Search results for: Infrastructure and Computer Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4290

Search results for: Infrastructure and Computer Network

2370 Supergrid Modeling and Operation and Control of Multi Terminal DC Grids for the Deployment of a Meshed HVDC Grid in South Asia

Authors: Farhan Beg, Raymond Moberly

Abstract:

The Indian subcontinent is facing a massive challenge with regards to energy security in its member countries; to provide reliable electricity to facilitate development across various sectors of the economy and consequently achieve the developmental targets. The instability of the current precarious situation is observable in the frequent system failures and blackouts.

The deployment of interconnected electricity ‘Supergrid’ designed to carry huge quanta of power across the Indian sub-continent is proposed in this paper. Not only enabling energy security in the subcontinent it will also provide a platform for Renewable Energy Sources (RES) integration. This paper assesses the need and conditions for a Supergrid deployment and consequently proposes a meshed topology based on Voltage Source High Voltage Direct Current (VSC- HVDC) converters for the Supergrid modeling. Various control schemes for the control of voltage and power are utilized for the regulation of the network parameters. A 3 terminal Multi Terminal Direct Current (MTDC) network is used for the simulations.

Keywords: Super grid, Wind and Solar energy, High Voltage Direct Current, Electricity management, Load Flow Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
2369 Development of Requirements Analysis Tool for Medical Autonomy in Long-Duration Space Exploration Missions

Authors: Lara Dutil-Fafard, Caroline Rhéaume, Patrick Archambault, Daniel Lafond, Neal W. Pollock

Abstract:

Improving resources for medical autonomy of astronauts in prolonged space missions, such as a Mars mission, requires not only technology development, but also decision-making support systems. The Advanced Crew Medical System - Medical Condition Requirements study, funded by the Canadian Space Agency, aimed to create knowledge content and a scenario-based query capability to support medical autonomy of astronauts. The key objective of this study was to create a prototype tool for identifying medical infrastructure requirements in terms of medical knowledge, skills and materials. A multicriteria decision-making method was used to prioritize the highest risk medical events anticipated in a long-term space mission. Starting with those medical conditions, event sequence diagrams (ESDs) were created in the form of decision trees where the entry point is the diagnosis and the end points are the predicted outcomes (full recovery, partial recovery, or death/severe incapacitation). The ESD formalism was adapted to characterize and compare possible outcomes of medical conditions as a function of available medical knowledge, skills, and supplies in a given mission scenario. An extensive literature review was performed and summarized in a medical condition database. A PostgreSQL relational database was created to allow query-based evaluation of health outcome metrics with different medical infrastructure scenarios. Critical decision points, skill and medical supply requirements, and probable health outcomes were compared across chosen scenarios. The three medical conditions with the highest risk rank were acute coronary syndrome, sepsis, and stroke. Our efforts demonstrate the utility of this approach and provide insight into the effort required to develop appropriate content for the range of medical conditions that may arise.

Keywords: Decision support system, event sequence diagram, exploration mission, medical autonomy, scenario-based queries, space medicine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
2368 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks

Authors: Siddhartha Chauhan, Nitin Kumar Kotania

Abstract:

Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network.

Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.

Keywords: Buffer overflow problem, Mobile sink, Virtual grid, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
2367 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks

Authors: Wang Yichen, Haruka Yamashita

Abstract:

In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.

Keywords: Recurrent Neural Network, players lineup, basketball data, decision making model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
2366 Implementation of Terrain Rendering on Mobile Device

Authors: S.A.M. Isa, M.S.M. Rahim, M.D. Kasmuni, D. Daman

Abstract:

Recently, there are significant improvements in the capabilities of mobile devices; rendering large terrain is tedious because of the constraint in resources of mobile devices. This paper focuses on the implementation of terrain rendering on mobile device to observe some issues and current constraints occurred. Experiments are performed using two datasets with results based on rendering speed and appearance to ascertain both the issues and constraints. The result shows a downfall of frame rate performance because of the increase of triangles. Since the resolution between computer and mobile device is different, the terrain surface on mobile device looks more unrealistic compared to on a computer. Thus, more attention in the development of terrain rendering on mobile devices is required. The problems highlighted in this paper will be the focus of future research and will be a great importance for 3D visualization on mobile device.

Keywords: Mobile Device, Mobile Rendering, OpenGL ES, Terrain Rendering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
2365 Deficiencies of Lung Segmentation Techniques using CT Scan Images for CAD

Authors: Nisar Ahmed Memon, Anwar Majid Mirza, S.A.M. Gilani

Abstract:

Segmentation is an important step in medical image analysis and classification for radiological evaluation or computer aided diagnosis. This paper presents the problem of inaccurate lung segmentation as observed in algorithms presented by researchers working in the area of medical image analysis. The different lung segmentation techniques have been tested using the dataset of 19 patients consisting of a total of 917 images. We obtained datasets of 11 patients from Ackron University, USA and of 8 patients from AGA Khan Medical University, Pakistan. After testing the algorithms against datasets, the deficiencies of each algorithm have been highlighted.

Keywords: Computer Aided Diagnosis (CAD), MathematicalMorphology, Medical Image Analysis, Region Growing, Segmentation, Thresholding,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
2364 Malicious Route Defending Reliable-Data Transmission Scheme for Multi Path Routing in Wireless Network

Authors: S. Raja Ratna, R. Ravi

Abstract:

Securing the confidential data transferred via wireless network remains a challenging problem. It is paramount to ensure that data are accessible only by the legitimate users rather than by the attackers. One of the most serious threats to organization is jamming, which disrupts the communication between any two pairs of nodes. Therefore, designing an attack-defending scheme without any packet loss in data transmission is an important challenge. In this paper, Dependence based Malicious Route Defending DMRD Scheme has been proposed in multi path routing environment to prevent jamming attack. The key idea is to defend the malicious route to ensure perspicuous transmission. This scheme develops a two layered architecture and it operates in two different steps. In the first step, possible routes are captured and their agent dependence values are marked using triple agents. In the second step, the dependence values are compared by performing comparator filtering to detect malicious route as well as to identify a reliable route for secured data transmission. By simulation studies, it is observed that the proposed scheme significantly identifies malicious route by attaining lower delay time and route discovery time; it also achieves higher throughput.

Keywords: Attacker, Dependence, Jamming, Malicious.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2363 Low Resolution Face Recognition Using Mixture of Experts

Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour

Abstract:

Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.

Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
2362 Analysis of Threats in Interoperability of Medical Devices

Authors: M. Sandhya, R. M. Madhumitha, Sharmila Sankar

Abstract:

Interoperable medical devices (IMDs) face threats due to the increased attack surface accessible by interoperability and the corresponding infrastructure. Initiating networking and coordination functionalities primarily modify medical systems' security properties. Understanding the threats is a vital first step in ultimately crafting security solutions for such systems. The key to this problem is coming up with some common types of threats or attacks with those of security and privacy, and providing this information as a roadmap. This paper analyses the security issues in interoperability of devices and presents the main types of threats that have to be considered to build a secured system.

Keywords: Interoperability, threats, attacks, medical devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
2361 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study, climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One of models (Discrete Wavelet artificial Neural Network) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and input parameters to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 t0 105 cm. Furthermore, the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: Climate change scenarios, sea-level rise, strait of Hormuz, artificial neural network, fuzzy logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424
2360 SIPINA Induction Graph Method for Seismic Risk Prediction

Authors: B. Selma

Abstract:

The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.

Keywords: SIPINA method, seism, focal depth, peak ground acceleration, displacement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1211
2359 Software Model for a Computer Based Training for an HVDC Control Desk Simulator

Authors: José R. G. Braga, Joice B. Mendes, Guilherme H. Caponetto, Alexandre C. B. Ramos

Abstract:

With major technological advances and to reduce the cost of training apprentices for real-time critical systems, it was necessary the development of Intelligent Tutoring Systems for training apprentices in these systems. These systems, in general, have interactive features so that the learning is actually more efficient, making the learner more familiar with the mechanism in question. In the home stage of learning, tests are performed to obtain the student's income, a measure on their use. The aim of this paper is to present a framework to model an Intelligent Tutoring Systems using the UML language. The various steps of the analysis are considered the diagrams required to build a general model, whose purpose is to present the different perspectives of its development.

Keywords: Computer based training, Hypermedia, Software modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
2358 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts

Authors: S. Karabulut, A. Güllü, A. Güldas, R. Gürbüz

Abstract:

This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.

Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
2357 Wormhole Attack Detection in Wireless Sensor Networks

Authors: Zaw Tun, Aung Htein Maw

Abstract:

The nature of wireless ad hoc and sensor networks make them very attractive to attackers. One of the most popular and serious attacks in wireless ad hoc networks is wormhole attack and most proposed protocols to defend against this attack used positioning devices, synchronized clocks, or directional antennas. This paper analyzes the nature of wormhole attack and existing methods of defending mechanism and then proposes round trip time (RTT) and neighbor numbers based wormhole detection mechanism. The consideration of proposed mechanism is the RTT between two successive nodes and those nodes- neighbor number which is needed to compare those values of other successive nodes. The identification of wormhole attacks is based on the two faces. The first consideration is that the transmission time between two wormhole attack affected nodes is considerable higher than that between two normal neighbor nodes. The second detection mechanism is based on the fact that by introducing new links into the network, the adversary increases the number of neighbors of the nodes within its radius. This system does not require any specific hardware, has good performance and little overhead and also does not consume extra energy. The proposed system is designed in ad hoc on-demand distance vector (AODV) routing protocol and analysis and simulations of the proposed system are performed in network simulator (ns-2).

Keywords: AODV, Wormhole attacks, Wireless ad hoc andsensor networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3470
2356 Active Islanding Detection Method Using Intelligent Controller

Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang

Abstract:

An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.

Keywords: Distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424
2355 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
2354 A Computational Stochastic Modeling Formalism for Biological Networks

Authors: Werner Sandmann, Verena Wolf

Abstract:

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
2353 Corporate Credit Rating using Multiclass Classification Models with order Information

Authors: Hyunchul Ahn, Kyoung-Jae Kim

Abstract:

Corporate credit rating prediction using statistical and artificial intelligence (AI) techniques has been one of the attractive research topics in the literature. In recent years, multiclass classification models such as artificial neural network (ANN) or multiclass support vector machine (MSVM) have become a very appealing machine learning approaches due to their good performance. However, most of them have only focused on classifying samples into nominal categories, thus the unique characteristic of the credit rating - ordinality - has been seldom considered in their approaches. This study proposes new types of ANN and MSVM classifiers, which are named OMANN and OMSVM respectively. OMANN and OMSVM are designed to extend binary ANN or SVM classifiers by applying ordinal pairwise partitioning (OPP) strategy. These models can handle ordinal multiple classes efficiently and effectively. To validate the usefulness of these two models, we applied them to the real-world bond rating case. We compared the results of our models to those of conventional approaches. The experimental results showed that our proposed models improve classification accuracy in comparison to typical multiclass classification techniques with the reduced computation resource.

Keywords: Artificial neural network, Corporate credit rating, Support vector machines, Ordinal pairwise partitioning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3440
2352 IMLFQ Scheduling Algorithm with Combinational Fault Tolerant Method

Authors: MohammadReza EffatParvar, Akbar Bemana, Mehdi EffatParvar

Abstract:

Scheduling algorithms are used in operating systems to optimize the usage of processors. One of the most efficient algorithms for scheduling is Multi-Layer Feedback Queue (MLFQ) algorithm which uses several queues with different quanta. The most important weakness of this method is the inability to define the optimized the number of the queues and quantum of each queue. This weakness has been improved in IMLFQ scheduling algorithm. Number of the queues and quantum of each queue affect the response time directly. In this paper, we review the IMLFQ algorithm for solving these problems and minimizing the response time. In this algorithm Recurrent Neural Network has been utilized to find both the number of queues and the optimized quantum of each queue. Also in order to prevent any probable faults in processes' response time computation, a new fault tolerant approach has been presented. In this approach we use combinational software redundancy to prevent the any probable faults. The experimental results show that using the IMLFQ algorithm results in better response time in comparison with other scheduling algorithms also by using fault tolerant mechanism we improve IMLFQ performance.

Keywords: IMLFQ, Fault Tolerant, Scheduling, Queue, Recurrent Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
2351 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment

Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius

Abstract:

Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.

Keywords: Data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1125
2350 Active Segment Selection Method in EEG Classification Using Fractal Features

Authors: Samira Vafaye Eslahi

Abstract:

BCI (Brain Computer Interface) is a communication machine that translates brain massages to computer commands. These machines with the help of computer programs can recognize the tasks that are imagined. Feature extraction is an important stage of the process in EEG classification that can effect in accuracy and the computation time of processing the signals. In this study we process the signal in three steps of active segment selection, fractal feature extraction, and classification. One of the great challenges in BCI applications is to improve classification accuracy and computation time together. In this paper, we have used student’s 2D sample t-statistics on continuous wavelet transforms for active segment selection to reduce the computation time. In the next level, the features are extracted from some famous fractal dimension estimation of the signal. These fractal features are Katz and Higuchi. In the classification stage we used ANFIS (Adaptive Neuro-Fuzzy Inference System) classifier, FKNN (Fuzzy K-Nearest Neighbors), LDA (Linear Discriminate Analysis), and SVM (Support Vector Machines). We resulted that active segment selection method would reduce the computation time and Fractal dimension features with ANFIS analysis on selected active segments is the best among investigated methods in EEG classification.

Keywords: EEG, Student’s t- statistics, BCI, Fractal Features, ANFIS, FKNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
2349 Gesture Recognition by Data Fusion of Time-of-Flight and Color Cameras

Authors: Piercarlo Dondi, Luca Lombardi, Marco Porta

Abstract:

In the last years numerous applications of Human- Computer Interaction have exploited the capabilities of Time-of- Flight cameras for achieving more and more comfortable and precise interactions. In particular, gesture recognition is one of the most active fields. This work presents a new method for interacting with a virtual object in a 3D space. Our approach is based on the fusion of depth data, supplied by a ToF camera, with color information, supplied by a HD webcam. The hand detection procedure does not require any learning phase and is able to concurrently manage gestures of two hands. The system is robust to the presence in the scene of other objects or people, thanks to the use of the Kalman filter for maintaining the tracking of the hands.

Keywords: Gesture recognition, human-computer interaction, Time-of-Flight camera.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
2348 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade

Authors: Yanqun Li, Hong Geng

Abstract:

The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.

Keywords: Social relations, social support networks, industrial division, capital allocation, public space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
2347 Predicting Application Layer DDoS Attacks Using Machine Learning Algorithms

Authors: S. Umarani, D. Sharmila

Abstract:

A Distributed Denial of Service (DDoS) attack is a major threat to cyber security. It originates from the network layer or the application layer of compromised/attacker systems which are connected to the network. The impact of this attack ranges from the simple inconvenience to use a particular service to causing major failures at the targeted server. When there is heavy traffic flow to a target server, it is necessary to classify the legitimate access and attacks. In this paper, a novel method is proposed to detect DDoS attacks from the traces of traffic flow. An access matrix is created from the traces. As the access matrix is multi dimensional, Principle Component Analysis (PCA) is used to reduce the attributes used for detection. Two classifiers Naive Bayes and K-Nearest neighborhood are used to classify the traffic as normal or abnormal. The performance of the classifier with PCA selected attributes and actual attributes of access matrix is compared by the detection rate and False Positive Rate (FPR).

Keywords: Distributed Denial of Service (DDoS) attack, Application layer DDoS, DDoS Detection, K- Nearest neighborhood classifier, Naive Bayes Classifier, Principle Component Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279
2346 The Project Evaluation to Develop the Competencies, Capabilities, and Skills in Repairing Computers of People in Jompluak Local Municipality, Bang Khonthi District, Samut Songkram Province

Authors: Wilailuk Meepracha

Abstract:

The results of the study on the project evaluation to  develop the competencies, capabilities, and skills in repairing  computers of people in Jompluak Local Municipality, Bang Khonthi  District, Samut Songkram Province showed that the overall result  was good (4.33). When considering on each aspect, it was found that  the highest one was on process evaluation (4.60) followed by product  evaluation (4.50) and the least one was on feeding factor (3.97).  When considering in details, it was found that: 1) the context aspect  was high (4.23) with the highest item on the arrangement of the  training situation (4.67) followed by the appropriateness of the target  (4.30) and the least aspect was on the project cooperation (3.73). 2)  The evaluation of average overall primary factor or feeding factor  showed high value (4.23) while the highest aspect was on the  capability of the trainers (4.47) followed by the suitable venue (4.33)  while the least aspect was on the insufficient budget (3.47). 3) The  average result of process evaluation was very high (4.60). The  highest aspect was on the follow-op supervision (4.70) followed by  responsibility of each project staffs (4.50) while the least aspect was  on the present situation and the problems of the community (4.40). 4)  The overall result of the product evaluation was very high (4.50). The  highest aspect was on the diversity of the activities and the  community integration (4.67) followed by project target achievement  (4.63) while the least aspect was on continuation and regularity of the  activities (4.33). The trainees reported high satisfaction on the project  management at very high level (43.33%) while 40% reported high  level and 16.67% reported moderate level. Suggestions for the project  were on the additional number of the computer sets (37.78%)  followed by longer training period especially on computer skills  (43.48%).

 

Keywords: Project evaluation, competency development, the capability on computer repairing and computer skills.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
2345 Ontology for a Voice Transcription of OpenStreetMap Data: The Case of Space Apprehension by Visually Impaired Persons

Authors: Said Boularouk, Didier Josselin, Eitan Altman

Abstract:

In this paper, we present a vocal ontology of OpenStreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately, this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.

Keywords: Ontology, OpenStreetMap, visually impaired people, TTS, taxonomy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
2344 Synchronous Courses Attendance in Distance Higher Education: Case Study of a Computer Science Department

Authors: Thierry Eude

Abstract:

The use of videoconferencing platforms adapted to teaching offers students the opportunity to take distance education courses in much the same way as traditional in-class training. The sessions can be recorded and they allow students the option of following the courses synchronously or asynchronously. Three typical profiles can then be distinguished: students who choose to follow the courses synchronously, students who could attend the course in synchronous mode but choose to follow the session off-line, and students who follow the course asynchronously as they cannot attend the course when it is offered because of professional or personal constraints. Our study consists of observing attendance at all distance education courses offered in the synchronous mode by the Computer Science and Software Engineering Department at Laval University during 10 consecutive semesters. The aim is to identify factors that influence students in their choice of attending the distance courses in synchronous mode. It was found that participation tends to be relatively stable over the years for any one semester (fall, winter summer) and is similar from one course to another, although students may be increasingly familiar with the synchronous distance education courses. Average participation is around 28%. There may be deviations, but they concern only a few courses during certain semesters, suggesting that these deviations would only have occurred because of the composition of particular promotions during specific semesters. Furthermore, course schedules have a great influence on the attendance rate. The highest rates are all for courses which are scheduled outside office hours.

Keywords: Attendance, distance undergraduate education in computer science, student behavior, synchronous e-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
2343 Simulation Programs to Education of Crisis Management Members

Authors: Jiri Barta

Abstract:

This paper deals with a simulation programs and technologies using in the educational process for members of the crisis management. Risk analysis, simulation, preparation and planning are among the main activities of workers of crisis management. Made correctly simulation of emergency defines the extent of the danger. On this basis, it is possible to effectively prepare and plan measures to minimize damage. The paper is focused on simulation programs that are trained at the University of Defence. Implementation of the outputs from simulation programs in decision-making processes of crisis staffs is one of the main tasks of the research project.

Keywords: Crisis Management, Continuity, Critical Infrastructure, Dangerous substance, Education, Flood, Simulation Programs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
2342 The Analysis of the Software Industry in Thailand

Authors: Danuvasin Charoen

Abstract:

The software industry has been considered a critical infrastructure for any nation. Several studies have indicated that national competitiveness increasingly depends upon Information and Communication Technology (ICT), and software is one of the major components of ICT, important for both large and small enterprises. Even though there has been strong growth in the software industry in Thailand, the industry has faced many challenges and problems that need to be resolved. For example, the amount of pirated software has been rising, and Thailand still has a large gap in the digital divide. Additionally, the adoption among SMEs has been slow. This paper investigates various issues in the software industry in Thailand, using information acquired through analysis of secondary sources, observation, and focus groups. The results of this study can be used as “lessons learned" for the development of the software industry in any developing country.

Keywords: Software industry, developing nations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4475
2341 Tagged Grid Matching Based Object Detection in Wavelet Neural Network

Authors: R. Arulmurugan, P. Sengottuvelan

Abstract:

Object detection using Wavelet Neural Network (WNN) plays a major contribution in the analysis of image processing. Existing cluster-based algorithm for co-saliency object detection performs the work on the multiple images. The co-saliency detection results are not desirable to handle the multi scale image objects in WNN. Existing Super Resolution (SR) scheme for landmark images identifies the corresponding regions in the images and reduces the mismatching rate. But the Structure-aware matching criterion is not paying attention to detect multiple regions in SR images and fail to enhance the result percentage of object detection. To detect the objects in the high-resolution remote sensing images, Tagged Grid Matching (TGM) technique is proposed in this paper. TGM technique consists of the three main components such as object determination, object searching and object verification in WNN. Initially, object determination in TGM technique specifies the position and size of objects in the current image. The specification of the position and size using the hierarchical grid easily determines the multiple objects. Second component, object searching in TGM technique is carried out using the cross-point searching. The cross out searching point of the objects is selected to faster the searching process and reduces the detection time. Final component performs the object verification process in TGM technique for identifying (i.e.,) detecting the dissimilarity of objects in the current frame. The verification process matches the search result grid points with the stored grid points to easily detect the objects using the Gabor wavelet Transform. The implementation of TGM technique offers a significant improvement on the multi-object detection rate, processing time, precision factor and detection accuracy level.

Keywords: Object Detection, Cross-point Searching, Wavelet Neural Network, Object Determination, Gabor Wavelet Transform, Tagged Grid Matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965