Search results for: learning disabilities.
86 Investigation of Possible Behavioural and Molecular Effects of Mobile Phone Exposure on Rats
Authors: Ç. Gökçek-Saraç, Ş. Özen, N. Derin
Abstract:
The N-methyl-D-aspartate (NMDA)-dependent pathway is the major intracellular signaling pathway implemented in both short- and long-term memory formation in the hippocampus which is the most studied brain structure because of its well documented role in learning and memory. However, little is known about the effects of RF-EMR exposure on NMDA receptor signaling pathway including activation of protein kinases, notably Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα). The aim of the present study was to investigate the effects of acute and chronic 900 MHz RF-EMR exposure on both passive avoidance behaviour and hippocampal levels of CaMKIIα and its phosphorylated form (pCaMKIIα). Rats were divided into the following groups: Sham rats, and rats exposed to 900 MHz RF-EMR for 2 h/day for 1 week (acute group) or 10 weeks (chronic group), respectively. Passive avoidance task was used as a behavioural method. The hippocampal levels of selected kinases were measured using Western Blotting technique. The results of passive avoidance task showed that both acute and chronic exposure to 900 MHz RF-EMR can impair passive avoidance behaviour with minor effects on chronic group of rats. The analysis of western blot data of selected protein kinases demonstrated that hippocampal levels of CaMKIIα and pCaMKIIα were significantly higher in chronic group of rats as compared to acute groups. Taken together, these findings demonstrated that different duration times (1 week vs 10 weeks) of 900 MHz RF-EMR exposure have different effects on both passive avoidance behaviour of rats and hippocampal levels of selected protein kinases.
Keywords: Hippocampus, protein kinase, rat, RF-EMR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 86885 Equity and Diversity in Bangladesh’s Primary Education: Struggling Indigenous Children
Authors: Md Rabiul Islam, Ben Wadham
Abstract:
This paper describes how indigenous students face challenges with various school activities due to inadequate equity and diversity principles in mainstream primary schools in Bangladesh. This study focuses on indigenous students’ interactions with mainstream class teachers and students through teaching-learning activities at public primary schools. Ethnographic research methods guided data collection under a case study methodology in Chittagong Hill Tracts (CHTs) region where maximum indigenous peoples’ inhabitants. The participants (class teachers) shared information through in-depth interviews about their experiences in the four selecting schools. The authors also observed the effects of school activities by use of equity and diversity lens for indigenous students’ situations in those schools. The authors argue that the socio-economic situations of indigenous families are not supportive of the educational development of their children. Similarly, the Bangladesh government does not have enough initiative programs based on equity and diversity principles for fundamental education of indigenous children at rural schools level. Besides this, the conventional teaching system cannot improve the diversification among the students in classrooms. The principles of equity and diversity are not well embedded in professional development of teachers, and using teaching materials in classrooms. The findings suggest that implementing equitable education; there are needed to arrange teachers’ education with equitable knowledge and introducing diversified teaching materials, and implementing teaching through students centered activities that promote the diversification among the multicultural students.
Keywords: Case study research, equity and diversity, Indigenous children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183584 Automated Fact-Checking By Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state of the art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study presents a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive and authoritative data; 2) developing a search function to automatically select relevant, new and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that: 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graph in Wikidata to dynamically augment the representations of claims and references without introducing too much noises; II) exploring semantic relations in claims and references to further enhance fact-checking.
Keywords: Fact checking, claim verification, Deep Learning, Natural Language Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7983 A Corporate Social Responsibility Project to Improve the Democratization of Scientific Education in Brazil
Authors: Denise Levy
Abstract:
Nuclear technology is part of our everyday life and its beneficial applications help to improve the quality of our lives. Nevertheless, in Brazil, most often the media and social networks tend to associate radiation to nuclear weapons and major accidents, and there is still great misunderstanding about the peaceful applications of nuclear science. The Educational Portal Radioatividades (Radioactivities) is a corporate social responsibility initiative that takes advantage of the growing impact of Internet to offer high quality scientific information for teachers and students throughout Brazil. This web-based initiative focusses on the positive applications of nuclear technology, presenting the several contributions of ionizing radiation in different contexts, such as nuclear medicine, agriculture techniques, food safety and electric power generation, proving nuclear technology as part of modern life and a must to improve the quality of our lifestyle. This educational project aims to contribute for democratization of scientific education and social inclusion, approaching society to scientific knowledge, promoting critical thinking and inspiring further reflections. The website offers a wide variety of ludic activities such as curiosities, interactive exercises and short courses. Moreover, teachers are offered free web-based material with full instructions to be developed in class. Since year 2013, the project has been developed and improved according to a comprehensive study about the realistic scenario of ICTs infrastructure in Brazilian schools and in full compliance with the best e-learning national and international recommendations.
Keywords: Information and communication technologies, nuclear technology, science communication, society and education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 121582 COVID_ICU_BERT: A Fine-tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as physiological vital signs, images and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful to influence the judgement of clinical sentiment in ICU clinical notes. This paper presents two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of a clinical transformer model that can reliably predict clinical sentiment for notes of COVID patients in ICU. We train the model on clinical notes for COVID-19 patients, ones not previously seen by Bio_ClinicalBERT or Bio_Discharge_Summary_BERT. The model which was based on Bio_ClinicalBERT achieves higher predictive accuracy than the one based on Bio_Discharge_Summary_BERT (Acc 93.33%, AUC 0.98, and Precision 0.96). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and Precision 0.92).
Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27481 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection
Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi
Abstract:
It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.
Keywords: Ensemble, hybrid, filter-wrapper, phishing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17680 Exploring SL Writing and SL Sensitivity during Writing Tasks: Poor and Advanced Writing in a Context of Second Language Other than English
Authors: S. Figueiredo, M. Alves Martins, C. Silva, C. Simões
Abstract:
This study integrates a larger research empirical project that examines second language (SL) learners’ profiles and valid procedures to perform complete and diagnostic assessment in schools. 102 learners of Portuguese as a SL aged 7 and 17 years speakers of distinct home languages were assessed in several linguistic tasks. In this article, we focused on writing performance in the specific task of narrative essay composition. The written outputs were measured using the score in six components adapted from an English SL assessment context (Alberta Education): linguistic vocabulary, grammar, syntax, strategy, socio-linguistic, and discourse. The writing processes and strategies in Portuguese language used by different immigrant students were analysed to determine features and diversity of deficits on authentic texts performed by SL writers. Differentiated performance was based on the diversity of the following variables: grades, previous schooling, home language, instruction in first language, and exposure to Portuguese as Second Language. Indo-Aryan languages speakers showed low writing scores compared to their peers and the type of language and respective cognitive mapping (such as Mandarin and Arabic) was the predictor, not linguistic distance. Home language instruction should also be prominently considered in further research to understand specificities of cognitive academic profile in a Romance languages learning context. Additionally, this study also examined the teachers’ representations that will be here addressed to understand educational implications of second language teaching in psychological distress of different minorities in schools of specific host countries.Keywords: Second language, writing assessment, home language, immigrant students, Portuguese language.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195779 International Tourists’ Travel Motivation by Push-Pull Factors and the Decision Making for Selecting Thailand as Destination Choice
Authors: Siripen Yiamjanya, Kevin Wongleedee
Abstract:
This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.
Keywords: Decision Making, Destination Choice, International Tourist, Pull Factor, Push Factor, Thailand, Travel Motivation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638278 Amelioration of Cardiac Arrythmias Classification Performance Using Artificial Neural Network, Adaptive Neuro-Fuzzy and Fuzzy Inference Systems Classifiers
Authors: Alexandre Boum, Salomon Madinatou
Abstract:
This paper aims at bringing a scientific contribution to the cardiac arrhythmia biomedical diagnosis systems; more precisely to the study of the amelioration of cardiac arrhythmia classification performance using artificial neural network, adaptive neuro-fuzzy and fuzzy inference systems classifiers. The purpose of this amelioration is to enable cardiologists to make reliable diagnosis through automatic cardiac arrhythmia analyzes and classifications based on high confidence classifiers. In this study, six classes of the most commonly encountered arrhythmias are considered: the Right Bundle Branch Block, the Left Bundle Branch Block, the Ventricular Extrasystole, the Auricular Extrasystole, the Atrial Fibrillation and the Normal Cardiac rate beat. From the electrocardiogram (ECG) extracted parameters, we constructed a matrix (360x360) serving as an input data sample for the classifiers based on neural networks and a matrix (1x6) for the classifier based on fuzzy logic. By varying three parameters (the quality of the neural network learning, the data size and the quality of the input parameters) the automatic classification permitted us to obtain the following performances: in terms of correct classification rate, 83.6% was obtained using the fuzzy logic based classifier, 99.7% using the neural network based classifier and 99.8% for the adaptive neuro-fuzzy based classifier. These results are based on signals containing at least 360 cardiac cycles. Based on the comparative analysis of the aforementioned three arrhythmia classifiers, the classifiers based on neural networks exhibit a better performance.
Keywords: Adaptive neuro-fuzzy, artificial neural network, cardiac arrythmias, fuzzy inference systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70577 On the Perceived Awareness of Physical Education Teachers on Adoptable ICTs for PE
Authors: Tholokuhle T. Ntshakala, Seraphin D. Eyono Obono
Abstract:
Nations are still finding it quite difficult to win mega sport competitions despite the major contribution of sport to society in terms of social and economic development, personal health, and in education. Even though the world of sports has been transformed into a huge global economy, it is important to note that the first step of sport is usually its introduction to children at school through physical education or PE. In other words, nations who do not win mega sport competitions also suffer from a weak and neglected PE system. This problem of the neglect of PE systems is the main motivation of this research aimed at examining the factors affecting the perceived awareness of physical education teachers on the ICTs that are adoptable for the teaching and learning of physical education. Two types of research objectives will materialize this aim: relevant theories will be identified in relation to the analysis of the perceived ICT awareness of PE teachers and subsequent models will be compiled and designed from existing literature; the empirical testing of such theories and models will also be achieved through the survey of PE teachers from the Camperdown magisterial district of the KwaZulu-Natal province of South Africa. The main hypothesis at the heart of this study is the relationship between the demographics of PE teachers, their behavior both as individuals and as social entities, and their perceived awareness of the ICTs that are adoptable for PE, as postulated by existing literature; except that this study categorizes human behavior under performance expectancy, computer attitude, and social influence. This hypothesis was partially confirmed by the survey conducted by this research in the sense that performance expectancy and teachers’ age, gender, computer usage, and class size were found to be the only factors affecting their awareness of ICTs for physical education.
Keywords: Human Behavior, ICT Awareness, Physical Education, Teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195276 Revitalisation of Indigenous Food in Africa through Print and Electronic Media
Authors: Adebisi. Elizabeth, Banjo
Abstract:
Language and culture are interwoven that they cannot be separated, for the knowledge of a language cannot be complete without having the culture of the language. Indigenous food is a cultural aspect of any language that is expected to be acquired by all the speakers of the language. Indigenous food is known to be vital right from early years, which is also attributed to the healthy living of the ancient people. However it is discovered that the indigenous food is almost being replaced by fast food products such as Indomie noodles, Spaghetti and Macaroni to the extent that majority of the young folks prefer the eating of the fast foods and cannot prepare the indigenous foods which are good for growth and healthy living of people. Therefore, there is need to revitalize and re-educate people on the indigenous food which is an aspect of inter-cultural education of any language to prevent it from being forgotten or neglected.
African foods are many, but this study focused on Nigerian food using some Yoruba dishes as a case study. Examples of Yoruba dishes are pounded yam and melon with vegetable and dried fish soup, beans pudding (moin moin) and pap (eko), water yam pudding with fish and meat (ikokore) and many more. The ingredients needed for the preparation of these indigenous foods contain some basic food nutrients which will be analyzed and their nutritional importance to human bodies will also be discussed.
The process of re- awakening the education of indigenous food to the present and up-coming generation should be via print and electronic media in form of advertisements on posters, billboards, calendars and in rhymes on television programs, radio presentations, video tapes and CD–ROM apart from classroom teaching and learning. Indigenous food is a panacea to healthy living and longevity, a prevention of diseases and a means of accelerated healing of the body through natural foods.
Keywords: Indigenous food, print and electronic media, nutritional values, re-awakening education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219375 Primary School Teachers’ Conceptual and Procedural Knowledge of Rational Number and Its Effects on Pupils’ Achievement in Rational Numbers
Authors: R. M. Kashim
Abstract:
The study investigated primary school teachers’ conceptual and procedural knowledge of rational numbers and its effects on pupil’s achievement in rational numbers. Specifically, primary school teachers’ level of conceptual knowledge about rational numbers, primary school teachers’ level of procedural knowledge about rational numbers, and the effects of teachers conceptual and procedural knowledge on their pupils understanding of rational numbers in primary schools is investigated. The study was carried out in Bauchi metropolis in the Bauchi state of Nigeria. The design of the study was a multi-stage design. The first stage was a descriptive design. The second stage involves a pre-test, post-test only quasi-experimental design. Two instruments were used for the data collection in the study. These were Conceptual and Procedural knowledge test (CPKT) and Rational number achievement test (RAT), the population of the study comprises of three (3) mathematics teachers’ holders of Nigerian Certificate in Education (NCE) teaching primary six and 210 pupils in their intact classes were used for the study. The data collected were analyzed using mean, standard deviation, analysis of variance, analysis of covariance and t- test. The findings indicated that the pupils taught rational number by a teacher that has high conceptual and procedural knowledge understand and perform better than the pupil taught by a teacher who has low conceptual and procedural knowledge of rational number. It is, therefore, recommended that teachers in primary schools should be encouraged to enrich their conceptual knowledge of rational numbers. Also, the superiority performance of teachers in procedural knowledge in rational number should not become an obstruction of understanding. Teachers Conceptual and procedural knowledge of rational numbers should be balanced so that primary school pupils will have a view of better teaching and learning of rational number in our contemporary schools.Keywords: Achievement, conceptual knowledge, procedural knowledge, rational numbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88574 The Social Area Disclosure to Reduce Conflicts between Community and the State: A Case of Mahakan Fortress, Bangkok
Authors: Saowapa Phaithayawat
Abstract:
The purposes of this study are 1) to study the over 20-year attempt of Mahakan fort community to negotiate with Bangkok Metropolitan Administration (BMA) to remain in their residential area belonging to the state, and 2) to apply the new social and cultural dimension between the state and the community as an alternative for local participation in keeping their residential area. This is a qualitative research, and the findings reveal that the community claimed their ancestors’ right as owners of this piece of land for over 200 years. The community, therefore, requested to take part in the preservation of land, culture and local intellect and the area management in terms of being a learning resource on the cultural road in Rattanakosin Island. However, BMA imposed the law concerning the community area relocation in Rattanakosin Island. The result of law enforcement led to the failure of the area relocation, and the hard hit on physical structure of the area including the overall deterioration of the cultural road renovated in the year 1982, the 200 years’ celebration of Bangkok. The enforcement of law by the state required the move of the community, and the landscape improvement based on the capital city plan. However, this enforcement resulted in the unending conflicts between the community and the state, and the solution of this problem was unclear. At the same time the community has spent a long time opposing the state’s action, and preparing themselves by administrating the community behind Mahakan fortress with community administrative committee under the suggestion of external organization by registering all community members, providing funds for community administration. At the meantime the state lacked the continuation of the enforcement due to political problem and BMA’s administration problem. It is, therefore, suggested that an alternative solution to this problem lie at the negotiation between the state and the community with the purpose of the collaboration between the two to develop the area under the protective law of each side.
Keywords: Pom-Mahakan Community, The Reduction of Conflicts, The Social Area Disclosure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176073 Factors Affecting Students’ Performance in Chemistry: Case Study in Zanzibar Secondary Schools
Authors: Ahmed A. Hassan, Hassan I. Ali, Abdallah A. Salum, Asia M. Kassim, Yussuf N. Elmoge, Ali A. Amour
Abstract:
The purpose of this study was to investigate the performance of chemistry in Zanzibar Secondary Schools. It was conducted in all regions of Zanzibar in public and private secondary schools and Ministry of Education officials. The objective of the study included finding out causes of poor performance in chemistry. Views, opinions, and suggestions of teachers and students to improve performance of chemistry and a descriptive survey was adopted for the study. 45 teachers and 200 students were randomly sampled from 15 secondary schools in Zanzibar and ten Ministry of Education officials were purposively sampled for the study. Questionnaires and open-ended interview schedules were the main instruments used in obtaining relevant data from respondents. Data collected from the field was analyzed both qualitatively and quantitatively. Qualitative analysis involved content analysis of the responses obtained through interviews and quantitative analysis involved generation of tables, frequencies and percentages. The results revealed that there were shortages of trained teachers, lack of proficiency in the language of instruction (English) and major facilities like laboratories and books. These led to poor delivery of subject matter and consequently resulting in poor performance. Based on the findings, this study recommends that provision of trained, competent, and effective teachers as vital aspects to be considered. Government through Ministry of Education should put effort to stalk libraries and equip laboratories with modern books and instruments. In addition, the ministry should strengthen teachers’ training and encourage use of instructional media in class and make conducive learning environment to both teachers and students.
Keywords: Zanzibar, secondary schools, chemistry, science, performance and factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 728872 The COVID-19 Pandemic: Lessons Learned in Promoting Student Internationalisation
Authors: David Cobham
Abstract:
In higher education, a great degree of importance is placed on the internationalisation of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks, and connections and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment, through learning approaches, assessment methods and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country either to study, to work, to volunteer or to gain cultural and social enhancement has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience and adopting collaborative on-line projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learnt and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways, and that they will persist beyond the present to become part of the "new normal" for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.
Keywords: Trans-national education, internationalisation, higher education management, virtual mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 96771 Clustering for Detection of Population Groups at Risk from Anticholinergic Medication
Authors: Amirali Shirazibeheshti, Tarik Radwan, Alireza Ettefaghian, Farbod Khanizadeh, George Wilson, Cristina Luca
Abstract:
Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. This work evaluates the association between the average risk score and measures of socioeconomic status (index of multiple deprivation) and health (index of health and disability). The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, suggesting that females are more at risk from this kind of multiple medication. The risk may be monitored and controlled in a healthcare management system that is well-equipped with tools implementing appropriate techniques of artificial intelligence.
Keywords: Anticholinergic medication, socioeconomic status, deprivation, clustering, risk analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106870 Modelling and Dimension Analysis of a Multipurpose Convertible Laptop Table Using Autodesk Fusion 360
Authors: Nitesh Pandey, Manish Kumar, Pankaj Gupta, Amit Kumar Srivastava
Abstract:
The convertible table is a versatile and adaptable item designed to provide numerous solutions in one. The design incorporates numerous features that offer both ease and functionality. The description of the versatile convertible table in this overview encompasses a range of features that can be tailored to accommodate various user requirements. With its changeable functionality, this piece can easily transform into a workstation, dining table, or coffee table to suit various needs. Significantly, this multipurpose convertible laptop table includes a specific section for electronic devices such as computers and tablets, offering convenience for remote workers and online learners. In addition, providing storage space for essential equipment promotes a tidy workspace by facilitating the organization of many items. The integrated flash system offers supplementary illumination for dimly lit surroundings, while the cooling fans prevent the table's surface from overheating in hot weather or during prolonged laptop usage, making it an optimal and superior choice for laptop users. In order to cater to the needs of students, painters, and other individuals who require writing tools on a regular basis, a pencil and pen stand is included, hence enhancing the versatility of the table. The scissor lift mechanism allows for easy modifications in height, making it convenient to customize usage and providing the option of using it as a standing desk. Overall, this convertible table exemplifies its ability to adapt, its user-friendly nature, and its usefulness in a wide range of situations and settings.
Keywords: Furniture design, laptop stand, study table, learning tool, furniture manufacturing, contemporary design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15469 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models
Authors: Danielle Shackley, Yetunde Folajimi
Abstract:
As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.
Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48568 CBIR Using Multi-Resolution Transform for Brain Tumour Detection and Stages Identification
Authors: H. Benjamin Fredrick David, R. Balasubramanian, A. Anbarasa Pandian
Abstract:
Image retrieval is the most interesting technique which is being used today in our digital world. CBIR, commonly expanded as Content Based Image Retrieval is an image processing technique which identifies the relevant images and retrieves them based on the patterns that are extracted from the digital images. In this paper, two research works have been presented using CBIR. The first work provides an automated and interactive approach to the analysis of CBIR techniques. CBIR works on the principle of supervised machine learning which involves feature selection followed by training and testing phase applied on a classifier in order to perform prediction. By using feature extraction, the image transforms such as Contourlet, Ridgelet and Shearlet could be utilized to retrieve the texture features from the images. The features extracted are used to train and build a classifier using the classification algorithms such as Naïve Bayes, K-Nearest Neighbour and Multi-class Support Vector Machine. Further the testing phase involves prediction which predicts the new input image using the trained classifier and label them from one of the four classes namely 1- Normal brain, 2- Benign tumour, 3- Malignant tumour and 4- Severe tumour. The second research work includes developing a tool which is used for tumour stage identification using the best feature extraction and classifier identified from the first work. Finally, the tool will be used to predict tumour stage and provide suggestions based on the stage of tumour identified by the system. This paper presents these two approaches which is a contribution to the medical field for giving better retrieval performance and for tumour stages identification.
Keywords: Brain tumour detection, content based image retrieval, classification of tumours, image retrieval.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77267 Artificial Intelligent in Optimization of Steel Moment Frame Structures: A Review
Authors: Mohsen Soori, Fooad Karimi Ghaleh Jough
Abstract:
The integration of Artificial Intelligence (AI) techniques in the optimization of steel moment frame structures represents a transformative approach to enhance the design, analysis, and performance of these critical engineering systems. The review encompasses a wide spectrum of AI methods, including machine learning algorithms, evolutionary algorithms, neural networks, and optimization techniques, applied to address various challenges in the field. The synthesis of research findings highlights the interdisciplinary nature of AI applications in structural engineering, emphasizing the synergy between domain expertise and advanced computational methodologies. This synthesis aims to serve as a valuable resource for researchers, practitioners, and policymakers seeking a comprehensive understanding of the state-of-the-art in AI-driven optimization for steel moment frame structures. The paper commences with an overview of the fundamental principles governing steel moment frame structures and identifies the key optimization objectives, such as efficiency of structures. Subsequently, it delves into the application of AI in the conceptual design phase, where algorithms aid in generating innovative structural configurations and optimizing material utilization. The review also explores the use of AI for real-time structural health monitoring and predictive maintenance, contributing to the long-term sustainability and reliability of steel moment frame structures. Furthermore, the paper investigates how AI-driven algorithms facilitate the calibration of structural models, enabling accurate prediction of dynamic responses and seismic performance. Thus, by reviewing and analyzing the recent achievements in applications artificial intelligent in optimization of steel moment frame structures, the process of designing, analysis, and performance of the structures can be analyzed and modified.
Keywords: Artificial Intelligent, optimization process, steel moment frame, structural engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23966 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.
Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13165 Dimensionality Reduction in Modal Analysis for Structural Health Monitoring
Authors: Elia Favarelli, Enrico Testi, Andrea Giorgetti
Abstract:
Autonomous structural health monitoring (SHM) of many structures and bridges became a topic of paramount importance for maintenance purposes and safety reasons. This paper proposes a set of machine learning (ML) tools to perform automatic feature selection and detection of anomalies in a bridge from vibrational data and compare different feature extraction schemes to increase the accuracy and reduce the amount of data collected. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric data in both standard and damaged conditions. The proposed framework starts from the first four fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by time-domain filtering (tracking). The fundamental frequencies extracted are then fed to a dimensionality reduction block implemented through two different approaches: feature selection (intelligent multiplexer) that tries to estimate the most reliable frequencies based on the evaluation of some statistical features (i.e., entropy, variance, kurtosis), and feature extraction (auto-associative neural network (ANN)) that combine the fundamental frequencies to extract new damage sensitive features in a low dimensional feature space. Finally, one-class classification (OCC) algorithms perform anomaly detection, trained with standard condition points, and tested with normal and anomaly ones. In particular, principal component analysis (PCA), kernel principal component analysis (KPCA), and autoassociative neural network (ANN) are presented and their performance are compared. It is also shown that, by evaluating the correct features, the anomaly can be detected with accuracy and an F1 score greater than 95%.
Keywords: Anomaly detection, dimensionality reduction, frequencies selection, modal analysis, neural network, structural health monitoring, vibration measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70764 Applying Resilience Engineering to improve Safety Management in a Construction Site: Design and Validation of a Questionnaire
Authors: M. C. Pardo-Ferreira, J. C. Rubio-Romero, M. Martínez-Rojas
Abstract:
Resilience Engineering is a new paradigm of safety management that proposes to change the way of managing the safety to focus on the things that go well instead of the things that go wrong. Many complex and high-risk sectors such as air traffic control, health care, nuclear power plants, railways or emergencies, have applied this new vision of safety and have obtained very positive results. In the construction sector, safety management continues to be a problem as indicated by the statistics of occupational injuries worldwide. Therefore, it is important to improve safety management in this sector. For this reason, it is proposed to apply Resilience Engineering to the construction sector. The Construction Phase Health and Safety Plan emerges as a key element for the planning of safety management. One of the key tools of Resilience Engineering is the Resilience Assessment Grid that allows measuring the four essential abilities (respond, monitor, learn and anticipate) for resilient performance. The purpose of this paper is to develop a questionnaire based on the Resilience Assessment Grid, specifically on the ability to learn, to assess whether a Construction Phase Health and Safety Plans helps companies in a construction site to implement this ability. The research process was divided into four stages: (i) initial design of a questionnaire, (ii) validation of the content of the questionnaire, (iii) redesign of the questionnaire and (iii) application of the Delphi method. The questionnaire obtained could be used as a tool to help construction companies to evolve from Safety-I to Safety-II. In this way, companies could begin to develop the ability to learn, which will serve as a basis for the development of the other abilities necessary for resilient performance. The following steps in this research are intended to develop other questions that allow evaluating the rest of abilities for resilient performance such as monitoring, learning and anticipating.
Keywords: Resilience engineering, construction sector, resilience assessment grid, construction phase health and safety plan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 100163 An Inclusion Project for Deaf Children into a Northern Italy Contest
Authors: G. Tamanza, A. Bossoni
Abstract:
84 deaf students (from primary school to college) and their families participated in this inclusion project in cooperation with numerous institutions in northern Italy (Brescia-Lombardy). Participants were either congenitally deaf or their deafness was related to other pathologies. This research promoted the integration of deaf students as they pass from primary school to high school to college. Learning methods and processes were studied that focused on encouraging individual autonomy and socialization. The research team and its collaborators included school teachers, speech therapists, psychologists and home tutors, as well as teaching assistants, child neuropsychiatrists and other external authorities involved with deaf persons social inclusion programs. Deaf children and their families were supported, in terms of inclusion, and were made aware of the research team that focused on the Bisogni Educativi Speciali (BES or Special Educational Needs) (L.170/2010 - DM 5669/2011). This project included a diagnostic and evaluative phase as well as an operational one. Results demonstrated that deaf children were highly satisfied and confident; academic performance improved and collaboration in school increased. Deaf children felt that they had access to high school and college. Empowerment for the families of deaf children in terms of networking among local services that deal with the deaf also improved while family satisfaction also improved. We found that teachers and those who gave support to deaf children increased their professional skills. Achieving autonomy, instrumental, communicative and relational abilities were also found to be crucial. Project success was determined by temporal continuity, clear theoretical methodology, strong alliance for the project direction and a resilient team response.
Keywords: Autonomy, inclusion, skills, well-being.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 118562 Ecoliteracy and Pedagogical Praxis in the Multidisciplinary University Greenhouse toward the Food Security Strengthening
Authors: Citlali Aguilera Lira, David Lynch Steinicke, Andrea León Garcia
Abstract:
One of the challenges that higher education faces is to find how to approach the sustainability in an inclusive way to the student within all the different academic areas, how to move the sustainable development from the abstract field to the operational field. This research comes from the ecoliteracy and the pedagogical praxis as tools for rebuilding the teaching processes inside of universities. The purpose is to determine and describe which are the factors involved in the process of learning particularly in the Greenhouse-School Siembra UV. In the Greenhouse-School Siembra UV, of the University of Veracruz, are cultivated vegetables, medicinal plants and small cornfields under the usage of eco-technologies such as hydroponics, Wickingbed and Hugelkultur, which main purpose is the saving of space, labor and natural resources, as well as function as agricultural production alternatives in the urban and periurban zones. The sample was formed with students from different academic areas and who are actively involved in the greenhouse, as well as institutes from the University of Veracruz and governmental and nongovernmental departments. This project comes from a pedagogic praxis approach, from filling the needs that the different professional profiles of the university students have. All this with the purpose of generate a pragmatic dialogue with the sustainability. It also comes from the necessity to understand the factors that intervene in the students’ praxis. In this manner is how the students are the fundamental unit in the sphere of sustainability. As a result, it is observed that those University of Veracruz students who are involved in the Greenhouse-school, Siembra UV, have enriched in different levels the sense of urban and periurban agriculture because of the diverse academic approaches they have and the interaction between them. It is concluded that the ecotechnologies act as fundamental tools for ecoliteracy in society, where it is strengthen the nutritional and food security from a sustainable development approach.Keywords: Farming eco-technologies, food security, multidisciplinary, pedagogical praxis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161361 Manodharmam: A Scientific Methodology for Improvisation and Cognition in Carnatic Music
Authors: Raghavi Janaswamy, Saraswathi K. Vasudev
Abstract:
Music is ubiquitous in human lives. Ever since the foetus hears the sound inside the mother’s womb and later upon birth the baby experiences alluring sounds, the curiosity of learning emanates and evokes exploration. Music is an education than a mere entertainment. The intricate balance between music, education and entertainment has well been recognized by the scientific community and is being explored as a viable tool to understand and improve the human cognition. There are seven basic swaras (notes) Sa, Ri, Ga, Ma, Pa, Da and Ni in the Carnatic music system that are analogous to C, D, E, F, G, A and B of the western system. The Carnatic music builds on the conscious use of microtones, gamakams (oscillation) and rendering styles that evolved over centuries and established its stance. The complex but erudite raga system has been designed with elaborate experiments on srutis (musical sounds) and human perception abilities. In parallel, ‘rasa’- the emotions evoked by certain srutis and hence the ragas been solidified along with the power of language in combination with the musical sounds. The Carnatic music branches out as Kalpita sangeetam (pre-composed music) and Manodharma sangeetam (improvised music). This article explores the Manodharma sangeetam and its subdivisions such as raga alapana, swara kalpana, neraval and ragam-tanam-pallavi (RTP). The intrinsic mathematical strategies in its practice methods toward improvising the music have been discussed in detail with concert examples. The techniques on swara weaving for swara kalpana rendering and methods on the alapana development are also discussed at length with an emphasis on the impact on the human cognitive abilities. The articulation of the outlined conscious practice methods not only helps to leave a long-lasting melodic impression on the listeners but also onsets cognitive developments.
Keywords: Carnatic, Manodharmam, music cognition, Alapana.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62960 Evaluating the Understanding of the University Students (Basic Sciences and Engineering) about the Numerical Representation of the Average Rate of Change
Authors: Saeid Haghjoo, Ebrahim Reyhani, Fahimeh Kolahdouz
Abstract:
The present study aimed to evaluate the understanding of the students in Tehran universities (Iran) about the numerical representation of the average rate of change based on the Structure of Observed Learning Outcomes (SOLO). In the present descriptive-survey research, the statistical population included undergraduate students (basic sciences and engineering) in the universities of Tehran. The samples were 604 students selected by random multi-stage clustering. The measurement tool was a task whose face and content validity was confirmed by math and mathematics education professors. Using Cronbach's Alpha criterion, the reliability coefficient of the task was obtained 0.95, which verified its reliability. The collected data were analyzed by descriptive statistics and inferential statistics (chi-squared and independent t-tests) under SPSS-24 software. According to the SOLO model in the prestructural, unistructural, and multistructural levels, basic science students had a higher percentage of understanding than that of engineering students, although the outcome was inverse at the relational level. However, there was no significant difference in the average understanding of both groups. The results indicated that students failed to have a proper understanding of the numerical representation of the average rate of change, in addition to missconceptions when using physics formulas in solving the problem. In addition, multiple solutions were derived along with their dominant methods during the qualitative analysis. The current research proposed to focus on the context problems with approximate calculations and numerical representation, using software and connection common relations between math and physics in the teaching process of teachers and professors.
Keywords: Average rate of change, context problems, derivative, numerical representation, SOLO taxonomy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75959 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452358 Evaluation of Pragmatic Information in an English Textbook: Focus on Requests
Authors: Israa A. Qari
Abstract:
Learning to request in a foreign language is a key ability within pragmatics language teaching. This paper examines how requests are taught in English Unlimited Book 3 (Cambridge University Press), an EFL textbook series employed by King Abdulaziz University in Jeddah, Saudi Arabia to teach advanced foundation year students English. The focus of analysis is the evaluation of the request linguistic strategies present in the textbook, frequency of the use of these strategies, and the contextual information provided on the use of these linguistic forms. The researcher collected all the linguistic forms which consisted of the request speech act and divided them into levels employing the CCSARP request coding manual. Findings demonstrated that simple and commonly employed request strategies are introduced. Looking closely at the exercises throughout the chapters, it was noticeable that the book exclusively employed the most direct form of requesting (the imperative) when giving learners instructions: e.g. listen, write, ask, answer, read, look, complete, choose, talk, think, etc. The book also made use of some other request strategies such as ‘hedged performatives’ and ‘query preparatory’. However, it was also found that many strategies were not dealt with in the book, specifically strategies with combined functions (e.g. possibility, ability). On a sociopragmatic level, a strong focus was found to exist on standard situations in which relations between the requester and requestee are clear. In general, contextual information was communicated implicitly only. The textbook did not seem to differentiate between formal and informal request contexts (register) which might consequently impel students to overgeneralize. The paper closes with some recommendations for textbook and curriculum designers. Findings are also contrasted with previous results from similar body of research on EFL requests.
Keywords: EFL, Requests, Saudi, speech acts, textbook evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45157 A Face-to-Face Education Support System Capable of Lecture Adaptation and Q&A Assistance Based On Probabilistic Inference
Authors: Yoshitaka Fujiwara, Jun-ichirou Fukushima, Yasunari Maeda
Abstract:
Keys to high-quality face-to-face education are ensuring flexibility in the way lectures are given, and providing care and responsiveness to learners. This paper describes a face-to-face education support system that is designed to raise the satisfaction of learners and reduce the workload on instructors. This system consists of a lecture adaptation assistance part, which assists instructors in adapting teaching content and strategy, and a Q&A assistance part, which provides learners with answers to their questions. The core component of the former part is a “learning achievement map", which is composed of a Bayesian network (BN). From learners- performance in exercises on relevant past lectures, the lecture adaptation assistance part obtains information required to adapt appropriately the presentation of the next lecture. The core component of the Q&A assistance part is a case base, which accumulates cases consisting of questions expected from learners and answers to them. The Q&A assistance part is a case-based search system equipped with a search index which performs probabilistic inference. A prototype face-to-face education support system has been built, which is intended for the teaching of Java programming, and this approach was evaluated using this system. The expected degree of understanding of each learner for a future lecture was derived from his or her performance in exercises on past lectures, and this expected degree of understanding was used to select one of three adaptation levels. A model for determining the adaptation level most suitable for the individual learner has been identified. An experimental case base was built to examine the search performance of the Q&A assistance part, and it was found that the rate of successfully finding an appropriate case was 56%.
Keywords: Bayesian network, face-to-face education, lecture adaptation, Q&A assistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357