Search results for: deep deterministic policy gradient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1518

Search results for: deep deterministic policy gradient

1338 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning

Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar

Abstract:

As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.

Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
1337 Retail Inventory Management for Perishable Products with Two Bins Strategy

Authors: Madhukar Nagare, Pankaj Dutta, Amey Kambli

Abstract:

Perishable goods constitute a large portion of retailer inventory and lose value with time due to deterioration and/or obsolescence. Retailers dealing with such goods required considering the factors of short shelf life and the dependency of sales on inventory displayed in determining optimal procurement policy. Many retailers follow the practice of using two bins - primary bin sales fresh items at a list price and secondary bin sales unsold items at a discount price transferred from primary bin on attaining certain age. In this paper, mathematical models are developed for primary bin and for secondary bin that maximizes profit with decision variables of order quantities, optimal review period and optimal selling price at secondary bin. The demand rates in two bins are assumed to be deterministic and dependent on displayed inventory level, price and age but independent of each other. The validity of the model is shown by solving an example and the sensitivity analysis of the model is also reported.

Keywords: Retail Inventory, Perishable Products, Two Bin, Profitable Sales.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3507
1336 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach

Authors: N. Shanmugapriya, R. Nallusamy

Abstract:

Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.

Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
1335 Studies of Zooplankton in Gdańsk Basin (2010-2011)

Authors: Dzierzbicka-Glowacka, A. Lemieszek, M. Figiela

Abstract:

In 2010-2011, the research on zooplankton was conducted in the southern part of the Baltic Sea to determine seasonal variability in changes occurring throughout the zooplankton in 2010 and 2011, both in the region of Gdańsk Deep, and in the western part of Gdańsk Bay. The research in the sea showed that the taxonomic composition of holoplankton in the southern part of the Baltic Sea was similar to that recorded in this region for many years. The maximum values of abundance and biomass of zooplankton both in the Deep and the Bay of Gdańsk were observed in the summer season. Copepoda dominated in the composition of zooplankton for almost the entire study period, while rotifers occurred in larger numbers only in the summer 2010 in the Gdańsk Deep as well as in May and July 2010 in the western part of Gdańsk Bay, and meroplankton – in April 2011.

Keywords: Baltic Sea, composition, Gdańsk Bay, zooplankton.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3477
1334 Bayesian Deep Learning Algorithms for Classifying COVID-19 Images

Authors: I. Oloyede

Abstract:

The study investigates the accuracy and loss of deep learning algorithms with the set of coronavirus (COVID-19) images dataset by comparing Bayesian convolutional neural network and traditional convolutional neural network in low dimensional dataset. 50 sets of X-ray images out of which 25 were COVID-19 and the remaining 20 were normal, twenty images were set as training while five were set as validation that were used to ascertained the accuracy of the model. The study found out that Bayesian convolution neural network outperformed conventional neural network at low dimensional dataset that could have exhibited under fitting. The study therefore recommended Bayesian Convolutional neural network (BCNN) for android apps in computer vision for image detection.

Keywords: BCNN, CNN, Images, COVID-19, Deep Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 871
1333 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: Deep learning, convolutional neural network, LSTM, housing prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4990
1332 Inventory Control for a Joint Replenishment Problem with Stochastic Demand

Authors: Bassem Roushdy, Nahed Sobhy, Abdelrhim Abdelhamid, Ahmed Mahmoud

Abstract:

Most papers model Joint Replenishment Problem (JRP) as a (kT,S) where kT is a multiple value for a common review period T,and S is a predefined order up to level. In general the (T,S) policy is characterized by a long out of control period which requires a large amount of safety stock compared to the (R,Q) policy. In this paper a probabilistic model is built where an item, call it item(i), with the shortest order time between interval (T)is modeled under (R,Q) policy and its inventory is continuously reviewed, while the rest of items (j) are periodically reviewed at a definite time corresponding to item

Keywords: Inventory management, Joint replenishment, policy evaluation, stochastic process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3049
1331 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
1330 Malaria Parasite Detection Using Deep Learning Methods

Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko

Abstract:

Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.

Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655
1329 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques

Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan

Abstract:

Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.

Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
1328 A Research about How the Dividend Policy Influences the Enterprise Value on the Condition of Consecutive Cash Payoff

Authors: Chengxuan Geng, Chenxi Liu

Abstract:

this article conducts a research about the relationship between cash dividend policy and enterprise value based on the data coming from the A-share listed companies over period 2005-2009. In conclusion, the enterprise value has a negative correlation with the incremental and the degressive cash dividend per share, and has a positive correlation with the stable cash dividend per share.

Keywords: Cash dividend policy, enterprise value, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2056
1327 A Novel Solution Methodology for Transit Route Network Design Problem

Authors: Ghada Moussa, Mamoud Owais

Abstract:

Transit route Network Design Problem (TrNDP) is the most important component in Transit planning, in which the overall cost of the public transportation system highly depends on it. The main purpose of this study is to develop a novel solution methodology for the TrNDP, which goes beyond pervious traditional sophisticated approaches. The novelty of the solution methodology, adopted in this paper, stands on the deterministic operators which are tackled to construct bus routes. The deterministic manner of the TrNDP solution relies on using linear and integer mathematical formulations that can be solved exactly with their standard solvers. The solution methodology has been tested through Mandl’s benchmark network problem. The test results showed that the methodology developed in this research is able to improve the given network solution in terms of number of constructed routes, direct transit service coverage, transfer directness and solution reliability. Although the set of routes resulted from the methodology would stand alone as a final efficient solution for TrNDP, it could be used as an initial solution for meta-heuristic procedures to approach global optimal. Based on the presented methodology, a more robust network optimization tool would be produced for public transportation planning purposes.

Keywords: Integer programming, Transit route design, Transportation, Urban planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3111
1326 Trade Policy and Economic Growth of Turkey in Global Economy: New Empirical Evidences

Authors: Pınar Yardımcı

Abstract:

This paper tries to answer to the questions whether or not trade openness causes economic growth and trade policy changes are good for Turkey as a developing country in global economy before and after 1980. We employ Johansen co-integration and Granger causality tests with error correction modeling based on vector autoregressive. Using WDI data from the pre-1980 and the post-1980, we find that trade openness and economic growth are cointegrated in the second term only. Also the results suggest a lack of long-run causality between our two variables. These findings may imply that trade policy of Turkey should concentrate more on extra complementary economic reforms.

Keywords: Globalization, Trade Policy, Economic Growth, Openness, Co-integration, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1952
1325 Does Effective Social Policy Guarantee Happiness?

Authors: Yuriy V. Timofeyev, Galina V. Timofeyeva

Abstract:

In the paper it is questioned whether effective state social policy provides happiness and social progress. For this purpose selected correlations between Human Development Index (HDI), share of public social expenditures in GDP, the Happy Planet Index (HPI), GDP per capita, and Government Effectiveness are examined and the results are graphically presented. It is shown how a government can affect well-being and happiness in different countries of modern world. Also, it is tested the hypothesis about existence of a certain optimum of well-being and public social expenditures, which affect direction of social progress. It is concluded that efficient social policy and wealth are not the only factors determining human happiness.

Keywords: government effectiveness, happiness, social progress, state social policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1324 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1193
1323 Application of Neural Network and Finite Element for Prediction the Limiting Drawing Ratio in Deep Drawing Process

Authors: H.Mohammadi Majd, M.Jalali Azizpour, A.V. Hoseini

Abstract:

In this paper back-propagation artificial neural network (BPANN) is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: Back-propagation artificial neural network(BPANN), deep drawing, prediction, limiting drawing ratio (LDR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
1322 Theoretical Background of Dividend Taxation

Authors: Margareta Ilkova, Petr Teply

Abstract:

The article deals with dividends and their distribution from investors from a theoretical point of view. Some studies try to analyzed the reaction of the market on the dividend announcement and found out the change of dividend policy is associated with abnormal returns around the dividend announcement date. Another researches directly questioned the investors about their dividend preference and beliefs. Investors want the dividend from many reasons (e.g. some of them explain the dividend preference by the existence of transaction cost; investors prefer the dividend today, because there is less risky; the managers have private information about the firm). The most controversial theory of dividend policy was developed by Modigliani and Miller (1961) who demonstrated that in the perfect and complete capital markets the dividend policy is irrelevant and the value of the company is independent of its payout policy. Nevertheless, in the real world the capital markets are imperfect, because of asymmetric information, transaction costs, incomplete contracting possibilities and taxes.

Keywords: dividend distribution, taxation, payout policy, investor, Modigliani and Miller theorem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
1321 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: Personal information, deep learning, auto fill, NLP, document analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
1320 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network

Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi

Abstract:

In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
1319 Real-time Performance Study of EPA Periodic Data Transmission

Authors: Liu Ning, Zhong Chongquan, Teng Hongfei

Abstract:

EPA (Ethernet for Plant Automation) resolves the nondeterministic problem of standard Ethernet and accomplishes real-time communication by means of micro-segment topology and deterministic scheduling mechanism. This paper studies the real-time performance of EPA periodic data transmission from theoretical and experimental perspective. By analyzing information transmission characteristics and EPA deterministic scheduling mechanism, 5 indicators including delivery time, time synchronization accuracy, data-sending time offset accuracy, utilization percentage of configured timeslice and non-RTE bandwidth that can be used to specify the real-time performance of EPA periodic data transmission are presented and investigated. On this basis, the test principles and test methods of the indicators are respectively studied and some formulas for real-time performance of EPA system are derived. Furthermore, an experiment platform is developed to test the indicators of EPA periodic data transmission in a micro-segment. According to the analysis and the experiment, the methods to improve the real-time performance of EPA periodic data transmission including optimizing network structure, studying self-adaptive adjustment method of timeslice and providing data-sending time offset accuracy for configuration are proposed.

Keywords: EPA system, Industrial Ethernet, Periodic data, Real-time performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1468
1318 A Novel Forgetting Factor Recursive Least Square Algorithm Applied to the Human Motion Analysis

Authors: Hadi Sadoghi Yazdi, Mehri Sadoghi Yazdi, Mohammad Reza Mohammadi

Abstract:

This paper is concerned with studying the forgetting factor of the recursive least square (RLS). A new dynamic forgetting factor (DFF) for RLS algorithm is presented. The proposed DFF-RLS is compared to other methods. Better performance at convergence and tracking of noisy chirp sinusoid is achieved. The control of the forgetting factor at DFF-RLS is based on the gradient of inverse correlation matrix. Compared with the gradient of mean square error algorithm, the proposed approach provides faster tracking and smaller mean square error. In low signal-to-noise ratios, the performance of the proposed method is superior to other approaches.

Keywords: Forgetting factor, RLS, Inverse correlation matrix, human motion analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2247
1317 Farm Diversification and the Corresponding Policy for Its Implementation in Georgia

Authors: E. Kharaishvili

Abstract:

The paper shows the necessity of farm diversification in accordance with the current trends in agricultural sector of Georgia. The possibilities for the diversification and the corresponding economic policy are suggested. The causes that hinder diversification of farms are revealed, possibilities of diversification are identified and the ability of increasing employment through diversification is proved. Index of harvest diversification is calculated based on the areas used for cereals and legumes, potatoes and vegetables and other food crops. Crop and livestock production indexes are analyzed; correlation between crop capacity index and value added per worker and per hectare is studied. Based on the research farm diversification strategies and priorities of corresponding economic policy are presented. Based on the conclusions relevant recommendations are suggested.

Keywords: Farm diversification, diversification index, agricultural development policy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1316 Study of Structural and Electronic Properties of Ternary PdMnGe Half-Heusler Alloy

Authors: F. Bendahma, M. Mana, B. Bestani, S. Bentata

Abstract:

This study deals with the structural and electronic properties of ternary PdMnGe Half-Heusler alloy using the full potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT) as implemented in the WIEN2k package, within the framework of generalized gradient approximation (GGA). Structural parameters, total and partial densities of states were also analyzed. The obtained result shows that the studied material is metallic in GGA treatment. The elastic constants (Cij) show that our compound is ductile, stiff and anisotropic.

Keywords: Full potential linearized augmented plane wave, generalized gradient approximation treatment, Half-Heusler, structural and electronic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
1315 Taking People, Process and Partnership on Board for Participatory Decision Making

Authors: B. Mikulskienė

Abstract:

Public administration institutions in cooperation with politicians are not the sole policy decision makers in full meaning any longer. Meanwhile, a special role, namely steering the decision making process, could be delegated to them. Despite the wide scientific discussion on different aspects what has direct impact on policy creation, there is a lack of holistic practical managerial advice, which could integrate infrastructure of policy decision making with intellectual capital and with interconnection of partnership. The proposed harmonized decision making model of process, people and partnership entitled by acronym HM-3P is analyzed as a framework for implementation of public administration steering role seeking the coherent social involvement in policy decision making.

Keywords: participatory decision making, partnership, stakeholders.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1314 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1313 Analysis of the Effect of 1980 Transformation on the Foreign Trade of Turkey with Chow Test

Authors: Zeynep Karaçor, Savaş Erdoğan, Perihan Hazel Er

Abstract:

While import-substituting industrialization policy constitute the basis for the industrialization strategies of the 1960s and 1970s in Turkey, this policy was no longer sustainable by the 1980s. For this reason, export-oriented industrialization policy was adopted with the decisions taken on January 24, 1980. In other words, the post-1980 period, Turkey's economy has adopted outwardoriented industrialization strategy. In this study, it is aimed to analyze the effect of the change in economic structure on foreign trade with the transformation of foreign trade and industrialization policies in the post-1980 period. In this respect, in order to analyze the relationship between import, export and economic growth by using variables of the 1960-2011 period, Chow test was applied. In the analysis the reason for using Chow test is whether there is any difference in economic terms between import-substituting industrialization policy applied in the 1960-1980 period and the 1981-2011 period during which exportoriented industrialization policy was applied as a result of the structural transformation.

Keywords: Chow Test, Export-Oriented Industrialization Policy, Import-Substituting Industrialization Policy, Turkey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
1312 Network-Constrained AC Unit Commitment under Uncertainty Using a Bender’s Decomposition Approach

Authors: B. Janani, S. Thiruvenkadam

Abstract:

In this work, the system evaluates the impact of considering a stochastic approach on the day ahead basis Unit Commitment. Comparisons between stochastic and deterministic Unit Commitment solutions are provided. The Unit Commitment model consists in the minimization of the total operation costs considering unit’s technical constraints like ramping rates, minimum up and down time. Load shedding and wind power spilling is acceptable, but at inflated operational costs. The evaluation process consists in the calculation of the optimal unit commitment and in verifying the fulfillment of the considered constraints. For the calculation of the optimal unit commitment, an algorithm based on the Benders Decomposition, namely on the Dual Dynamic Programming, was developed. Two approaches were considered on the construction of stochastic solutions. Data related to wind power outputs from two different operational days are considered on the analysis. Stochastic and deterministic solutions are compared based on the actual measured wind power output at the operational day. Through a technique capability of finding representative wind power scenarios and its probabilities, the system can analyze a more detailed process about the expected final operational cost.

Keywords: Benders’ decomposition, network constrained AC unit commitment, stochastic programming, wind power uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
1311 DNS of a Laminar Separation Bubble

Authors: N. K. Singh, S. Sarkar

Abstract:

Direct numerical simulation (DNS) is used to study the evolution of a boundary layer that was laminar initially followed by separation and then reattachment owing to generation of turbulence. This creates a closed region of recirculation, known as the laminar-separation bubble. The present simulation emulates the flow environment encountered in a modern LP turbine blade, where a laminar separation bubble may occur on the suction surface. The unsteady, incompressible three-dimensional (3-D) Navier-Stokes (NS) equations have been solved over a flat plate in the Cartesian coordinates. The adverse pressure gradient, which causes the flow to separate, is created by a boundary condition. The separated shear layer undergoes transition through appearance of ╬ø vortices, stretching of these create longitudinal streaks. Breakdown of the streaks into small and irregular structures makes the flow turbulent downstream.

Keywords: Adverse pressure gradient, direct numerical simulation, laminar separation bubble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
1310 Comparison of the Amount of Resources and Expansion Support Policy of Photovoltaic Power Generation: A Case on Hokkaido and Aichi Prefecture, Japan

Authors: Hiroaki Sumi, Kiichiro Hayashi

Abstract:

Now, the use of renewable energy power generation has been advanced. In this paper, we compared the usable amount of resource for photovoltaic power generation which was estimated using the NEDO formula and the expansion support policy of photovoltaic power generation which was researched using Internet in the municipality level in Hokkaido and Aichi Prefecture, Japan. This paper will contribute to grasp the current situation especially about the policy. As a result, there were municipalities which seemed to be no consideration of fitting the amount of resources. We think it would need to consider the suitability between the resources and policies.

Keywords: Photovoltaic power generation, expansion support policy, amount of resources, Japan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1273
1309 Thermal Buckling of Rectangular FGM Plate with Variation Thickness

Authors: Mostafa Raki, Mahdi Hamzehei

Abstract:

Equilibrium and stability equations of a thin rectangular plate with length a, width b, and thickness h(x)=C1x+C2, made of functionally graded materials under thermal loads are derived based on the first order shear deformation theory. It is assumed that the material properties vary as a power form of thickness coordinate variable z. The derived equilibrium and buckling equations are then solved analytically for a plate with simply supported boundary conditions. One type of thermal loading, uniform temperature rise and gradient through the thickness are considered, and the buckling temperatures are derived. The influences of the plate aspect ratio, the relative thickness, the gradient index and the transverse shear on buckling temperature difference are all discussed.

Keywords: Stability of plate, thermal buckling, rectangularplate, functionally graded material, first order shear deformationtheory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097