Search results for: Long Short Term Memory.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2690

Search results for: Long Short Term Memory.

2510 Effect of Low Frequency Memory on High Power 12W LDMOS Transistors Intermodulation Distortion

Authors: A. Alghanim, J. Benedikt, P. J. Tasker

Abstract:

The increasing demand for higher data rates in wireless communication systems has led to the more effective and efficient use of all allocated frequency bands. In order to use the whole bandwidth at maximum efficiency, one needs to have RF power amplifiers with a higher linear level and memory-less performance. This is considered to be a major challenge to circuit designers. In this thesis the linearity and memory are studied and examined via the behavior of the intermodulation distortion (IMD). A major source of the in-band distortion can be shown to be influenced by the out-of-band impedances presented at either the input or the output of the device, especially those impedances terminated the low frequency (IF) components. Thus, in order to regulate the in-band distortion, the out of-band distortion must be controllable. These investigations are performed on a 12W LDMOS device characterised at 2.1 GHz within a purpose built, high-power measurement system.

Keywords: Low Frequency Memory, IntermodulationDistortion (IMD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
2509 Long Term Stability of an Experimental Insulated-Model Salinity-Gradient Solar Pond

Authors: N. W. K. Jayatissa, R. Attalage, Prabath Hewageegana, P. A. A. Perera, M. A. Punyasena

Abstract:

Per capita energy usage in any country is exponentially increasing with their development. As a result, the country’s dependence on the fossil fuels for energy generation is also increasing tremendously creating economic and environmental concerns. Tropical countries receive considerable amount of solar radiation throughout the year, use of solar energy with different energy storage and conversion methodologies is a viable solution to minimize the ever increasing demand for the depleting fossil fuels. Salinity gradient solar pond is one such solar energy application. This paper reports the characteristics and performance of a thermally insulated, experimental salinity-gradient solar pond, built at the premises of the University of Kelaniya, Sri Lanka. Particular stress is given to the behavior of the evolution of the three layer structure exist at the stable state of a salinity gradient solar pond over a long period of time, under different environmental conditions. The operational procedures required to maintain the long term thermal stability are also reported in this article.

Keywords: Salt-gradient, solar pond, solar radiation, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
2508 Dual-Network Memory Model for Temporal Sequences

Authors: Motonobu Hattori, Rina Suzuki

Abstract:

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional  dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.  

Keywords: Catastrophic forgetting, dual-network, temporal sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
2507 Capability Investigation of Carbon Sequestration in Two Species (Artemisia sieberi Besser and Stipabarbata Desf) Under Different Treatments of Vegetation Management (Saveh, Iran)

Authors: M. Alizadeh, M. Mahdavi, M.H. Jouri

Abstract:

The rangelands, as one of the largest dynamic biomes in the world, have very capabilities. Regulation of greenhouse gases in the Earth's atmosphere, particularly carbon dioxide as the main these gases, is one of these cases. The attention to rangeland, as cheep and reachable resources to sequestrate the carbon dioxide, increases after the Industrial Revolution. Rangelands comprise the large parts of Iran as a steppic area. Rudshur (Saveh), as area index of steppic area, was selected under three sites include long-term exclosure, medium-term exclosure, and grazable area in order to the capable of carbon dioxide’s sequestration of dominated species. Canopy cover’s percentage of two dominated species (Artemisia sieberi Besser & Stipa barbata Desf) was determined via establishing of random 1 square meter plot. The sampling of above and below ground biomass style was obtained by complete random. After determination of ash percentage in the laboratory; conversion ratio of plant biomass to organic carbon was calculated by ignition method. Results of the paired t-test showed that the amount of carbon sequestration in above ground and underground biomass of Artemisia sieberi Besser & Stipa barbata Desf is different in three regions. It, of course, hasn’t any difference between under and surface ground’s biomass of Artemisia sieberi Besser in long-term exclosure. The independent t-test results indicate differences between underground biomass corresponding each other in the studied sites. Carbon sequestration in the Stipa barbata Desf was totally more than Artemisia sieberi Besser. Altogether, the average sequestration of the long-term exclosure was 5.842gr/m², the medium-term exclosure was 4.115gr/m², and grazable area was 5.975gr/m² so that there isn’t valuable statistical difference in term of total amount of carbon sequestration to three sites.

Keywords: Carbon sequestration, the Industrial Revolution, greenhouse gases, Artemisia sieberi Besser, Stipa barbata Desf, steppic rangelands

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
2506 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
2505 Assessment of Influence of Short-Lasting Whole-Body Vibration on Joint Position Sense and Body Balance–A Randomised Masked Study

Authors: Anna Słupik, Anna Mosiołek, Sebastian Wójtowicz, Dariusz Białoszewski

Abstract:

Introduction: Whole-Body Vibration (WBV) uses high frequency mechanical stimuli generated by a vibration plate and transmitted through bone, muscle and connective tissues to the whole body. Research has shown that long-term vibration-plate training improves neuromuscular facilitation, especially in afferent neural pathways, responsible for the conduction of vibration and proprioceptive stimuli, muscle function, balance and proprioception. Some researchers suggest that the vibration stimulus briefly inhibits the conduction of afferent signals from proprioceptors and can interfere with the maintenance of body balance. The aim of this study was to evaluate the influence of a single set of exercises associated with whole-body vibration on the joint position sense and body balance. Material and methods: The study enrolled 55 people aged 19-24 years. These individuals were randomly divided into a test group (30 persons) and a control group (25 persons). Both groups performed the same set of exercises on a vibration plate. The following vibration parameters: frequency of 20Hz and amplitude of 3mm, were used in the test group. The control group performed exercises on the vibration plate while it was off. All participants were instructed to perform six dynamic exercises lasting 30 seconds each with a 60-second period of rest between them. The exercises involved large muscle groups of the trunk, pelvis and lower limbs. Measurements were carried out before and immediately after exercise. Joint position sense (JPS) was measured in the knee joint for the starting position at 45° in an open kinematic chain. JPS error was measured using a digital inclinometer. Balance was assessed in a standing position with both feet on the ground with the eyes open and closed (each test lasting 30 sec). Balance was assessed using Matscan with FootMat 7.0 SAM software. The surface of the ellipse of confidence and front-back as well as right-left swing were measured to assess balance. Statistical analysis was performed using Statistica 10.0 PL software. Results: There were no significant differences between the groups, both before and after the exercise (p> 0.05). JPS did not change in both the test (10.7° vs. 8.4°) and control groups (9.0° vs. 8.4°). No significant differences were shown in any of the test parameters during balance tests with the eyes open or closed in both the test and control groups (p> 0.05). Conclusions: 1. Deterioration in proprioception or balance was not observed immediately after the vibration stimulus. This suggests that vibrationinduced blockage of proprioceptive stimuli conduction can have only a short-lasting effect that occurs only as long as a vibration stimulus is present. 2. Short-term use of vibration in treatment does not impair proprioception and seems to be safe for patients with proprioceptive impairment. 3. These results need to be supplemented with an assessment of proprioception during the application of vibration stimuli. Additionally, the impact of vibration parameters used in the exercises should be evaluated.

Keywords: Balance, joint position sense, proprioception, whole body vibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
2504 Clustering Based Formulation for Short Term Load Forecasting

Authors: Ajay Shekhar Pandey, D. Singh, S. K. Sinha

Abstract:

A clustering based technique has been developed and implemented for Short Term Load Forecasting, in this article. Formulation has been done using Mean Absolute Percentage Error (MAPE) as an objective function. Data Matrix and cluster size are optimization variables. Model designed, uses two temperature variables. This is compared with six input Radial Basis Function Neural Network (RBFNN) and Fuzzy Inference Neural Network (FINN) for the data of the same system, for same time period. The fuzzy inference system has the network structure and the training procedure of a neural network which initially creates a rule base from existing historical load data. It is observed that the proposed clustering based model is giving better forecasting accuracy as compared to the other two methods. Test results also indicate that the RBFNN can forecast future loads with accuracy comparable to that of proposed method, where as the training time required in the case of FINN is much less.

Keywords: Load forecasting, clustering, fuzzy inference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
2503 Review and Experiments on SDMSCue

Authors: Ashraf Anwar

Abstract:

In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.

Keywords: Artificial intelligence, recall, recognition, SDM, SDMSCue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
2502 Developing New Academics: So What Difference Does It Make?

Authors: N. Chitanand

Abstract:

Given the dynamic nature of the higher education landscape, induction programmes for new academics has become the norm nowadays to support academics negotiate these rough terrain. This study investigates an induction programme for new academics in a higher education institution to establish what difference it has made to participants. The findings revealed that the benefits ranged from creating safe spaces for collaboration and networking to fostering reflective practice and contributing to the scholarship of teaching and learning. The study also revealed that some of the intentions of the programme may not have been achieved, for example transformative learning. This led to questioning whether this intention is an appropriate one given the short duration of the programme and the long, drawn out process of transformation. It may be concluded that the academic induction programme in this study serves to sow the seeds for transformative learning through fostering critically reflective practice. Recommendations for further study could include long term impact of the programme on student learning and success, these being the core business of higher education. It is also recommended that in addition to an induction programme, the university invests in a mentoring programme for new staff and extend the support for academics in order to sustain critical reflection and which may contribute to transformative educational practice.

Keywords: Induction programme, reflective practice, scholarship of teaching, transformative learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
2501 Experiences and Coping of Adults with Death of Siblings during Childhood in Chinese Context: Implications for Therapeutic Interventions

Authors: Sze Yee Lee

Abstract:

The death of a sibling in childhood leads to significant impacts on both personal and family development of the surviving siblings, however, both short-term and long-term effects of sibling loss in Chinese societies such as Hong Kong have been inadequately documented in the literature. This paper explores the experience of encountering siblings’ death during childhood with the use of semi-structured interviews. Through thematic analysis, the author explores the impacts on surviving siblings’ emotions, coping styles, struggles and challenges and personal development. Furthermore, the influences on family dynamics are explored thoroughly, including the changes in family atmosphere, family roles, family relationship, family communication and parenting styles. More importantly, the author identifies (i) existing continuing bonds; (ii) crying; (iii) adequate social support; (iv) hiding own emotions as a gesture of protecting parents as the crucial elements pertinent to surviving siblings’ successful adaptation in the face of sibling loss. In addition, “child-centered” and “family-centered” service implications of families with a sibling's death in a Chinese context are discussed.

Keywords: Surviving children, sibling’s death, child-centered, family-centered.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
2500 Parallel-computing Approach for FFT Implementation on Digital Signal Processor (DSP)

Authors: Yi-Pin Hsu, Shin-Yu Lin

Abstract:

An efficient parallel form in digital signal processor can improve the algorithm performance. The butterfly structure is an important role in fast Fourier transform (FFT), because its symmetry form is suitable for hardware implementation. Although it can perform a symmetric structure, the performance will be reduced under the data-dependent flow characteristic. Even though recent research which call as novel memory reference reduction methods (NMRRM) for FFT focus on reduce memory reference in twiddle factor, the data-dependent property still exists. In this paper, we propose a parallel-computing approach for FFT implementation on digital signal processor (DSP) which is based on data-independent property and still hold the property of low-memory reference. The proposed method combines final two steps in NMRRM FFT to perform a novel data-independent structure, besides it is very suitable for multi-operation-unit digital signal processor and dual-core system. We have applied the proposed method of radix-2 FFT algorithm in low memory reference on TI TMSC320C64x DSP. Experimental results show the method can reduce 33.8% clock cycles comparing with the NMRRM FFT implementation and keep the low-memory reference property.

Keywords: Parallel-computing, FFT, low-memory reference, TIDSP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
2499 Developing OMS in IHL

Authors: Suzana Basaruddin, Haryani Haron, Siti Arpah Noodin

Abstract:

Managing knowledge of research is one way to ensure just in time information and knowledge to support research strategist and activities. Unfortunately researcher found the vital research knowledge in IHL (Institutions of Higher Learning) are scattered, unstructured and unorganized. Aiming on lay aside conceptual foundations for understanding and developing OMS (Organizational Memory System) to facilitate research in IHL, this research revealed ten factors contributed to the needs of research in the IHL and seven internal challenges of IHL in promoting research to their academic members. This study then suggested a comprehensive support of managing research knowledge using Organizational Memory System (OMS). Eight OMS characteristics to support research were identified. Finally the initial work in designing OMS was projected using knowledge taxonomy. All analysis is derived from pertinent research paper related to research in IHL and OMS. Further study can be conducted to validate and verify results presented.

Keywords: corporate memory, Institutions of Higher Learning, organizational memory system, research

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2111
2498 One Hour Ahead Load Forecasting Using Artificial Neural Network for the Western Area of Saudi Arabia

Authors: A. J. Al-Shareef, E. A. Mohamed, E. Al-Judaibi

Abstract:

Load forecasting has become in recent years one of the major areas of research in electrical engineering. Most traditional forecasting models and artificial intelligence neural network techniques have been tried out in this task. Artificial neural networks (ANN) have lately received much attention, and a great number of papers have reported successful experiments and practical tests. This article presents the development of an ANN-based short-term load forecasting model with improved generalization technique for the Regional Power Control Center of Saudi Electricity Company, Western Operation Area (SEC-WOA). The proposed ANN is trained with weather-related data and historical electric load-related data using the data from the calendar years 2001, 2002, 2003, and 2004 for training. The model tested for one week at five different seasons, typically, winter, spring, summer, Ramadan and fall seasons, and the mean absolute average error for one hour-ahead load forecasting found 1.12%.

Keywords: Artificial neural networks, short-term load forecasting, back propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
2497 3D Network-on-Chip with on-Chip DRAM: An Empirical Analysis for Future Chip Multiprocessor

Authors: Thomas Canhao Xu, Bo Yang, Alexander Wei Yin, Pasi Liljeberg, Hannu Tenhunen

Abstract:

With the increasing number of on-chip components and the critical requirement for processing power, Chip Multiprocessor (CMP) has gained wide acceptance in both academia and industry during the last decade. However, the conventional bus-based onchip communication schemes suffer from very high communication delay and low scalability in large scale systems. Network-on-Chip (NoC) has been proposed to solve the bottleneck of parallel onchip communications by applying different network topologies which separate the communication phase from the computation phase. Observing that the memory bandwidth of the communication between on-chip components and off-chip memory has become a critical problem even in NoC based systems, in this paper, we propose a novel 3D NoC with on-chip Dynamic Random Access Memory (DRAM) in which different layers are dedicated to different functionalities such as processors, cache or memory. Results show that, by using our proposed architecture, average link utilization has reduced by 10.25% for SPLASH-2 workloads. Our proposed design costs 1.12% less execution cycles than the traditional design on average.

Keywords: 3D integration, network-on-chip, memory-on-chip, DRAM, chip multiprocessor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
2496 VLSI Design of 2-D Discrete Wavelet Transform for Area-Efficient and High-Speed Image Computing

Authors: Mountassar Maamoun, Mehdi Neggazi, Abdelhamid Meraghni, Daoud Berkani

Abstract:

This paper presents a VLSI design approach of a highspeed and real-time 2-D Discrete Wavelet Transform computing. The proposed architecture, based on new and fast convolution approach, reduces the hardware complexity in addition to reduce the critical path to the multiplier delay. Furthermore, an advanced twodimensional (2-D) discrete wavelet transform (DWT) implementation, with an efficient memory area, is designed to produce one output in every clock cycle. As a result, a very highspeed is attained. The system is verified, using JPEG2000 coefficients filters, on Xilinx Virtex-II Field Programmable Gate Array (FPGA) device without accessing any external memory. The resulting computing rate is up to 270 M samples/s and the (9,7) 2-D wavelet filter uses only 18 kb of memory (16 kb of first-in-first-out memory) with 256×256 image size. In this way, the developed design requests reduced memory and provide very high-speed processing as well as high PSNR quality.

Keywords: Discrete Wavelet Transform (DWT), Fast Convolution, FPGA, VLSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
2495 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.

Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593
2494 Tender Systems and Processes within the Mauritian Construction Industry: Investigating the Predominance of International Firms and the Lack of Absorptive Capacity in Local Firms

Authors: K. Appasamy, P. Paul

Abstract:

Mauritius, a developing small-island-state, is facing a recession which is having a considerable economic impact particularly on its construction sector. Further, the presence of foreign entities, both as companies and workers, within this sector is creating a very competitive environment for local firms. This study investigates the key drivers that allow foreign firms to participate in this sector, in particular looking at the international and local tender processes, and the capacity of local industry to participate. This study also looks at how the current set up may hinder the latter’s involvement. The methodology used included qualitative semi-structured interviews conducted with established foreign companies, local companies, and public bodies. Study findings indicate: there is an adequate availability of professional skills and expertise within the Mauritian construction industry but a lack of skilled labour especially at the operative level; projects awarded to foreign firms are either due to their uniqueness and hence lack of local knowledge, or due to foreign firms having lower tender bids; tendering systems and processes are weak, including monitoring and enforcement, which encourages corruption and favouritism; a high lev el of ignorance of this sector’s characteristics and opportunities exists amongst the local population; local entities are very profit oriented and have short term strategies that discourage long term investment in workforce training and development; but most importantly, stakeholders do not grasp the importance of encouraging youngsters to join this sector, they have no long term vision, and there is a lack of mutual involvement and collaboration between them. Although local industry is highly competent, qualified and experienced, the tendering and procurement systems in Mauritius are not conducive enough to allow for effective strategic planning and an equitable allocation of projects during an economic downturn so that the broadest spread of stakeholders’ benefit. It is of utmost importance that all sector and government entities collaborate to formulate strategies and reforms on tender processes and capacity building to ensure fairness and continuous growth of this sector in Mauritius.

Keywords: Construction industry, tender process, international firms, local capacity, Mauritius.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
2493 Scenarios for a Sustainable Energy Supply Results of a Case Study for Austria

Authors: Petra Wächter

Abstract:

A comprehensive discussion of feasible strategies for sustainable energy supply is urgently needed to achieve a turnaround of the current energy situation. The necessary fundamentals required for the development of a long term energy vision are lacking to a great extent due to the absence of reasonable long term scenarios that fulfill the requirements of climate protection and sustainable energy use. The contribution of the study is based on a search for sustainable energy paths in the long run for Austria. The analysis makes use of secondary data predominantly. The measures developed to avoid CO2 emissions and other ecological risk factors vary to a great extent among all economic sectors. This is shown by the calculation of CO2 cost of abatement curves. In this study it is demonstrated that the most effective technical measures with the lowest CO2 abatement costs yield solutions to the current energy problems. Various scenarios are presented concerning the question how the technological and environmental options for a sustainable energy system for Austria could look like in the long run. It is shown how sustainable energy can be supplied even with today-s technological knowledge and options available. The scenarios developed include an evaluation of the economic costs and ecological impacts. The results are not only applicable to Austria but demonstrate feasible and cost efficient ways towards a sustainable future.

Keywords: Cost of CO2 Abatement, Energy Economics, Energy Efficiency, Renewable Energy Technologies, Sustainable Energy and Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
2492 An Optimized Multi-block Method for Turbulent Flows

Authors: M. Goodarzi, P. Lashgari

Abstract:

A major part of the flow field involves no complicated turbulent behavior in many turbulent flows. In this research work, in order to reduce required memory and CPU time, the flow field was decomposed into several blocks, each block including its special turbulence. A two dimensional backward facing step was considered here. Four combinations of the Prandtl mixing length and standard k- E models were implemented as well. Computer memory and CPU time consumption in addition to numerical convergence and accuracy of the obtained results were mainly investigated. Observations showed that, a suitable combination of turbulence models in different blocks led to the results with the same accuracy as the high order turbulence model for all of the blocks, in addition to the reductions in memory and CPU time consumption.

Keywords: Computer memory, CPU time, Multi-block method, Turbulence modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
2491 Evidence of the Long-run Equilibrium between Money Demand Determinants in Croatia

Authors: B. Skrabic, N. Tomic-Plazibat

Abstract:

In this paper real money demand function is analyzed within multivariate time-series framework. Cointegration approach is used (Johansen procedure) assuming interdependence between money demand determinants, which are nonstationary variables. This will help us to understand the behavior of money demand in Croatia, revealing the significant influence between endogenous variables in vector autoregrression system (VAR), i.e. vector error correction model (VECM). Exogeneity of the explanatory variables is tested. Long-run money demand function is estimated indicating slow speed of adjustment of removing the disequilibrium. Empirical results provide the evidence that real industrial production and exchange rate explains the most variations of money demand in the long-run, while interest rate is significant only in short-run.

Keywords: Cointegration, Long-run equilibrium, Money demand function, Vector error correction model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153
2490 Persistence of Termination for Term Rewriting Systems with Ordered Sorts

Authors: Munehiro Iwami

Abstract:

A property is persistent if for any many-sorted term rewriting system , has the property if and only if term rewriting system , which results from by omitting its sort information, has the property. Zantema showed that termination is persistent for term rewriting systems without collapsing or duplicating rules. In this paper, we show that the Zantema's result can be extended to term rewriting systems on ordered sorts, i.e., termination is persistent for term rewriting systems on ordered sorts without collapsing, decreasing or duplicating rules. Furthermore we give the example as application of this result. Also we obtain that completeness is persistent for this class of term rewriting systems.

Keywords: Theory of computing, Model-based reasoning, term rewriting system, termination

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
2489 Effectiveness of Working Memory Training on Cognitive Flexibility

Authors: Leila Maleki, Ezatollah Ahmadi

Abstract:

The aim of this study was to investigate the effectiveness of memory training exercise on cognitive flexibility. The method of this study was experimental. The statistical population selected 40 students 14 years old, samples were chosen by available sampling method and then they were replaced in experimental (training program) group and control group randomly and answered to Wisconsin Card Sorting Test; covariance test results indicated that there were a significant in post-test scores of experimental group (p<0.005).

Keywords: Cognitive flexibility, working memory exercises, problem solving, reaction time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
2488 Impact of Financial System’s Development on Economic Development: An Empirical Investigation

Authors: Vilma Deltuvaitė

Abstract:

Comparisons of financial development across countries are central to answering many of the questions on factors leading to economic development. For this reason this study analyzes the implications of financial system’s development on country’s economic development. The aim of the article: to analyze the impact of financial system’s development on economic development. The following research methods were used: systemic, logical and comparative analysis of scientific literature, analysis of statistical data, time series model (Autoregressive Distributed Lag (ARDL) Model). The empirical results suggest about positive short and long term effect of stock market development on GDP per capita.

Keywords: Banking sector, economic development, financial system’s development, stock market, private bond market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124
2487 Proactive Approach to Innovation Management

Authors: Andrus Pedai, Igor Astrov

Abstract:

The focus of this paper is to compare common approaches for Systems of Innovation (SI) and identify proactive alternatives for driving the innovation. Proactive approaches will also consider short and medium term perspectives with developments in the field of Computer Technology and Artificial Intelligence. Concerning Computer Technology and Large Connected Information Systems, it is reasonable to predict that during current or the next century intelligence and innovation will be separated from the constraints of human driven management. After this happens, humans will be no longer driving the innovation and there is possibility that SI for new intelligent systems will set its own targets and exclude humans. Over long time scale these developments could result in scenario, which will lead to the development of larger, cross galactic (universal) proactive SI and Intelligence.

Keywords: Artificial intelligence, DARPA, Moore’s law, proactive innovation, singularity, systems of innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
2486 Studies on the Feasibility of Cow Dung as a Non-Conventional Energy Source

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-batteries represent an entirely new long-term, reasonable, reachable and ecofriendly approach to produce sustainable energy. In the present experimental work, we have studied the effect of generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow dung as an electrolyte. C-Mg electrode pair shows maximum voltage and SCC (Short Circuit Current) while C-Zn electrode pair shows less OCV (Open Circuit Voltage) and SCC. We have chosen C-Zn electrodes because Mg electrodes are not economical. By the studies of different electrodes and cow dung, it is found that C-Zn electrode battery is more suitable. This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.

Keywords: Bio-batteries, electricity, cow dung, electrodes, non-conventional.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
2485 Effects of Temperature on Resilient Modulus of Dense Asphalt Mixtures Incorporating Steel Slag Subjected to Short Term Oven Ageing

Authors: Meor O. Hamzah, Teoh C. Yi

Abstract:

As the resources for naturally occurring aggregates diminished at an ever increasing rate, researchers are keen to utilize recycled materials in road construction in harmony with sustainable development. Steel slag, a waste product from the steel making industry, is one of the recycled materials reported to exhibit great potential to replace naturally occurring aggregates in asphalt mixtures. This paper presents the resilient modulus properties of steel slag asphalt mixtures subjected to short term oven ageing (STOA). The resilient modulus test was carried out to evaluate the stiffness of asphalt mixtures at 10ºC, 25ºC and 40ºC. Previous studies showed that stiffness changes in asphalt mixture played an important role in inflicting pavement distress particularly cracking and rutting that are common at low and high temperatures respectively. Temperature was found to significantly influence the resilient modulus of asphalt mixes. The resilient modulus of the asphalt specimens tested decreased by more than 90% when the test temperature increased from 10°C to 40°C.

Keywords: Granite, Resilient Modulus, Steel Slag, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2849
2484 Training During Emergency Response to Build Resiliency in Water, Sanitation, and Hygiene

Authors: Lee Boudreau, Ash Kumar Khaitu, Laura A. S. MacDonald

Abstract:

In April 2015, a magnitude 7.8 earthquake struck Nepal, killing, injuring, and displacing thousands of people. The earthquake also damaged water and sanitation service networks, leading to a high risk of diarrheal disease and the associated negative health impacts. In response to the disaster, the Environment and Public Health Organization (ENPHO), a Kathmandu-based non-governmental organization, worked with the Centre for Affordable Water and Sanitation Technology (CAWST), a Canadian education, training and consulting organization, to develop two training programs to educate volunteers on water, sanitation, and hygiene (WASH) needs. The first training program was intended for acute response, with the second focusing on longer term recovery. A key focus was to equip the volunteers with the knowledge and skills to formulate useful WASH advice in the unanticipated circumstances they would encounter when working in affected areas. Within the first two weeks of the disaster, a two-day acute response training was developed, which focused on enabling volunteers to educate those affected by the disaster about local WASH issues, their link to health, and their increased importance immediately following emergency situations. Between March and October 2015, a total of 19 training events took place, with over 470 volunteers trained. The trained volunteers distributed hygiene kits and liquid chlorine for household water treatment. They also facilitated health messaging and WASH awareness activities in affected communities. A three-day recovery phase training was also developed and has been delivered to volunteers in Nepal since October 2015. This training focused on WASH issues during the recovery and reconstruction phases. The interventions and recommendations in the recovery phase training focus on long-term WASH solutions, and so form a link between emergency relief strategies and long-term development goals. ENPHO has trained 226 volunteers during the recovery phase, with training ongoing as of April 2016. In the aftermath of the earthquake, ENPHO found that its existing pool of volunteers were more than willing to help those in their communities who were more in need. By training these and new volunteers, ENPHO was able to reach many more communities in the immediate aftermath of the disaster; together they reached 11 of the 14 earthquake-affected districts. The collaboration between ENPHO and CAWST in developing the training materials was a highly collaborative and iterative process, which enabled the training materials to be developed within a short response time. By training volunteers on basic WASH topics during both the immediate response and the recovery phase, ENPHO and CAWST have been able to link immediate emergency relief to long-term developmental goals. While the recovery phase training continues in Nepal, CAWST is planning to decontextualize the training used in both phases so that it can be applied to other emergency situations in the future. The training materials will become part of the open content materials available on CAWST’s WASH Resources website.

Keywords: Water and sanitation, emergency response, education and training, building resilience.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
2483 Effect of the Seasonal Variation in the Extrinsic Incubation Period on the Long Term Behavior of the Dengue Hemorrhagic Fever Epidemic

Authors: Puntani Pongsumpun, I-Ming Tang

Abstract:

The incidences of dengue hemorrhagic disease (DHF) over the long term exhibit a seasonal behavior. It has been hypothesized that these behaviors are due to the seasonal climate changes which in turn induce a seasonal variation in the incubation period of the virus while it is developing the mosquito. The standard dynamic analysis is applied for analysis the Susceptible-Exposed- Infectious-Recovered (SEIR) model which includes an annual variation in the length of the extrinsic incubation period (EIP). The presence of both asymptomatic and symptomatic infections is allowed in the present model. We found that dynamic behavior of the endemic state changes as the influence of the seasonal variation of the EIP becomes stronger. As the influence is further increased, the trajectory exhibits sustained oscillations when it leaves the chaotic region.

Keywords: Chaotic behavior, dengue hemorrhagic fever, extrinsic incubation period, SEIR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
2482 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
2481 The Effect of Iconic and Beat Gestures on Memory Recall in Greek’s First and Second Language

Authors: Eleni Ioanna Levantinou

Abstract:

Gestures play a major role in comprehension and memory recall due to the fact that aid the efficient channel of the meaning and support listeners’ comprehension and memory. In the present study, the assistance of two kinds of gestures (iconic and beat gestures) is tested in regards to memory and recall. The hypothesis investigated here is whether or not iconic and beat gestures provide assistance in memory and recall in Greek and in Greek speakers’ second language. Two groups of participants were formed, one comprising Greeks that reside in Athens and one with Greeks that reside in Copenhagen. Three kinds of stimuli were used: A video with words accompanied with iconic gestures, a video with words accompanied with beat gestures and a video with words alone. The languages used are Greek and English. The words in the English videos were spoken by a native English speaker and by a Greek speaker talking English. The reason for this is that when it comes to beat gestures that serve a meta-cognitive function and are generated according to the intonation of a language, prosody plays a major role. Thus, participants that have different influences in prosody may generate different results from rhythmic gestures. Memory recall was assessed by asking the participants to try to remember as many words as they could after viewing each video. Results show that iconic gestures provide significant assistance in memory and recall in Greek and in English whether they are produced by a native or a second language speaker. In the case of beat gestures though, the findings indicate that beat gestures may not play such a significant role in Greek language. As far as intonation is concerned, a significant difference was not found in the case of beat gestures produced by a native English speaker and by a Greek speaker talking English.

Keywords: First language, gestures, memory, second language acquisition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280