Search results for: software agents
421 Analysis of Thermal Damping in Si Based Torsional Micromirrors
Authors: R. Resmi, M. R. Baiju
Abstract:
The thermal damping of a dynamic vibrating micromirror is an important factor affecting the design of MEMS based actuator systems. In the development process of new micromirror systems, assessing the extent of energy loss due to thermal damping accurately and predicting the performance of the system is very essential. In this paper, the depth of the thermal penetration layer at different eigenfrequencies and the temperature variation distributions surrounding a vibrating micromirror is analyzed. The thermal penetration depth corresponds to the thermal boundary layer in which energy is lost which is a measure of the thermal damping is found out. The energy is mainly dissipated in the thermal boundary layer and thickness of the layer is an important parameter. The detailed thermoacoustics is used to model the air domain surrounding the micromirror. The thickness of the boundary layer, temperature variations and thermal power dissipation are analyzed for a Si based torsional mode micromirror. It is found that thermal penetration depth decreases with eigenfrequency and hence operating the micromirror at higher frequencies is essential for reducing thermal damping. The temperature variations and thermal power dissipations at different eigenfrequencies are also analyzed. Both frequency-response and eigenfrequency analyses are done using COMSOL Multiphysics software.
Keywords: Eigen frequency analysis, micromirrors, thermal damping, thermoacoustic interactions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1059420 Analysis of Translational Ship Oscillations in a Realistic Environment
Authors: Chen Zhang, Bernhard Schwarz-Röhr, Alexander Härting
Abstract:
To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.
Keywords: Extended Kalman filter, nonlinear estimation, sea trial, ship motion estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052419 Fault and Theft Recognition Using Toro Dial Sensor in Programmable Current Relay for Feeder Security
Authors: R. Kamalakannan, N. Ravi Kumar
Abstract:
Feeder protection is important in transmission and distribution side because if any fault occurs in any feeder or transformer, man power is needed to identify the problem and it will take more time. In the existing system, directional overcurrent elements with load further secured by a load encroachment function can be used to provide necessary security and sensitivity for faults on remote points in a circuit. It is validated only in renewable plant collector circuit protection applications over a wide range of operating conditions. In this method, the directional overcurrent feeder protection is developed by using monitoring of feeder section through internet. In this web based monitoring, the fault and power theft are identified by using Toro dial sensor and its information is received by SCADA (Supervisory Control and Data Acquisition) and controlled by ARM microcontroller. This web based monitoring is also used to monitor the feeder management, directional current detection, demand side management, overload fault. This monitoring system is capable of monitoring the distribution feeder over a large area depending upon the cost. It is also used to reduce the power theft, time and man power. The simulation is done by MATLAB software.
Keywords: Current sensor, distribution feeder protection, directional overcurrent, power theft, protective relay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792418 The Relationship between Inventory Management and Profitability: A Comparative Research on Turkish Firms Operated in Weaving Industry, Eatables Industry, Wholesale and Retail Industry
Authors: G. Sekeroglu, M. Altan
Abstract:
Working capital is identified as firm’s all current assets. Inventories which are one of the working capital elements are very important among current assets for firms. Because, profitability is an indicator for firms’ financial success is provided with minimum cost and optimum inventory quantity. So in this study, it is investigated as comparatively that the effect of inventory management on the profitability of Turkish firms which operated in weaving industry, eatables industry, wholesale and retail industry in between 2003 – 2012 years. Research data consist of profitability ratios and inventory turnovers ratio calculated by using balance sheets and income statements of firms which operated in Borsa Istanbul (BIST). In this research, the relationship between inventories and profitability is investigated by using SPSS-20 software with regression and correlation analysis. The results achieved from three industry departments which exist in study interpreted as comparatively. Accordingly, it is determined that there is a positive relationship between inventory management and profitability in eatables industry. However, it was founded that there is no relationship between inventory management and profitability in weaving industry and wholesale and retail industry.
Keywords: Profitability, regression analysis, inventory management, working capital.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7214417 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari
Abstract:
When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.Keywords: ChaharMahal and Bakhtiari, climate change, impacts, Iran, milk production.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481416 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)
Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves
Abstract:
Modelling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve more dense and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.
Keywords: 3D Models, Environment, Matching, Pleiades.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685415 Design and Simulation of Heartbeat Measurement System Using Arduino Microcontroller in Proteus
Authors: Muhibul H. Bhuyan, Mafujul Hasan
Abstract:
If a person can monitor his/her heart rate regularly then he/she can detect heart disease early and thus he/she can enjoy longer life span. Therefore, this disease should be taken seriously. Hence, many health care devices and monitoring systems are being designed to keep track of the heart disease. This work reports a design and simulation processes of an Arduino microcontroller based heart rate measurement and monitoring system in Proteus environment. Clipping sensors were utilized to sense the heart rate of an individual from the finger tips. It is a digital device and uses mainly infrared (IR) transmitter (mainly IR LED) and receiver (mainly IR photo-transistor or IR photo-detector). When the heart pumps the blood and circulates it among the blood vessels of the body, the changed blood pressure is detected by the transmitter and then reflected back to the receiver accordingly. The reflected signals are then processed inside the microcontroller through a software written assembly language and appropriate heart rate (HR) is determined by it in beats per minute (bpm) from the detected signal for a duration of 10 seconds and display the same in bpm on the LCD screen in digital format. The designed system was simulated on several persons with varying ages, for example, infants, adult persons and active athletes. Simulation results were found very satisfactory.
Keywords: Heart rate measurement, design, simulation, Proteus, Arduino Uno microcontroller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789414 Optimization of Double Wishbone Suspension System with Variable Camber Angle by Hydraulic Mechanism
Authors: Mohammad Iman Mokhlespour Esfahani, Masoud Mosayebi, Mohammad Pourshams, Ahmad Keshavarzi
Abstract:
Simulation accuracy by recent dynamic vehicle simulation multidimensional expression significantly has progressed and acceptable results not only for passive vehicles but also for active vehicles normally equipped with advanced electronic components is also provided. Recently, one of the subjects that has it been considered, is increasing the safety car in design. Therefore, many efforts have been done to increase vehicle stability especially in the turn. One of the most important efforts is adjusting the camber angle in the car suspension system. Optimum control camber angle in addition to the vehicle stability is effective in the wheel adhesion on road, reducing rubber abrasion and acceleration and braking. Since the increase or decrease in the camber angle impacts on the stability of vehicles, in this paper, a car suspension system mechanism is introduced that could be adjust camber angle and the mechanism is application and also inexpensive. In order to reach this purpose, in this paper, a passive double wishbone suspension system with variable camber angle is introduced and then variable camber mechanism designed and analyzed for study the designed system performance, this mechanism is modeled in Visual Nastran software and kinematic analysis is revealed.Keywords: Suspension molding, double wishbone, variablecamber, hydraulic mechanism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7723413 Online Graduate Students’ Perspective on Engagement in Active Learning in the United States
Authors: Ehi E. Aimiuwu
Abstract:
As of 2017, many researchers in educational journals are still wondering if students are effectively and efficiently engaged in active learning in the online learning environment. The goal of this qualitative single case study and narrative research is to explore if students are actively engaged in their online learning. Seven online students in the United States from LinkedIn and residencies were interviewed for this study. Eleven online learning techniques from research were used as a framework. Data collection tools were used for the study that included a digital audiotape, observation sheet, interview protocol, transcription, and NVivo 12 Plus qualitative software. Data analysis process, member checking, and key themes were used to reach saturation. About 85.7% of students preferred individual grading. About 71.4% of students valued professor’s interacting 2-3 times weekly, participating through posts and responses, having good internet access, and using email. Also, about 57.1% said students log in 2-3 times weekly to daily, professor’s social presence helps, regular punctuality in work submission, and prefer assessments style of research, essay, and case study. About 42.9% appreciated syllabus usefulness and professor’s expertise.Keywords: Class facilitation, course management, online teaching, online education, student engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 690412 High Gain Mobile Base Station Antenna Using Curved Woodpile EBG Technique
Authors: P. Kamphikul, P. Krachodnok, R. Wongsan
Abstract:
This paper presents the gain improvement of a sector antenna for mobile phone base station by using the new technique to enhance its gain for microstrip antenna (MSA) array without construction enlargement. The curved woodpile Electromagnetic Band Gap (EBG) has been utilized to improve the gain instead. The advantages of this proposed antenna are reducing the length of MSAs array but providing the higher gain and easy fabrication and installation. Moreover, it provides a fan-shaped radiation pattern, wide in the horizontal direction and relatively narrow in the vertical direction, which appropriate for mobile phone base station. The paper also presents the design procedures of a 1x8 MSAs array associated with U-shaped reflector for decreasing their back and side lobes. The fabricated curved woodpile EBG exhibits bandgap characteristics at 2.1 GHz and is utilized for realizing a resonant cavity of MSAs array. This idea has been verified by both the Computer Simulation Technology (CST) software and experimental results. As the results, the fabricated proposed antenna achieves a high gain of 20.3 dB and the half-power beam widths in the E- and H-plane of 36.8 and 8.7 degrees, respectively. Good qualitative agreement between measured and simulated results of the proposed antenna was obtained.
Keywords: Gain Improvement, Microstrip Antenna Array, Electromagnetic Band Gap, Base Station.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2979411 Soil Moisture Control System: A Product Development Approach
Authors: Swapneel U. Naphade, Dushyant A. Patil, Satyabodh M. Kulkarni
Abstract:
In this work, we propose the concept and geometrical design of a soil moisture control system (SMCS) module by following the product development approach to develop an inexpensive, easy to use and quick to install product targeted towards agriculture practitioners. The module delivers water to the agricultural land efficiently by sensing the soil moisture and activating the delivery valve. We start with identifying the general needs of the potential customer. Then, based on customer needs we establish product specifications and identify important measuring quantities to evaluate our product. Keeping in mind the specifications, we develop various conceptual solutions of the product and select the best solution through concept screening and selection matrices. Then, we develop the product architecture by integrating the systems into the final product. In the end, the geometric design is done using human factors engineering concepts like heuristic analysis, task analysis, and human error reduction analysis. The result of human factors analysis reveals the remedies which should be applied while designing the geometry and software components of the product. We find that to design the best grip in terms of comfort and applied force, for a power-type grip, a grip-diameter of 35 mm is the most ideal.
Keywords: Agriculture, human factors, product design, soil moisture control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1309410 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an Artificial Neural Network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study include granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R2), Root Mean Square Error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.
Keywords: National development, granite, profitability assessment, ANN models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81409 Energy Based Temperature Profile for Heat Transfer Analysis of Concrete Section Exposed to Fire on One Side
Authors: Pattamad Panedpojaman
Abstract:
For fire safety purposes, the fire resistance and the structural behavior of reinforced concrete members are assessed to satisfy specific fire performance criteria. The available prescribed provisions are based on standard fire load. Under various fire scenarios, engineers are in need of both heat transfer analysis and structural analysis. For heat transfer analysis, the study proposed a modified finite difference method to evaluate the temperature profile within a cross section. The research conducted is limited to concrete sections exposed to a fire on their one side. The method is based on the energy conservation principle and a pre-determined power function of the temperature profile. The power value of 2.7 is found to be a suitable value for concrete sections. The temperature profiles of the proposed method are only slightly deviate from those of the experiment, the FEM and the FDM for various fire loads such as ASTM E 119, ASTM 1529, BS EN 1991-1-2 and 550 oC. The proposed method is useful to avoid incontinence of the large matrix system of the typical finite difference method to solve the temperature profile. Furthermore, design engineers can simply apply the proposed method in regular spreadsheet software.Keywords: temperature profile, finite difference method, concrete section, one-side fire exposed, energy conservation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074408 A Theoretical Analysis for Modeling and Prediction of the Jet Engine Emissions
Authors: Jamal S. Yassin
Abstract:
This paper is to formulate a mathematical model to predict the amounts of the emissions produced from the combustion process of the gas turbine unit of the jet engine. These emissions have bad impacts on the environment if they are out of standards, which cause real threats to all type of life on the earth. The amounts of the emissions from the gas turbine engine are functions to many operational and design factors. In landing-takeoff (LTO) these amounts are not the same as in taxi or cruise of the plane using jet engines, because of the difference in the activity period during these operating modes. These emissions can be affected by several physical and chemical variables, such as fuel type, fuel to air ratio or equivalence ratio, flame temperature, combustion pressure, in addition to some inlet conditions such as ambient temperature and air humidity. To study the influence of these variables on the amounts of these emissions during the combustion process in the gas turbine unit, a computer program has been developed by using the visual basic 6 software. Here, the analysis of the combustion process is carried out by considering it as a chemical reaction with shifting equilibrium to find the products of the combustion of the octane fuel, at different equivalence ratios, compressor pressure ratios (CPR) and combustion temperatures. The results obtained have shown that there is noticeable influence of the equivalence ratio, CPR, and the combustion temperature on the amounts of the main emissions which are considered pollutants, such as CO, CO2 and NO.
Keywords: Mathematical model, gas turbine unit, equivalence ratio, emissions, shifting equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 735407 A Hybrid Expert System for Generating Stock Trading Signals
Authors: Hosein Hamisheh Bahar, Mohammad Hossein Fazel Zarandi, Akbar Esfahanipour
Abstract:
In this paper, a hybrid expert system is developed by using fuzzy genetic network programming with reinforcement learning (GNP-RL). In this system, the frame-based structure of the system uses the trading rules extracted by GNP. These rules are extracted by using technical indices of the stock prices in the training time period. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In the other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. Finally, the obtained rules are used in a frame-based system implemented in Kappa-PC software. This developed trading system has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in the testing time period shows that the developed system has more favorable performance in comparison with the Buy and Hold strategy.
Keywords: Fuzzy genetic network programming, hybrid expert system, technical trading signal, Tehran stock exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858406 Fatigue Strength of S275 Mild Steel under Cyclic Loading
Authors: T. Aldeeb, M. Abduelmula
Abstract:
This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.Keywords: Fatigue life, fatigue strength, finite element analysis, S275 mild steel, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2448405 Effect of Relative Permeability on Well Testing Behavior of Naturally Fractured Lean Gas Condensate Reservoirs
Authors: G.H. Montazeri, Z. Dastkhan, H. Aliabadi
Abstract:
Gas condensate Reservoirs show complicated thermodynamic behavior when their pressure reduces to under dew point pressure. Condensate blockage around the producing well cause significant reduction of production rate as well bottom-hole pressure drops below saturation pressure. The main objective of this work was to examine the well test analysis of naturally fractured lean gas condensate reservoir and investigate the effect of condensate formed around the well-bore on behavior of single phase pseudo pressure and its derivative curves. In this work a naturally fractured lean gas condensate reservoir is simulated with compositional simulator. Different sensitivity analysis done on Corry parameters and result of simulator is feed to analytical well testing software. For consideration of these phenomena eighteen compositional models with Capillary number effect are constructed. Matrix relative permeability obeys Corry relative permeability and relative permeability in fracture is linear. Well testing behavior of these models are studied and interpreted. Results show different sensitivity analysis on relative permeability of matrix does not have strong effect on well testing behavior even most part of the matrix around the well is occupied with condensate.
Keywords: Lean gas, fractured condensate reservoir, capillary number, well testing analysis, relative permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968404 Comparative Studies of the Effects of Microstructures on the Corrosion Behavior of Micro-Alloyed Steels in Unbuffered 3.5 Wt% NaCl Saturated with CO2
Authors: Lawrence I. Onyeji, Girish M. Kale, M. Bijan Kermani
Abstract:
Corrosion problem which exists in every stage of oil and gas production has been a great challenge to the operators in the industry. The conventional carbon steel with all its inherent advantages has been adjudged susceptible to the aggressive corrosion environment of oilfield. This has aroused increased interest in the use of micro alloyed steels for oil and gas production and transportation. The corrosion behavior of three commercially supplied micro alloyed steels designated as A, B, and C have been investigated with API 5L X65 as reference samples. Electrochemical corrosion tests were conducted in an unbuffered 3.5 wt% NaCl solution saturated with CO2 at 30 0C for 24 hours. Pre-corrosion analyses revealed that samples A, B and X65 consist of ferrite-pearlite microstructures but with different grain sizes, shapes and distribution whereas sample C has bainitic microstructure with dispersed acicular ferrites. The results of the electrochemical corrosion tests showed that within the experimental conditions, the corrosion rate of the samples can be ranked as CR(A)< CR(X65)< CR(B)< CR(C). These results are attributed to difference in microstructures of the samples as depicted by ASTM grain size number in accordance with ASTM E112-12 Standard and ferrite-pearlite volume fractions determined by ImageJ Fiji grain size analysis software.
Keywords: Carbon dioxide corrosion, corrosion behavior, micro-alloyed steel, microstructures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099403 Simulation Study on the Indoor Thermal Comfort with Insulation on Interior Structural Components of Super High-Rise Residences
Authors: Y. Wang, H. Fukuda, A. Ozaki, H. Sato
Abstract:
In this study, we discussed the effects on the thermal comfort of super high-rise residences that how effected by the high thermal capacity structural components. We considered different building orientations, structures, and insulation methods. We used the dynamic simulation software THERB (simulation of the thermal environment of residential buildings). It can estimate the temperature, humidity, sensible temperature, and heating/cooling load for multiple buildings. In the past studies, we examined the impact of air-conditioning loads (hereinafter referred to as AC loads) on the interior structural parts and the AC-usage patterns of super-high-rise residences. Super-high-rise residences have more structural components such as pillars and beams than do ordinary apartment buildings. The skeleton is generally made of concrete and steel, which have high thermal-storage capacities. The thermal-storage capacity of super-high-rise residences is considered to have a larger impact on the AC load and thermal comfort than that of ordinary residences. We show that the AC load of super-high-rise units would be reduced by installing insulation on the surfaces of interior walls that are not usually insulated in Japan.Keywords: High-rise Residences, AC Load, Thermal Comfort, Thermal Storage, Insulation Patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540402 RTCoord: A Methodology to Design WSAN Applications
Authors: J. Barbarán, M. Díaz, I. Esteve, D. Garrido, L. Llopis, B. Rubio
Abstract:
Wireless Sensor and Actor Networks (WSANs) constitute an emerging and pervasive technology that is attracting increasing interest in the research community for a wide range of applications. WSANs have two important requirements: coordination interactions and real-time communication to perform correct and timely actions. This paper introduces a methodology to facilitate the task of the application programmer focusing on the coordination and real-time requirements of WSANs. The methodology proposed in this model uses a real-time component model, UM-RTCOM, which will help us to achieve the design and implementation of applications in WSAN by using the component oriented paradigm. This will help us to develop software components which offer some very interesting features, such as reusability and adaptability which are very suitable for WSANs as they are very dynamic environments with rapidly changing conditions. In addition, a high-level coordination model based on tuple channels (TC-WSAN) is integrated into the methodology by providing a component-based specification of this model in UM-RTCOM; this will allow us to satisfy both sensor-actor and actor-actor coordination requirements in WSANs. Finally, we present in this paper the design and implementation of an application which will help us to show how the methodology can be easily used in order to achieve the development of WSANs applications.Keywords: Sensor networks, real time and embedded systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297401 Robust Design and Optimization of Production Wastes: An Application for Industries
Authors: Christopher C. Ihueze, Charles C. Okpala, Christian E. Okafor, Peter O. Ogbobe
Abstract:
This paper focuses on robust design and optimization of industrial production wastes. Past literatures were reviewed to case study Clamason Industries Limited (CIL) - a leading ladder-tops manufacturer. A painstaking study of the firm-s practices at the shop floor revealed that Over-production, Waiting time, Excess inventory, and Defects are the major wastes that are impeding their progress and profitability. Design expert8 software was used to apply Taguchi robust design and response surface methodology in order to model, analyse and optimise the wastes cost in CIL. Waiting time and overproduction rank first and second in contributing to the costs of wastes in CIL. For minimal wastes cost the control factors of overproduction, waiting-time, defects and excess-inventory must be set at 0.30, 390.70, 4 and 55.70 respectively for CIL. The optimal value of cost of wastes for the months studied was 22.3679. Finally, a recommendation was made that for the company to enhance their profitability and customer satisfaction, they must adopt the Shingeo Shingo-s Single Minute Exchange of Dies (SMED), which will immediately tackle the waste of waiting by drastically reducing their setup time.Keywords: Excess-inventory, setup time, single minute exchange of dies, optimal value, over-production, robust design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1714400 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles
Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado
Abstract:
In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, Optical Forces.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130399 Peak Data Rate Enhancement Using Switched Micro-Macro Diversity in Cellular Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, J. P. Dubois, Yvette Antar
Abstract:
With the exponential growth of cellular users, a new generation of cellular networks is needed to enhance the required peak data rates. The co-channel interference between neighboring base stations inhibits peak data rate increase. To overcome this interference, multi-cell cooperation known as coordinated multipoint transmission is proposed. Such a solution makes use of multiple-input-multiple-output (MIMO) systems under two different structures: Micro- and macro-diversity. In this paper, we study the capacity and bit error rate in cellular networks using MIMO technology. We analyse both micro- and macro-diversity schemes and develop a hybrid model that switches between macro- and micro-diversity in the case of hard handoff based on a cut-off range of signal-to-noise ratio values. We conclude that our hybrid switched micro-macro MIMO system outperforms classical MIMO systems at the cost of increased hardware and software complexity.
Keywords: Cooperative multipoint transmission, ergodic capacity, hard handoff, macro-diversity, micro-diversity, multiple-input-multiple-output systems, MIMO, orthogonal frequency division multiplexing, OFDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1090398 Peridynamic Modeling of an Isotropic Plate under Tensile and Flexural Loading
Authors: Eda Gök
Abstract:
Peridynamics is a new modeling concept of non-local interactions for solid structures. The formulations of Peridynamic (PD) theory are based on integral equations rather than differential equations. Through, undefined equations of associated problems are avoided. PD theory might be defined as continuum version of molecular dynamics. The medium is usually modeled with mass particles bonded together. Particles interact with each other directly across finite distances through central forces named as bonds. The main assumption of this theory is that the body is composed of material points which interact with other material points within a finite distance. Although, PD theory developed for discontinuities, it gives good results for structures which have no discontinuities. In this paper, displacement control of the isotropic plate under the effect of tensile and bending loading has been investigated by means of PD theory. A MATLAB code is generated to create PD bonds and corresponding surface correction factors. Using generated MATLAB code the geometry of the specimen is generated, and the code is implemented in Finite Element Software. The results obtained from non-local continuum theory are compared with the Finite Element Analysis results and analytical solution. The results show good agreement.
Keywords: Flexural loading, non-local continuum mechanics, Peridynamic theory, solid structures, tensile loading.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212397 Distributed Generator Placement for Loss Reduction and Improvement in Reliability
Authors: Priyanka Paliwal, N.P. Patidar
Abstract:
Distributed Power generation has gained a lot of attention in recent times due to constraints associated with conventional power generation and new advancements in DG technologies .The need to operate the power system economically and with optimum levels of reliability has further led to an increase in interest in Distributed Generation. However it is important to place Distributed Generator on an optimum location so that the purpose of loss minimization and voltage regulation is dully served on the feeder. This paper investigates the impact of DG units installation on electric losses, reliability and voltage profile of distribution networks. In this paper, our aim would be to find optimal distributed generation allocation for loss reduction subjected to constraint of voltage regulation in distribution network. The system is further analyzed for increased levels of Reliability. Distributed Generator offers the additional advantage of increase in reliability levels as suggested by the improvements in various reliability indices such as SAIDI, CAIDI and AENS. Comparative studies are performed and related results are addressed. An analytical technique is used in order to find the optimal location of Distributed Generator. The suggested technique is programmed under MATLAB software. The results clearly indicate that DG can reduce the electrical line loss while simultaneously improving the reliability of the system.Keywords: AENS, CAIDI, Distributed Generation, lossreduction, Reliability, SAIDI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3100396 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems
Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo
Abstract:
The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.
Keywords: Adaptive control, digital fly-by-wire, oscillations suppression, PIO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743395 Surface Pressure Distribution of a Flapped-Airfoil for Different Momentum Injection at the Leading Edge
Authors: Mohammad Mashud, S. M. Nahid Hasan
Abstract:
The aim of the research work is to modify the NACA 4215 airfoil with flap and rotary cylinder at the leading edge of the airfoil and experimentally study the static pressure distribution over the airfoil completed with flap and leading-edge vortex generator. In this research, NACA 4215 wing model has been constructed by generating the profile geometry using the standard equations and design software such as AutoCAD and SolidWorks. To perform the experiment, three wooden models are prepared and tested in subsonic wind tunnel. The experiments were carried out in various angles of attack. Flap angle and momentum injection rate are changed to observe the characteristics of pressure distribution. In this research, a new concept of flow separation control mechanism has been introduced to improve the aerodynamic characteristics of airfoil. Control of flow separation over airfoil which experiences a vortex generator (rotating cylinder) at the leading edge of airfoil is experimentally simulated under the effects of momentum injection. The experimental results show that the flow separation control is possible by the proposed mechanism, and benefits can be achieved by momentum injection technique. The wing performance is significantly improved due to control of flow separation by momentum injection method.
Keywords: Airfoil, momentum injection, flap and pressure distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628394 Analysis of Motor Cycle Helmet under Static and Dynamic Loading
Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Ponraj
Abstract:
Each year nearly nine hundred persons die in head injuries and over fifty thousand persons are severely injured due to non wearing of helmets. In motor cycle accidents, the human head is exposed to heavy impact loading against natural protection. In this work, an attempt has been made for analyzing the helmet with all the standard data. The simulation software ‘ANSYS’ is used to analyze the helmet with different conditions such as bottom fixed-load on top surface, bottom fixed -load on top line, side fixed –load on opposite surface, side fixed-load on opposite line and dynamic analysis. The maximum force of 19.5 kN is applied on the helmet to study the model in static and dynamic conditions. The simulation has been carried out for the static condition for the parameters like total deformation, strain energy, von-Mises stress for different cases. The dynamic analysis has been performed for the parameter like total deformation and equivalent elastic strain. The result shows that these values are concentrated in the retention portion of the helmet. These results have been compared with the standard experimental data proposed by the BIS and well within the acceptable limit.
Keywords: Helmet, Deformation, Strain energy, Equivalent elastic strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4888393 Comparison of Two Airfoil Sections for Application in Straight-Bladed Darrieus VAWT
Authors: Marco Raciti Castelli, Ernesto Benini
Abstract:
This paper presents a model for the evaluation of energy performance and aerodynamic forces acting on a small straight-bladed Darrieus-type vertical axis wind turbine depending on blade geometrical section. It consists of an analytical code coupled to a solid modeling software, capable of generating the desired blade geometry based on the desired blade design geometric parameters. Such module is then linked to a finite volume commercial CFD code for the calculation of rotor performance by integration of the aerodynamic forces along the perimeter of each blade for a full period of revolution.After describing and validating the computational model with experimental data, the results of numerical simulations are proposed on the bases of two candidate airfoil sections, that is a classical symmetrical NACA 0021 blade profile and the recently developed DU 06-W-200 non-symmetric and laminar blade profile.Through a full CFD campaign of analysis, the effects of blade geometrical section on angle of attack are first investigated and then the overall rotor torque and power are analyzed as a function of blade azimuthal position, achieving a numerical quantification of the influence of airfoil geometry on overall rotor performance.Keywords: Wind turbine, NACA 0021, DU 06-W-200.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3823392 Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System
Authors: Aryanejad Mir Bahador Goli, Zahra Honarmand Shah Zileh
Abstract:
In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.Keywords: Flexible manufacturing system, generalizedstochastic Petri nets, Markov chain, performance evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901