Search results for: Computer network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3928

Search results for: Computer network

3748 Vehicular Ad Hoc Network

Authors: S. Swapna Kumar

Abstract:

A Vehicular Ad-Hoc Network (VANET) is a mobile Ad-Hoc Network that provides connectivity moving device to fixed equipments. Such type of device is equipped with vehicle provides safety for the passengers. In the recent research areas of traffic management there observed the wide scope of design of new methodology of extension of wireless sensor networks and ad-hoc network principal for development of VANET technology. This paper provides the wide research view of the VANET and MANET concept for the researchers to contribute the better optimization technique for the development of effective and fast atomization technique for the large size of data exchange in this complex networks.

Keywords: Ad-Hoc, MANET, Sensors, Security, VANET

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4501
3747 Model-Based Person Tracking Through Networked Cameras

Authors: Kyoung-Mi Lee, Youn-Mi Lee

Abstract:

This paper proposes a way to track persons by making use of multiple non-overlapping cameras. Tracking persons on multiple non-overlapping cameras enables data communication among cameras through the network connection between a camera and a computer, while at the same time transferring human feature data captured by a camera to another camera that is connected via the network. To track persons with a camera and send the tracking data to another camera, the proposed system uses a hierarchical human model that comprises a head, a torso, and legs. The feature data of the person being modeled are transferred to the server, after which the server sends the feature data of the human model to the cameras connected over the network. This enables a camera that captures a person's movement entering its vision to keep tracking the recognized person with the use of the feature data transferred from the server.

Keywords: Person tracking, human model, networked cameras, vision-based surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488
3746 Increasing Lifetime of Target Tracking Wireless Sensor Networks

Authors: Khin Thanda Soe

Abstract:

A model to identify the lifetime of target tracking wireless sensor network is proposed. The model is a static clusterbased architecture and aims to provide two factors. First, it is to increase the lifetime of target tracking wireless sensor network. Secondly, it is to enable good localization result with low energy consumption for each sensor in the network. The model consists of heterogeneous sensors and each sensing member node in a cluster uses two operation modes–active mode and sleep mode. The performance results illustrate that the proposed architecture consumes less energy and increases lifetime than centralized and dynamic clustering architectures, for target tracking sensor network.

Keywords: Network lifetime, Target Localization, TargetTracking, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
3745 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network

Authors: Farzaneh Ahmadzadeh

Abstract:

Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.

Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
3744 Survey on Energy Efficient Routing Protocols in Mobile Ad Hoc Networks

Authors: Swapnil Singh, Sanjoy Das

Abstract:

Mobile Ad-Hoc Network (MANET) is a network without infrastructure dynamically formed by autonomous system of mobile nodes that are connected via wireless links. Mobile nodes communicate with each other on the fly. In this network each node also acts as a router. The battery power and the bandwidth are very scarce resources in this network. The network lifetime and connectivity of nodes depend on battery power. Therefore, energy is a valuable constraint which should be efficiently used. In this paper we survey various energy efficient routing protocols. The energy efficient routing protocols are classified on the basis of approaches they use to minimize the energy consumption. The purpose of this paper is to facilitate the research work and combine the existing solution and to develop a more energy efficient routing mechanism.

Keywords: Delaunay Triangulation, deployment, energy efficiency, MANET.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
3743 Data Traffic Dynamics and Saturation on a Single Link

Authors: Reginald D. Smith

Abstract:

The dynamics of User Datagram Protocol (UDP) traffic over Ethernet between two computers are analyzed using nonlinear dynamics which shows that there are two clear regimes in the data flow: free flow and saturated. The two most important variables affecting this are the packet size and packet flow rate. However, this transition is due to a transcritical bifurcation rather than phase transition in models such as in vehicle traffic or theorized large-scale computer network congestion. It is hoped this model will help lay the groundwork for further research on the dynamics of networks, especially computer networks.

Keywords: congestion, packet flow, Internet, traffic dynamics, transcritical bifurcation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
3742 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotiv EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: Brain Computer Interface (BCI), Electroencephalogram (EEG), EEGLab, BCILab, Emotiv, Emotions, Interval features, Spectral features, Artificial Neural Network, Control applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5297
3741 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836
3740 Performance Evaluation of Complex Valued Neural Networks Using Various Error Functions

Authors: Anita S. Gangal, P. K. Kalra, D. S. Chauhan

Abstract:

The backpropagation algorithm in general employs quadratic error function. In fact, most of the problems that involve minimization employ the Quadratic error function. With alternative error functions the performance of the optimization scheme can be improved. The new error functions help in suppressing the ill-effects of the outliers and have shown good performance to noise. In this paper we have tried to evaluate and compare the relative performance of complex valued neural network using different error functions. During first simulation for complex XOR gate it is observed that some error functions like Absolute error, Cauchy error function can replace Quadratic error function. In the second simulation it is observed that for some error functions the performance of the complex valued neural network depends on the architecture of the network whereas with few other error functions convergence speed of the network is independent of architecture of the neural network.

Keywords: Complex backpropagation algorithm, complex errorfunctions, complex valued neural network, split activation function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
3739 Classifier Based Text Mining for Neural Network

Authors: M. Govindarajan, R. M. Chandrasekaran

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.

Keywords: Back propagation, classification accuracy, textmining, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4217
3738 Performance Evaluation of Routing Protocols For High Density Ad Hoc Networks based on Qos by GlomoSim Simulator

Authors: E. Ahvar, M. Fathy

Abstract:

Ad hoc networks are characterized by multihop wireless connectivity, frequently changing network topology and the need for efficient dynamic routing protocols. We compare the performance of three routing protocols for mobile ad hoc networks: Dynamic Source Routing (DSR) , Ad Hoc On-Demand Distance Vector Routing (AODV), location-aided routing(LAR1).The performance differentials are analyzed using varying network load, mobility, and network size. We simulate protocols with GLOMOSIM simulator. Based on the observations, we make recommendations about when the performance of either protocol can be best.

Keywords: Ad hoc Network , Glomosim , routing protocols.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
3737 Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil

Authors: F. Rasi Maezabadi, M. Masdari, M. R. Soltani

Abstract:

Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.

Keywords: Airfoil, experimental, GRNN, Neural Network, Plunging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655
3736 Automated Textile Defect Recognition System Using Computer Vision and Artificial Neural Networks

Authors: Atiqul Islam, Shamim Akhter, Tumnun E. Mursalin

Abstract:

Least Development Countries (LDC) like Bangladesh, whose 25% revenue earning is achieved from Textile export, requires producing less defective textile for minimizing production cost and time. Inspection processes done on these industries are mostly manual and time consuming. To reduce error on identifying fabric defects requires more automotive and accurate inspection process. Considering this lacking, this research implements a Textile Defect Recognizer which uses computer vision methodology with the combination of multi-layer neural networks to identify four classifications of textile defects. The recognizer, suitable for LDC countries, identifies the fabric defects within economical cost and produces less error prone inspection system in real time. In order to generate input set for the neural network, primarily the recognizer captures digital fabric images by image acquisition device and converts the RGB images into binary images by restoration process and local threshold techniques. Later, the output of the processed image, the area of the faulty portion, the number of objects of the image and the sharp factor of the image, are feed backed as an input layer to the neural network which uses back propagation algorithm to compute the weighted factors and generates the desired classifications of defects as an output.

Keywords: Computer vision, image acquisition device, machine vision, multi-layer neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3298
3735 Implementation and Demonstration of Software-Defined Traffic Grooming

Authors: Lei Guo, Xu Zhang, Weigang Hou

Abstract:

Since the traditional network is closed and it has no architecture to create applications, it has been unable to evolve with changing demands under the rapid innovation in services. Additionally, due to the lack of the whole network profile, the quality of service cannot be well guaranteed in the traditional network. The Software Defined Network (SDN) utilizes global resources to support on-demand applications/services via open, standardized and programmable interfaces. In this paper, we implement the traffic grooming application under a real SDN environment, and the corresponding analysis is made. In our SDN: 1) we use OpenFlow protocol to control the entire network by using software applications running on the network operating system; 2) several virtual switches are combined into the data forwarding plane through Open vSwitch; 3) An OpenFlow controller, NOX, is involved as a logically centralized control plane that dynamically configures the data forwarding plane; 4) The traffic grooming based on SDN is demonstrated through dynamically modifying the idle time of flow entries. The experimental results demonstrate that the SDN-based traffic grooming effectively reduces the end-to-end delay, and the improvement ratio arrives to 99%.

Keywords: NOX, OpenFlow, software defined network, traffic grooming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
3734 Svision: Visual Identification of Scanning and Denial of Service Attacks

Authors: Iosif-Viorel Onut, Bin Zhu, Ali A. Ghorbani

Abstract:

We propose a novel graphical technique (SVision) for intrusion detection, which pictures the network as a community of hosts independently roaming in a 3D space defined by the set of services that they use. The aim of SVision is to graphically cluster the hosts into normal and abnormal ones, highlighting only the ones that are considered as a threat to the network. Our experimental results using DARPA 1999 and 2000 intrusion detection and evaluation datasets show the proposed technique as a good candidate for the detection of various threats of the network such as vertical and horizontal scanning, Denial of Service (DoS), and Distributed DoS (DDoS) attacks.

Keywords: Anomaly Visualization, Network Security, Intrusion Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
3733 Design of Local Interconnect Network Controller for Automotive Applications

Authors: Jong-Bae Lee, Seongsoo Lee

Abstract:

Local interconnect network (LIN) is a communication protocol that combines sensors, actuators, and processors to a functional module in automotive applications. In this paper, a LIN ver. 2.2A controller was designed in Verilog hardware description language (Verilog HDL) and implemented in field-programmable gate array (FPGA). Its operation was verified by making full-scale LIN network with the presented FPGA-implemented LIN controller, commercial LIN transceivers, and commercial processors. When described in Verilog HDL and synthesized in 0.18 μm technology, its gate size was about 2,300 gates.

Keywords: Local interconnect network, controller, transceiver, processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586
3732 Efficient System for Speech Recognition using General Regression Neural Network

Authors: Abderrahmane Amrouche, Jean Michel Rouvaen

Abstract:

In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural network (GRNN). The relative performances of the proposed model are compared to the similar recognition systems based on the Multilayer Perceptron (MLP), the Recurrent Neural Network (RNN) and the well known Discrete Hidden Markov Model (HMM-VQ) that we have achieved also. Experimental results obtained with Arabic digits have shown that the use of nonparametric density estimation with an appropriate smoothing factor (spread) improves the generalization power of the neural network. The word error rate (WER) is reduced significantly over the baseline HMM method. GRNN computation is a successful alternative to the other neural network and DHMM.

Keywords: Speech Recognition, General Regression NeuralNetwork, Hidden Markov Model, Recurrent Neural Network, ArabicDigits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
3731 On The Analysis of a Compound Neural Network for Detecting Atrio Ventricular Heart Block (AVB) in an ECG Signal

Authors: Salama Meghriche, Amer Draa, Mohammed Boulemden

Abstract:

Heart failure is the most common reason of death nowadays, but if the medical help is given directly, the patient-s life may be saved in many cases. Numerous heart diseases can be detected by means of analyzing electrocardiograms (ECG). Artificial Neural Networks (ANN) are computer-based expert systems that have proved to be useful in pattern recognition tasks. ANN can be used in different phases of the decision-making process, from classification to diagnostic procedures. This work concentrates on a review followed by a novel method. The purpose of the review is to assess the evidence of healthcare benefits involving the application of artificial neural networks to the clinical functions of diagnosis, prognosis and survival analysis, in ECG signals. The developed method is based on a compound neural network (CNN), to classify ECGs as normal or carrying an AtrioVentricular heart Block (AVB). This method uses three different feed forward multilayer neural networks. A single output unit encodes the probability of AVB occurrences. A value between 0 and 0.1 is the desired output for a normal ECG; a value between 0.1 and 1 would infer an occurrence of an AVB. The results show that this compound network has a good performance in detecting AVBs, with a sensitivity of 90.7% and a specificity of 86.05%. The accuracy value is 87.9%.

Keywords: Artificial neural networks, Electrocardiogram(ECG), Feed forward multilayer neural network, Medical diagnosis, Pattern recognitionm, Signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
3730 Training Radial Basis Function Networks with Differential Evolution

Authors: Bing Yu , Xingshi He

Abstract:

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

Keywords: differential evolution, neural network, Rbf function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
3729 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: Android malware detection, software-defined network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 925
3728 A Framework for the Design of Green Giga Passive Optical Fiber Access Network in Kuwait

Authors: Ali A. Hammadi

Abstract:

In this work, a practical study on a commissioned Giga Passive Optical Network (GPON) fiber to the home access network in Kuwait is presented. The work covers the framework of the conceptual design of the deployed Passive Optical Networks (PONs), access network, optical fiber cable network distribution, technologies, and standards. The work also describes methodologies applied by system engineers for design of Optical Network Terminals (ONTs) and Optical Line Terminals (OLTs) transceivers with respect to the distance, operating wavelengths, splitting ratios. The results have demonstrated and justified the limitation of transmission distance of a PON link in Fiber to The Premises (FTTP) to not exceed 20 km. Optical Time Domain Reflector (OTDR) test has been carried for this project to confirm compliance with International Telecommunication Union (ITU) specifications regarding the total length of the deployed optical cable, total loss in dB, and loss per km in dB/km with respect to the operating wavelengths. OTDR test results with traces for segments of implemented fiber network will be provided and discussed.

Keywords: Passive optical networks, fiber to the premises, access network, OTDR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1067
3727 Inverse Problem Methodology for the Measurement of the Electromagnetic Parameters Using MLP Neural Network

Authors: T. Hacib, M. R. Mekideche, N. Ferkha

Abstract:

This paper presents an approach which is based on the use of supervised feed forward neural network, namely multilayer perceptron (MLP) neural network and finite element method (FEM) to solve the inverse problem of parameters identification. The approach is used to identify unknown parameters of ferromagnetic materials. The methodology used in this study consists in the simulation of a large number of parameters in a material under test, using the finite element method (FEM). Both variations in relative magnetic permeability and electrical conductivity of the material under test are considered. Then, the obtained results are used to generate a set of vectors for the training of MLP neural network. Finally, the obtained neural network is used to evaluate a group of new materials, simulated by the FEM, but not belonging to the original dataset. Noisy data, added to the probe measurements is used to enhance the robustness of the method. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.

Keywords: Inverse problem, MLP neural network, parametersidentification, FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
3726 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery

Authors: Colette Malyack, Pius Egbelu

Abstract:

Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.

Keywords: Network planning, Last Mile Delivery, LMD, omnichannel delivery network, omnichannel logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 665
3725 Applications of Stable Distributions in Time Series Analysis, Computer Sciences and Financial Markets

Authors: Mohammad Ali Baradaran Ghahfarokhi, Parvin Baradaran Ghahfarokhi

Abstract:

In this paper, first we introduce the stable distribution, stable process and theirs characteristics. The a -stable distribution family has received great interest in the last decade due to its success in modeling data, which are too impulsive to be accommodated by the Gaussian distribution. In the second part, we propose major applications of alpha stable distribution in telecommunication, computer science such as network delays and signal processing and financial markets. At the end, we focus on using stable distribution to estimate measure of risk in stock markets and show simulated data with statistical softwares.

Keywords: stable distribution, SaS, infinite variance, heavy tail networks, VaR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060
3724 Understanding the Selectional Preferences of the Twitter Mentions Network

Authors: R. Sudhesh Solomon, P. Y. K. L. Srinivas, Abhay Narayan, Amitava Das

Abstract:

Users in social networks either unicast or broadcast their messages. At mention is the popular way of unicasting for Twitter whereas general tweeting could be considered as broadcasting method. Understanding the information flow and dynamics within a Social Network and modeling the same is a promising and an open research area called Information Diffusion. This paper seeks an answer to a fundamental question - understanding if the at-mention network or the unicasting pattern in social media is purely random in nature or is there any user specific selectional preference? To answer the question we present an empirical analysis to understand the sociological aspects of Twitter mentions network within a social network community. To understand the sociological behavior we analyze the values (Schwartz model: Achievement, Benevolence, Conformity, Hedonism, Power, Security, Self-Direction, Stimulation, Traditional and Universalism) of all the users. Empirical results suggest that values traits are indeed salient cue to understand how the mention-based communication network functions. For example, we notice that individuals possessing similar values unicast among themselves more often than with other value type people. We also observe that traditional and self-directed people do not maintain very close relationship in the network with the people of different values traits.

Keywords: Social network analysis, information diffusion, personality and values, Twitter Mentions Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 746
3723 Face Recognition with PCA and KPCA using Elman Neural Network and SVM

Authors: Hossein Esbati, Jalil Shirazi

Abstract:

In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained.

Keywords: Face recognition, Principal Component Analysis, Kernel Principal Component Analysis, Neural network, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
3722 Application of BP Neural Network Model in Sports Aerobics Performance Evaluation

Authors: Shuhe Shao

Abstract:

This article provides partial evaluation index and its standard of sports aerobics, including the following 12 indexes: health vitality, coordination, flexibility, accuracy, pace, endurance, elasticity, self-confidence, form, control, uniformity and musicality. The three-layer BP artificial neural network model including input layer, hidden layer and output layer is established. The result shows that the model can well reflect the non-linear relationship between the performance of 12 indexes and the overall performance. The predicted value of each sample is very close to the true value, with a relative error fluctuating around of 5%, and the network training is successful. It shows that BP network has high prediction accuracy and good generalization capacity if being applied in sports aerobics performance evaluation after effective training.

Keywords: BP neural network, sports aerobics, performance, evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
3721 Impact of Network Workload between Virtualization Solutions on a Testbed Environment for Cybersecurity Learning

Authors: K´evin Fernagut, Olivier Flauzac, Erick M. Gallegos R, Florent Nolot

Abstract:

The adoption of modern lightweight virtualization often comes with new threats and network vulnerabilities. This paper seeks to assess this with a different approach studying the behavior of a testbed built with tools such as Kernel-based Virtual Machine (KVM), LinuX Containers (LXC) and Docker, by performing stress tests within a platform where students experiment simultaneously with cyber-attacks, and thus observe the impact on the campus network and also find the best solution for cyber-security learning. Interesting outcomes can be found in the literature comparing these technologies. It is, however, difficult to find results of the effects on the global network where experiments are carried out. Our work shows that other physical hosts and the faculty network were impacted while performing these trials. The problems found are discussed, as well as security solutions and the adoption of new network policies.

Keywords: Containerization, containers, cyber-security, cyber-attacks, isolation, performance, security, virtualization, virtual machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 565
3720 The New AIMD Congestion Control Algorithm

Authors: Hayder Natiq Jasem, Zuriati Ahmad Zukarnain, Mohamed Othman, Shamala Subramaniam

Abstract:

Congestion control is one of the fundamental issues in computer networks. Without proper congestion control mechanisms there is the possibility of inefficient utilization of resources, ultimately leading to network collapse. Hence congestion control is an effort to adapt the performance of a network to changes in the traffic load without adversely affecting users perceived utilities. AIMD (Additive Increase Multiplicative Decrease) is the best algorithm among the set of liner algorithms because it reflects good efficiency as well as good fairness. Our control model is based on the assumption of the original AIMD algorithm; we show that both efficiency and fairness of AIMD can be improved. We call our approach is New AIMD. We present experimental results with TCP that match the expectation of our theoretical analysis.

Keywords: Congestion control, Efficiency, Fairness, TCP, AIMD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
3719 A Compact Pi Network for Reducing Bit Error Rate in Dispersive FIR Channel Noise Model

Authors: Kavita Burse, R.N. Yadav, S.C. Shrivastava, Vishnu Pratap Singh Kirar

Abstract:

During signal transmission, the combined effect of the transmitter filter, the transmission medium, and additive white Gaussian noise (AWGN) are included in the channel which distort and add noise to the signal. This causes the well defined signal constellation to spread causing errors in bit detection. A compact pi neural network with minimum number of nodes is proposed. The replacement of summation at each node by multiplication results in more powerful mapping. The resultant pi network is tested on six different channels.

Keywords: Additive white Gaussian noise, digitalcommunication system, multiplicative neuron, Pi neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667