, HDL-C were performed. The performance and the clinical utility of Diagnostic Obesity Notation Model Assessment Metabolic Syndrome Index (DONMA MetS index) [(INS/FBG)/(HDL-C/TRG)*100] was tested. Appropriate statistical tests were applied to the study data. p value smaller than 0.05 was defined as significant. MetS index values were 41.6 ± 5.1 in MO group and 104.4 ± 12.8 in MetS group. Corresponding values for HDL-C values were 54.5 ± 13.2 mg/dl and 44.2 ± 11.5 mg/dl. There was a statistically significant difference between the groups (p < 0.001). Upon evaluation of the correlations between MetS index and HDL-C values, a much stronger negative correlation was found in MetS group (r = -0.515; p = 0.001) in comparison with the correlation detected in MO group (r = -0.371; p = 0.016). From these findings, it was concluded that the statistical significance degree of the difference between MO and MetS groups was highly acceptable for this recently introduced MetS index. This was due to the involvement of all of the biochemically defined MetS components into the index. This is particularly important because each of these four parameters used in the formula is a cardiac risk factor. Aside from discriminating MO children with and without MetS findings, MetS index introduced in this study is important from the cardiovascular risk point of view in MetS group of children.
Keywords: Fasting blood glucose, high density lipoprotein cholesterol, insulin, metabolic syndrome, morbid obesity, triglycerides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 256331 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554330 Development of Affordable and Reliable Diagnostic Tools to Record Vital Parameters for Improving Health Care in Low Resources Settings
Authors: Mannan Mridha, Usama Gazay, Kosovare V. Aslani, Hugo Linder, Alice Ravizza, Carmelo de Maria
Abstract:
In most developing countries, although the vast majority of the people are living in the rural areas, the qualified medical doctors are not available there. Health care workers and paramedics, called village doctors, informal healthcare providers, are largely responsible for the rural medical care. Mishaps due to wrong diagnosis and inappropriate medication have been causing serious suffering that is preventable. While innovators have created many devices, the vast majority of these technologies do not find applications to address the needs and conditions in low-resource settings. The primary motive is to address the acute lack of affordable medical technologies for the poor people in low-resource settings. A low cost smart medical device that is portable, battery operated and can be used at any point of care has been developed to detect breathing rate, electrocardiogram (ECG) and arterial pulse rate to improve diagnosis and monitoring of patients and thus improve care and safety. This simple and easy to use smart medical device can be used, managed and maintained effectively and safely by any health worker with some training. In order to empower the health workers and village doctors, our device is being further developed to integrate with ICT tools like smart phones and connect to the medical experts wherever available, to manage the serious health problems.
Keywords: Healthcare for low resources settings, health awareness education, improve patient care and safety, smart and affordable medical device.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 856329 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology
Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur
Abstract:
Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.
Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915328 Suggestion of Ultrasonic System for Diagnosis of Functional Gastrointestinal Disorders: Finite Difference Analysis, Development and Clinical Trials
Authors: Won-Pil Park, Qyoun-Jung Lee, Dae-Gon Woo, Chang-Yong Ko, Eun-Geun Kim, Dohyung Lim, Yong-Heum Lee, Tae-Min Shin, Han-Sung Kim
Abstract:
The disaster from functional gastrointestinal disorders has detrimental impact on the quality of life of the effected population and imposes a tremendous social and economic burden. There are, however, rare diagnostic methods for the functional gastrointestinal disorders. Our research group identified recently that the gastrointestinal tract well in the patients with the functional gastrointestinal disorders becomes more rigid than healthy people when palpating the abdominal regions overlaying the gastrointestinal tract. Objective of current study is, therefore, identify feasibility of a diagnostic system for the functional gastrointestinal disorders based on ultrasound technique, which can quantify the characteristics above. Two-dimensional finite difference (FD) models (one normal and two rigid model) were developed to analyze the reflective characteristic (displacement) on each soft-tissue layer responded after application of ultrasound signals. The FD analysis was then based on elastic ultrasound theory. Validation of the model was performed via comparison of the characteristic of the ultrasonic responses predicted by FD analysis with that determined from the actual specimens for the normal and rigid conditions. Based on the results from FD analysis, ultrasound system for diagnosis of the functional gastrointestinal disorders was developed and clinically tested via application of it to 40 human subjects with/without functional gastrointestinal disorders who were assigned to Normal and Patient Groups. The FD models were favorably validated. The results from FD analysis showed that the maximum displacement amplitude in the rigid models (0.12 and 0.16) at the interface between the fat and muscle layers was explicitly less than that in the normal model (0.29). The results from actual specimens showed that the maximum amplitude of the ultrasonic reflective signal in the rigid models (0.2±0.1Vp-p) at the interface between the fat and muscle layers was explicitly higher than that in the normal model (0.1±0.2 Vp-p). Clinical tests using our customized ultrasound system showed that the maximum amplitudes of the ultrasonic reflective signals near to the gastrointestinal tract well for the patient group (2.6±0.3 Vp-p) were generally higher than those in normal group (0.1±0.2 Vp-p). Here, maximum reflective signals was appeared at 20mm depth approximately from abdominal skin for all human subjects, corresponding to the location of the boundary layer close to gastrointestinal tract well. These findings suggest that our customized ultrasound system using the ultrasonic reflective signal may be helpful to the diagnosis of the functional gastrointestinal disorders.Keywords: Finite Difference (FD) Analysis, FunctionalGastrointestinal Disorders, Gastrointestinal Tract, UltrasonicResponses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617327 Issues in Spectral Source Separation Techniques for Plant-wide Oscillation Detection and Diagnosis
Authors: A.K. Tangirala, S. Babji
Abstract:
In the last few years, three multivariate spectral analysis techniques namely, Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Non-negative Matrix Factorization (NMF) have emerged as effective tools for oscillation detection and isolation. While the first method is used in determining the number of oscillatory sources, the latter two methods are used to identify source signatures by formulating the detection problem as a source identification problem in the spectral domain. In this paper, we present a critical drawback of the underlying linear (mixing) model which strongly limits the ability of the associated source separation methods to determine the number of sources and/or identify the physical source signatures. It is shown that the assumed mixing model is only valid if each unit of the process gives equal weighting (all-pass filter) to all oscillatory components in its inputs. This is in contrast to the fact that each unit, in general, acts as a filter with non-uniform frequency response. Thus, the model can only facilitate correct identification of a source with a single frequency component, which is again unrealistic. To overcome this deficiency, an iterative post-processing algorithm that correctly identifies the physical source(s) is developed. An additional issue with the existing methods is that they lack a procedure to pre-screen non-oscillatory/noisy measurements which obscure the identification of oscillatory sources. In this regard, a pre-screening procedure is prescribed based on the notion of sparseness index to eliminate the noisy and non-oscillatory measurements from the data set used for analysis.Keywords: non-negative matrix factorization, PCA, source separation, plant-wide diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535326 Development of Indwelling Wireless pH Telemetry of Intraoral Acidity
Authors: Jung-hoon Ro, Soo-young Ye, Jae-hee Jung, Ah-young Jeon, Yun-jin KimIn-cheol Kim, Chul-han Kim, Gye-rok Jeon
Abstract:
As the increase of intraoral acidity due to ingestion of sweet foods and acidic beverages usually bring forth a dental caries and a erosion, the measurement of intraoral pH is essential in the study of oral environment. The indwelling intraoral pH telemetry for lasting longer than 24 hours in the mouth was developed to overcome the limits of conventional wire electrode method previously used for salivary and plaque pH measurement, and to assess its effectiveness.
Keywords: pH telemetry, intraoral acidity, wireless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2728325 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710324 Survey on Awareness, Knowledge and Practices: Managing Osteoporosis among Practitioners in a Tertiary Hospital, Malaysia
Authors: P. H. Tee, S. M. Zamri, K. M. Kasim, S. K. Tiew
Abstract:
This study evaluates the management of osteoporosis in a tertiary care government hospital in Malaysia. As the number of admitted patients having osteoporotic fractures is on the rise, osteoporotic medications are an increasing financial burden to government hospitals because they account for half of the orthopedic budget and expenditure. Comprehensive knowledge among practitioners is important to detect early and avoid this preventable disease and its serious complications. The purpose of this study is to evaluate the awareness, knowledge, and practices in managing osteoporosis among practitioners in Hospital Tengku Ampuan Rahimah (HTAR), Klang. A questionnaire from an overseas study in managing osteoporosis among primary care physicians is adapted to Malaysia’s Clinical Practice Guideline of Osteoporosis 2012 (revised 2015) and international guidelines were distributed to all orthopedic practitioners in HTAR Klang (including surgeons, orthopedic medical officers), endocrinologists, rheumatologists and geriatricians. The participants were evaluated on their expertise in the diagnosis, prevention, treatment decision and medications for osteoporosis. Collected data were analyzed for all descriptive and statistical analyses as appropriate. All 45 participants responded to the questionnaire. Participants scored highest on expertise in prevention, followed by diagnosis, treatment decision and lastly, medication. Most practitioners stated that own-initiated continuing professional education from articles and books was the most effective way to update their knowledge, followed by attendance in conferences on osteoporosis. This study confirms the importance of comprehensive training and education regarding osteoporosis among tertiary care physicians and surgeons, predominantly in pharmacotherapy, to deliver wholesome care for osteoporotic patients.
Keywords: Awareness, knowledge, osteoporosis, practices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 706323 A Method for Evaluating the Mechanical Stress on Mandibular Advancement Devices
Authors: Tsung-yin Lin, Yi-yu Lee, Ching-hua Hung
Abstract:
This study focuses on the stress analysis of Mandibular Advancement Devices (MADs), which are considered as a standard treatment of snoring that promoted by American Academy of Sleep Medicine (AASM). Snoring is the most significant feature of sleep-disordered breathing (SDB). SDB will lead to serious problems in human health. Oral appliances are ensured in therapeutic effect and compliance, especially the MADs. This paper proposes a new MAD design, and the finite element analysis (FEA) is introduced to precede the stress simulation for this MAD.Keywords: Finite element analysis, mandibular advancement devices, mechanical stress, snoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896322 Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders
Authors: Oral Lacin, Turan Calban, Fatih Sevim, Taner Celik
Abstract:
In this study, Pb2+ uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb2+ concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb2+ on n-Hap was found as 565 mg.g-1. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications.Keywords: Nanopowders, hydroxyapatite, heavy metals, adsorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461321 The Process of Crisis: Model of Its Development in the Organization
Authors: M. Mikušová
Abstract:
The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.
Keywords: Crisis, management, model, organization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135320 Rigorous Electromagnetic Model of Fourier Transform Infrared (FT-IR) Spectroscopic Imaging Applied to Automated Histology of Prostate Tissue Specimens
Authors: Rohith K Reddy, David Mayerich, Michael Walsh, P Scott Carney, Rohit Bhargava
Abstract:
Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that provides both chemically and spatially resolved information. The rich chemical content of data may be utilized for computer-aided determinations of structure and pathologic state (cancer diagnosis) in histological tissue sections for prostate cancer. FT-IR spectroscopic imaging of prostate tissue has shown that tissue type (histological) classification can be performed to a high degree of accuracy [1] and cancer diagnosis can be performed with an accuracy of about 80% [2] on a microscopic (≈ 6μm) length scale. In performing these analyses, it has been observed that there is large variability (more than 60%) between spectra from different points on tissue that is expected to consist of the same essential chemical constituents. Spectra at the edges of tissues are characteristically and consistently different from chemically similar tissue in the middle of the same sample. Here, we explain these differences using a rigorous electromagnetic model for light-sample interaction. Spectra from FT-IR spectroscopic imaging of chemically heterogeneous samples are different from bulk spectra of individual chemical constituents of the sample. This is because spectra not only depend on chemistry, but also on the shape of the sample. Using coupled wave analysis, we characterize and quantify the nature of spectral distortions at the edges of tissues. Furthermore, we present a method of performing histological classification of tissue samples. Since the mid-infrared spectrum is typically assumed to be a quantitative measure of chemical composition, classification results can vary widely due to spectral distortions. However, we demonstrate that the selection of localized metrics based on chemical information can make our data robust to the spectral distortions caused by scattering at the tissue boundary.Keywords: Infrared, Spectroscopy, Imaging, Tissue classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635319 A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator
Authors: Phannee Saengkaew, Weerasak Ussawawongaraya, Sasiphan Khaweerat, Supagorn Rugmai, Sirisart Ouajai, Jiraporn Luengviriya, Sakuntam Sanorpim, Manop Tirarattanasompot, Somboon Rhianphumikarakit
Abstract:
We present a preliminary x-ray study on human-hair microstructures for a health-state indicator, in particular a cancer case. As an uncomplicated and low-cost method of x-ray technique, the human-hair microstructure was analyzed by wide-angle x-ray diffractions (XRD) and small-angle x-ray scattering (SAXS). The XRD measurements exhibited the simply reflections at the d-spacing of 28 Å, 9.4 Å and 4.4 Å representing to the periodic distance of the protein matrix of the human-hair macrofibrous and the diameter and the repeated spacing of the polypeptide alpha helixes of the photofibrils of the human-hair microfibrous, respectively. When compared to the normal cases, the unhealthy cases including to the breast- and ovarian-cancer cases obtained higher normalized ratios of the x-ray diffracting peaks of 9.4 Å and 4.4 Å. This likely resulted from the varied distributions of microstructures by a molecular alteration. As an elemental analysis by x-ray fluorescence (XRF), the normalized quantitative ratios of zinc(Zn)/calcium(Ca) and iron(Fe)/calcium(Ca) were determined. Analogously, both Zn/Ca and Fe/Ca ratios of the unhealthy cases were obtained higher than both of the normal cases were. Combining the structural analysis by XRD measurements and the elemental analysis by XRF measurements exhibited that the modified fibrous microstructures of hair samples were in relation to their altered elemental compositions. Therefore, these microstructural and elemental analyses of hair samples will be benefit to associate with a diagnosis of cancer and genetic diseases. This functional method would lower a risk of such diseases by the early diagnosis. However, the high-intensity x-ray source, the highresolution x-ray detector, and more hair samples are necessarily desired to develop this x-ray technique and the efficiency would be enhanced by including the skin and fingernail samples with the human-hair analysis.Keywords: Human-hair analysis, XRD, SAXS, breast cancer, health-state indicator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2574318 Investigation of Wave Atom Sub-Bands via Breast Cancer Classification
Authors: Nebi Gedik, Ayten Atasoy
Abstract:
This paper investigates successful sub-bands of wave atom transform via classification of mammograms, when the coefficients of sub-bands are used as features. A computer-aided diagnosis system is constructed by using wave atom transform, support vector machine and k-nearest neighbor classifiers. Two-class classification is studied in detail using two data sets, separately. The successful sub-bands are determined according to the accuracy rates, coefficient numbers, and sensitivity rates.
Keywords: Breast cancer, wave atom transform, SVM, k-NN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1072317 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3738316 Atrial Fibrillation Analysis Based on Blind Source Separation in 12-lead ECG
Authors: Pei-Chann Chang, Jui-Chien Hsieh, Jyun-Jie Lin, Feng-Ming Yeh
Abstract:
Atrial Fibrillation is the most common sustained arrhythmia encountered by clinicians. Because of the invisible waveform of atrial fibrillation in atrial activation for human, it is necessary to develop an automatic diagnosis system. 12-Lead ECG now is available in hospital and is appropriate for using Independent Component Analysis to estimate the AA period. In this research, we also adopt a second-order blind identification approach to transform the sources extracted by ICA to more precise signal and then we use frequency domain algorithm to do the classification. In experiment, we gather a significant result of clinical data.Keywords: 12-Lead ECG, Atrial Fibrillation, Blind SourceSeparation, Kurtosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814315 A Test to Express Diagnostic Cohesion of Football Team
Authors: Alexandra O. Savinkina
Abstract:
We proposed to assess the cohesion of a football team by its subject-goal and subject-value unity according to the A.V. Petrovsky theory. Goal unity was measured by the degree of compliance of the priority targets for various players in the team. Values were estimated by the coincidence of the ideas about a perfect football player. On the basis of the provisional diagnosis of the six teams, we had made the lists of goals and values. The tests were piloted on 35 football teams. The results allowed not only to compare quantitatively the cohesion of the different teams, but also to identify subgroups within the team.
Keywords: Cohesion, football, psychodiagnostic, soccer, sports team, value-orientation unity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162314 Layout Based Spam Filtering
Authors: Claudiu N.Musat
Abstract:
Due to the constant increase in the volume of information available to applications in fields varying from medical diagnosis to web search engines, accurate support of similarity becomes an important task. This is also the case of spam filtering techniques where the similarities between the known and incoming messages are the fundaments of making the spam/not spam decision. We present a novel approach to filtering based solely on layout, whose goal is not only to correctly identify spam, but also warn about major emerging threats. We propose a mathematical formulation of the email message layout and based on it we elaborate an algorithm to separate different types of emails and find the new, numerically relevant spam types.
Keywords: Clustering, layout, k-means, spam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1649313 Monte Carlo and Biophysics Analysis in a Criminal Trial
Authors: Luca Indovina, Carmela Coppola, Carlo Altucci, Riccardo Barberi, Rocco Romano
Abstract:
In this paper a real court case, held in Italy at the Court of Nola, in which a correct physical description, conducted with both a Monte Carlo and biophysical analysis, would have been sufficient to arrive at conclusions confirmed by documentary evidence, is considered. This will be an example of how forensic physics can be useful in confirming documentary evidence in order to reach hardly questionable conclusions. This was a libel trial in which the defendant, Mr. DS (Defendant for Slander), had falsely accused one of his neighbors, Mr. OP (Offended Person), of having caused him some damages. The damages would have been caused by an external plaster piece that would have detached from the neighbor’s property and would have hit Mr DS while he was in his garden, much more than a meter far away from the facade of the building from which the plaster piece would have detached. In the trial, Mr. DS claimed to have suffered a scratch on his forehead, but he never showed the plaster that had hit him, nor was able to tell from where the plaster would have arrived. Furthermore, Mr. DS presented a medical certificate with a diagnosis of contusion of the cerebral cortex. On the contrary, the images of Mr. OP’s security cameras do not show any movement in the garden of Mr. DS in a long interval of time (about 2 hours) around the time of the alleged accident, nor do they show any people entering or coming out from the house of Mr. DS in the same interval of time. Biophysical analysis shows that both the diagnosis of the medical certificate and the wound declared by the defendant, already in conflict with each other, are not compatible with the fall of external plaster pieces too small to be found. The wind was at a level 1 of the Beaufort scale, that is, unable to raise even dust (level 4 of the Beaufort scale). Therefore, the motion of the plaster pieces can be described as a projectile motion, whereas collisions with the building cornice can be treated using Newtons law of coefficients of restitution. Numerous numerical Monte Carlo simulations show that the pieces of plaster would not have been able to reach even the garden of Mr. DS, let alone a distance over 1.30 meters. Results agree with the documentary evidence (images of Mr. OP’s security cameras) that Mr. DS could not have been hit by plaster pieces coming from Mr. OP’s property.Keywords: Biophysical analysis, Monte Carlo simulations, Newton’s law of restitution, projectile motion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614312 Antioxidant Components of Fumaria Species(Papaveraceae)
Authors: F. Habibi Tirtash, M. Keshavarzi, F. Fazeli
Abstract:
The genus Fumaria L. (Papaveraceae) in Iran comprises 8 species with a vast medicinal use in Asian folk medicine. These herbs are considered to be useful in the treatment of gastrointestinal disease and skin disorders. Antioxidant activities of alkaloids and phenolic extracts of these species had been studied previously. These species are: F. officinalis, F. parviflora, F. asepala, F. densiflora, F. schleicheri, F. vaillantii and F. indica. More than 50 populations of Fumaria species were sampled from nature. In this study different fatty acids are extracted. Their picks were recorded by GC technique. This species contain some kind of fatty acids with antioxidant effects. A part of these lipids are phospholipids. As these are unsaturated fatty acids they may have industrial use as natural additive to cosmetics, dermal and oral medicines. The presences of different materials are discussed. Our studies for antioxidant effects of these substances are continued.Keywords: Fumaria, Papaveraceae, fatty acid, antioxidant, Iran
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104311 A Support System to Consult Remote another Doctor on Assessment and/or Medical Treatment Plan when a Doctor has a Patient not in His/Her Major
Authors: T. Gotoh, T. Takayama, M. Ishiki, T. Ikeda
Abstract:
Recently, majors of doctors are divided into terribly lots of detailed areas. However, it is actually not a rare case that a doctor has a patient who is not in his/her major. He/She must judge an assessment and make a medical treatment plan for this patient. According to our investigation, conventional approaches such as image diagnosis cooperation are insufficient. This paper proposes an 'Assessment / Medical Treatment Plan Consulting System'. We have implemented a pilot system based on our proposition. Its effectiveness is clarified by an evaluation.
Keywords: Application, computational intelligence and telecommunications, medicine, intelligent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730310 Proposition of an Ontology of Diseases and Their Signs from Medical Ontologies Integration
Authors: Adama Sow, Abdoulaye Guiss´e, Oumar Niang
Abstract:
To assist medical diagnosis, we propose a federation of several existing and open medical ontologies and terminologies. The goal is to merge the strengths of all these resources to provide clinicians the access to a variety of shared knowledges that can facilitate identification and association of human diseases and all of their available characteristic signs such as symptoms and clinical signs. This work results to an integration model loaded from target known ontologies of the bioportal platform such as DOID, MESH, and SNOMED for diseases selection, SYMP, and CSSO for all existing signs.Keywords: Medical decision, medical ontologies, ontologies integration, linked data, knowledge ingeneering, e-health system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772309 Translation of Phraseological Units in Abai Kunanbayev-s Poems
Authors: M. T. Kozhakanova, L.Zh.Mussaly, I.K.Azimbayeva, K.T.Abdikova
Abstract:
Abai Kunanbayev (1845-1904) was a great Kazakh poet, composer and philosopher. Abai's main contribution to Kazakh culture and folklore lies in his poetry, which expresses great nationalism and grew out of Kazakh folk culture. Before him, most Kazakh poetry was oral, echoing the nomadic habits of the people of the Kazakh steppes. We want to introduce to abroad our country, its history, tradition and culture. We can introduce it only through translations. Only by reading the Kazakh works can foreign people know who are kazakhs, the style of their life, their thoughts and so on. All information comes only through translation. The main requirement to a good translation is that it should be natural or that it should read as smoothly as the original. Literary translation should be adequate, should follow the original to the fullest. Translators have to be loyal to original text, they shouldn-t give the way to liberty.Keywords: concept, literature, semantics, tracing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934