Search results for: intelligent fuzzy controller.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1975

Search results for: intelligent fuzzy controller.

85 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market

Authors: Taylan Kabbani, Ekrem Duman

Abstract:

Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining  the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.

Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 523
84 An Agent Oriented Approach to Operational Profile Management

Authors: Sunitha Ramanujam, Hany El Yamany, Miriam A. M. Capretz

Abstract:

Software reliability, defined as the probability of a software system or application functioning without failure or errors over a defined period of time, has been an important area of research for over three decades. Several research efforts aimed at developing models to improve reliability are currently underway. One of the most popular approaches to software reliability adopted by some of these research efforts involves the use of operational profiles to predict how software applications will be used. Operational profiles are a quantification of usage patterns for a software application. The research presented in this paper investigates an innovative multiagent framework for automatic creation and management of operational profiles for generic distributed systems after their release into the market. The architecture of the proposed Operational Profile MAS (Multi-Agent System) is presented along with detailed descriptions of the various models arrived at following the analysis and design phases of the proposed system. The operational profile in this paper is extended to comprise seven different profiles. Further, the criticality of operations is defined using a new composed metrics in order to organize the testing process as well as to decrease the time and cost involved in this process. A prototype implementation of the proposed MAS is included as proof-of-concept and the framework is considered as a step towards making distributed systems intelligent and self-managing.

Keywords: Software reliability, Software testing, Metrics, Distributed systems, Multi-agent systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
83 Twitter Sentiment Analysis during the Lockdown on New Zealand

Authors: Smah Doeban Almotiri

Abstract:

One of the most common fields of natural language processing (NLP) is sentimental analysis. The inferred feeling in the text can be successfully mined for various events using sentiment analysis. Twitter is viewed as a reliable data point for sentimental analytics studies since people are using social media to receive and exchange different types of data on a broad scale during the COVID-19 epidemic. The processing of such data may aid in making critical decisions on how to keep the situation under control. The aim of this research is to look at how sentimental states differed in a single geographic region during the lockdown at two different times.1162 tweets were analyzed related to the COVID-19 pandemic lockdown using keywords hashtags (lockdown, COVID-19) for the first sample tweets were from March 23, 2020, until April 23, 2020, and the second sample for the following year was from March 1, 2021, until April 4, 2021. Natural language processing (NLP), which is a form of Artificial intelligent was used for this research to calculate the sentiment value of all of the tweets by using AFINN Lexicon sentiment analysis method. The findings revealed that the sentimental condition in both different times during the region's lockdown was positive in the samples of this study, which are unique to the specific geographical area of New Zealand. This research suggests applied machine learning sentimental method such as Crystal Feel and extended the size of the sample tweet by using multiple tweets over a longer period of time.

Keywords: sentiment analysis, Twitter analysis, lockdown, Covid-19, AFINN, NodeJS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
82 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
81 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
80 Mathematical Study for Traffic Flow and Traffic Density in Kigali Roads

Authors: Kayijuka Idrissa

Abstract:

This work investigates a mathematical study for traffic flow and traffic density in Kigali city roads and the data collected from the national police of Rwanda in 2012. While working on this topic, some mathematical models were used in order to analyze and compare traffic variables. This work has been carried out on Kigali roads specifically at roundabouts from Kigali Business Center (KBC) to Prince House as our study sites. In this project, we used some mathematical tools to analyze the data collected and to understand the relationship between traffic variables. We applied the Poisson distribution method to analyze and to know the number of accidents occurred in this section of the road which is from KBC to Prince House. The results show that the accidents that occurred in 2012 were at very high rates due to the fact that this section has a very narrow single lane on each side which leads to high congestion of vehicles, and consequently, accidents occur very frequently. Using the data of speeds and densities collected from this section of road, we found that the increment of the density results in a decrement of the speed of the vehicle. At the point where the density is equal to the jam density the speed becomes zero. The approach is promising in capturing sudden changes on flow patterns and is open to be utilized in a series of intelligent management strategies and especially in noncurrent congestion effect detection and control.

Keywords: Statistical methods, Poisson distribution, car moving techniques, traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
79 A Novel Application of Network Equivalencing Method in Time Domain to Precise Calculation of Dead Time in Power Transmission Title

Authors: J. Moshtagh, L. Eslami

Abstract:

Various studies have showed that about 90% of single line to ground faults occurred on High voltage transmission lines have transient nature. This type of faults is cleared by temporary outage (by the single phase auto-reclosure). The interval between opening and reclosing of the faulted phase circuit breakers is named “Dead Time” that is varying about several hundred milliseconds. For adjustment of traditional single phase auto-reclosures that usually are not intelligent, it is necessary to calculate the dead time in the off-line condition precisely. If the dead time used in adjustment of single phase auto-reclosure is less than the real dead time, the reclosing of circuit breakers threats the power systems seriously. So in this paper a novel approach for precise calculation of dead time in power transmission lines based on the network equivalencing in time domain is presented. This approach has extremely higher precision in comparison with the traditional method based on Thevenin equivalent circuit. For comparison between the proposed approach in this paper and the traditional method, a comprehensive simulation by EMTP-ATP is performed on an extensive power network.

Keywords: Dead Time, Network Equivalencing, High Voltage Transmission Lines, Single Phase Auto-Reclosure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
78 Optimal Efficiency Control of Pulse Width Modulation - Inverter Fed Motor Pump Drive Using Neural Network

Authors: O. S. Ebrahim, M. A. Badr, A. S. Elgendy, K. O. Shawky, P. K. Jain

Abstract:

This paper demonstrates an improved Loss Model Control (LMC) for a 3-phase induction motor (IM) driving pump load. Compared with other power loss reduction algorithms for IM, the presented one has the advantages of fast and smooth flux adaptation, high accuracy, and versatile implementation. The performance of LMC depends mainly on the accuracy of modeling the motor drive and losses. A loss-model for IM drive that considers the surplus power loss caused by inverter voltage harmonics using closed-form equations and also includes the magnetic saturation has been developed. Further, an Artificial Neural Network (ANN) controller is synthesized and trained offline to determine the optimal flux level that achieves maximum drive efficiency. The drive’s voltage and speed control loops are connecting via the stator frequency to avoid the possibility of excessive magnetization. Besides, the resistance change due to temperature is considered by a first-order thermal model. The obtained thermal information enhances motor protection and control. These together have the potential of making the proposed algorithm reliable. Simulation and experimental studies are performed on 5.5 kW test motor using the proposed control method. The test results are provided and compared with the fixed flux operation to validate the effectiveness.

Keywords: Artificial neural network, ANN, efficiency optimization, induction motor, IM, Pulse Width Modulated, PWM, harmonic losses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 356
77 Tool for Analysing the Sensitivity and Tolerance of Mechatronic Systems in Matlab GUI

Authors: Bohuslava Juhasova, Martin Juhas, Renata Masarova, Zuzana Sutova

Abstract:

The article deals with the tool in Matlab GUI form that is designed to analyse a mechatronic system sensitivity and tolerance. In the analysed mechatronic system, a torque is transferred from the drive to the load through a coupling containing flexible elements. Different methods of control system design are used. The classic form of the feedback control is proposed using Naslin method, modulus optimum criterion and inverse dynamics method. The cascade form of the control is proposed based on combination of modulus optimum criterion and symmetric optimum criterion. The sensitivity is analysed on the basis of absolute and relative sensitivity of system function to the change of chosen parameter value of the mechatronic system, as well as the control subsystem. The tolerance is analysed in the form of determining the range of allowed relative changes of selected system parameters in the field of system stability. The tool allows to analyse an influence of torsion stiffness, torsion damping, inertia moments of the motor and the load and controller(s) parameters. The sensitivity and tolerance are monitored in terms of the impact of parameter change on the response in the form of system step response and system frequency-response logarithmic characteristics. The Symbolic Math Toolbox for expression of the final shape of analysed system functions was used. The sensitivity and tolerance are graphically represented as 2D graph of sensitivity or tolerance of the system function and 3D/2D static/interactive graph of step/frequency response.

Keywords: Mechatronic systems, Matlab GUI, sensitivity, tolerance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
76 AI-Based Approaches for Task Offloading, ‎Resource ‎Allocation and Service Placement of ‎IoT Applications: State of the Art

Authors: Fatima Z. Cherhabil, Mammar Sedrati, Sonia-Sabrina Bendib‎

Abstract:

In order to support the continued growth, critical latency of ‎IoT ‎applications and ‎various obstacles of traditional data centers, ‎Mobile Edge ‎Computing (MEC) has ‎emerged as a promising solution that extends the cloud data-processing and decision-making to edge devices. ‎By adopting a MEC structure, IoT applications could be executed ‎locally, on ‎an edge server, different fog nodes or distant cloud ‎data centers. However, we are ‎often ‎faced with wanting to optimize conflicting criteria such as ‎minimizing energy ‎consumption of limited local capabilities (in terms of CPU, RAM, storage, bandwidth) of mobile edge ‎devices and trying to ‎keep ‎high performance (reducing ‎response time, increasing throughput and service availability) ‎at the same ‎time‎. Achieving one goal may affect the other making Task Offloading (TO), ‎Resource Allocation (RA) and Service Placement (SP) complex ‎processes. ‎It is a nontrivial multi-objective optimization ‎problem ‎to study the trade-off between conflicting criteria. ‎The paper provides a survey on different TO, SP and RA recent Multi-‎Objective Optimization (MOO) approaches used in edge computing environments, particularly Artificial Intelligent (AI) ones, to satisfy various objectives, constraints and dynamic conditions related to IoT applications‎.

Keywords: Mobile Edge Computing, Multi-Objective Optimization, Artificial Intelligence ‎Approaches, Task Offloading, Resource Allocation, Service Placement‎.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510
75 A Software Framework for Predicting Oil-Palm Yield from Climate Data

Authors: Mohd. Noor Md. Sap, A. Majid Awan

Abstract:

Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.

Keywords: Pattern analysis, clustering, kernel methods, spatial data, crop yield

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1978
74 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: Microbiological analysis, shelf life, transport damage, volatile organic compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3118
73 Retrospective Reconstruction of Time Series Data for Integrated Waste Management

Authors: A. Buruzs, M. F. Hatwágner, A. Torma, L. T. Kóczy

Abstract:

The development, operation and maintenance of Integrated Waste Management Systems (IWMS) affects essentially the sustainable concern of every region. The features of such systems have great influence on all of the components of sustainability. In order to reach the optimal way of processes, a comprehensive mapping of the variables affecting the future efficiency of the system is needed such as analysis of the interconnections among the components and modeling of their interactions. The planning of a IWMS is based fundamentally on technical and economical opportunities and the legal framework. Modeling the sustainability and operation effectiveness of a certain IWMS is not in the scope of the present research. The complexity of the systems and the large number of the variables require the utilization of a complex approach to model the outcomes and future risks. This complex method should be able to evaluate the logical framework of the factors composing the system and the interconnections between them. The authors of this paper studied the usability of the Fuzzy Cognitive Map (FCM) approach modeling the future operation of IWMS’s. The approach requires two input data set. One is the connection matrix containing all the factors affecting the system in focus with all the interconnections. The other input data set is the time series, a retrospective reconstruction of the weights and roles of the factors. This paper introduces a novel method to develop time series by content analysis.

Keywords: Content analysis, factors, integrated waste management system, time series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
72 Design of Smart Urban Lighting by Using Social Sustainability Approach

Authors: Mohsen Noroozi, Maryam Khalili

Abstract:

Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.

Keywords: Behavior model, internet of things, social sustainability, urban lighting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
71 Environmental Management of the Tanning Industry's Supply Chain: An Integration Model from Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001:2004

Authors: N. Clavijo Buriticá, L. M. Correa Lópezand J. R., Sánchez Rodríguez

Abstract:

The environmental impact caused by industries is an issue that, in the last 20 years, has become very important in terms of society, economics and politics in Colombia. Particularly, the tannery process is extremely polluting because of uneffective treatments and regulations given to the dumping process and atmospheric emissions. Considering that, this investigation is intended to propose a management model based on the integration of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, that prioritizes the strategic components of the organizations. As a result, a management model will be obtained and it will provide a strategic perspective through a systemic approach to the tanning process. This will be achieved through the use of Multicriteria Decision tools, along with Quality Function Deployment and Fuzzy Logic. The strategic approach that embraces the management model using the alignment of Lean Supply Chain, Green Supply Chain, Cleaner Production and ISO 14001-2004, is an integrated perspective that allows a gradual frame of the tactical and operative elements through the correct setting of the information flow, improving the decision making process. In that way, Small Medium Enterprises (SMEs) could improve their productivity, competitiveness and as an added value, the minimization of the environmental impact. This improvement is expected to be controlled through a Dashboard that helps the Organization measure its performance along the implementation of the model in its productive process.

Keywords: Integration, environmental impact, management, systemic organization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
70 Evolution of Web Development Techniques in Modern Technology

Authors: Abdul Basit Kiani, Maryam Kiani

Abstract:

The art of web development in new technologies is a dynamic journey, shaped by the constant evolution of tools and platforms. With the emergence of JavaScript frameworks and APIs, web developers are empowered to craft web applications that are not only robust but also highly interactive. The aim is to provide an overview of the developments in the field. The integration of artificial intelligence (AI) and machine learning (ML) has opened new horizons in web development. Chatbots, intelligent recommendation systems, and personalization algorithms have become integral components of modern websites. These AI-powered features enhance user engagement, provide personalized experiences, and streamline customer support processes, revolutionizing the way businesses interact with their audiences. Lastly, the emphasis on web security and privacy has been a pivotal area of progress. With the increasing incidents of cyber threats, web developers have implemented robust security measures to safeguard user data and ensure secure transactions. Innovations such as HTTPS protocol, two-factor authentication, and advanced encryption techniques have bolstered the overall security of web applications, fostering trust and confidence among users. Hence, recent progress in web development has propelled the industry forward, enabling developers to craft innovative and immersive digital experiences. From responsive design to AI integration and enhanced security, the landscape of web development continues to evolve, promising a future filled with endless possibilities.

Keywords: Web development, software testing, progressive web apps, web and mobile native application.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 377
69 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames

Authors: M. Mohebbi, K. Shakeri

Abstract:

The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.

Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1405
68 Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane

Authors: R. Bansal, A. Jain, M. Kumar, R. S. Meena

Abstract:

Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.

Keywords: Defective Ground plane, Dual band, Loop Antenna, Microstrip antenna, Resonance frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3767
67 A Nodal Transmission Pricing Model based on Newly Developed Expressions of Real and Reactive Power Marginal Prices in Competitive Electricity Markets

Authors: Ashish Saini, A.K. Saxena

Abstract:

In competitive electricity markets all over the world, an adoption of suitable transmission pricing model is a problem as transmission segment still operates as a monopoly. Transmission pricing is an important tool to promote investment for various transmission services in order to provide economic, secure and reliable electricity to bulk and retail customers. The nodal pricing based on SRMC (Short Run Marginal Cost) is found extremely useful by researchers for sending correct economic signals. The marginal prices must be determined as a part of solution to optimization problem i.e. to maximize the social welfare. The need to maximize the social welfare subject to number of system operational constraints is a major challenge from computation and societal point of views. The purpose of this paper is to present a nodal transmission pricing model based on SRMC by developing new mathematical expressions of real and reactive power marginal prices using GA-Fuzzy based optimal power flow framework. The impacts of selecting different social welfare functions on power marginal prices are analyzed and verified with results reported in literature. Network revenues for two different power systems are determined using expressions derived for real and reactive power marginal prices in this paper.

Keywords: Deregulation, electricity markets, nodal pricing, social welfare function, short run marginal cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644
66 Distributed Manufacturing (DM) - Smart Units and Collaborative Processes

Authors: Hermann Kuehnle

Abstract:

Applications of the Hausdorff space and its mappings into tangent spaces are outlined, including their fractal dimensions and self-similarities. The paper details this theory set up and further describes virtualizations and atomization of manufacturing processes. It demonstrates novel concurrency principles that will guide manufacturing processes and resources configurations. Moreover, varying levels of details may be produced by up folding and breaking down of newly introduced generic models. This choice of layered generic models for units and systems aspects along specific aspects allows research work in parallel to other disciplines with the same focus on all levels of detail. More credit and easier access are granted to outside disciplines for enriching manufacturing grounds. Specific mappings and the layers give hints for chances for interdisciplinary outcomes and may highlight more details for interoperability standards, as already worked on the international level. The new rules are described, which require additional properties concerning all involved entities for defining distributed decision cycles, again on the base of self-similarity. All properties are further detailed and assigned to a maturity scale, eventually displaying the smartness maturity of a total shopfloor or a factory. The paper contributes to the intensive ongoing discussion in the field of intelligent distributed manufacturing and promotes solid concepts for implementations of Cyber Physical Systems and the Internet of Things into manufacturing industry, like industry 4.0, as discussed in German-speaking countries.

Keywords: Autonomous unit, Networkability, Smart manufacturing unit, Virtualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
65 A Growing Natural Gas Approach for Evaluating Quality of Software Modules

Authors: Parvinder S. Sandhu, Sandeep Khimta, Kiranpreet Kaur

Abstract:

The prediction of Software quality during development life cycle of software project helps the development organization to make efficient use of available resource to produce the product of highest quality. “Whether a module is faulty or not" approach can be used to predict quality of a software module. There are numbers of software quality prediction models described in the literature based upon genetic algorithms, artificial neural network and other data mining algorithms. One of the promising aspects for quality prediction is based on clustering techniques. Most quality prediction models that are based on clustering techniques make use of K-means, Mixture-of-Guassians, Self-Organizing Map, Neural Gas and fuzzy K-means algorithm for prediction. In all these techniques a predefined structure is required that is number of neurons or clusters should be known before we start clustering process. But in case of Growing Neural Gas there is no need of predetermining the quantity of neurons and the topology of the structure to be used and it starts with a minimal neurons structure that is incremented during training until it reaches a maximum number user defined limits for clusters. Hence, in this work we have used Growing Neural Gas as underlying cluster algorithm that produces the initial set of labeled cluster from training data set and thereafter this set of clusters is used to predict the quality of test data set of software modules. The best testing results shows 80% accuracy in evaluating the quality of software modules. Hence, the proposed technique can be used by programmers in evaluating the quality of modules during software development.

Keywords: Growing Neural Gas, data clustering, fault prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
64 Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC

Authors: C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang

Abstract:

Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Keywords: Dedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
63 Minimizing Grid Reliance: A Power Model Approach for Peak Hour Demand Based on Hybrid Solar Systems

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Electrical energy demands have increased due to population growth and the variety of new electrical load technologies. This increase demand has nearly doubled during peak hours. Consequently, that necessitates the construction of new power plant infrastructures, which is a costly approach due to the expense of construction building, future preservation like maintenance, and environmental impact. As an alternative approach, most electrical utilities increase the price of electrical usage during peak hours, encouraging consumers to use less electricity during peak periods under Time-Of-Use programs, which may not be universally suitable for all consumers. Furthermore, in some areas, the excessive demand and the lack of supply cause an electrical outage, posing considerable stress and challenges to electrical utilities and consumers. However, control systems, artificial intelligence (AI), and renewable energy (RE), when effectively integrated, provide new solutions to mitigate excessive demand during peak hours. This paper presents a power model that reduces the reliance on the power grid during peak hours by utilizing a hybrid solar system connected to a residential house with a power management controller, that prioritizes the power drives between Photovoltaic (PV) production, battery backup, and the utility electrical grid. As a result, dependence on utility grid was from 3% to 18% during peak hours, improving energy stability safely and efficiently for electrical utilities, consumers, and communities, providing a viable alternative to conventional approaches such as Time-Of-Use programs.

Keywords: Artificial intelligence, AI, control system, photovoltaic, PV, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126
62 A Vehicular Visual Tracking System Incorporating Global Positioning System

Authors: Hsien-Chou Liao, Yu-Shiang Wang

Abstract:

Surveillance system is widely used in the traffic monitoring. The deployment of cameras is moving toward a ubiquitous camera (UbiCam) environment. In our previous study, a novel service, called GPS-VT, was firstly proposed by incorporating global positioning system (GPS) and visual tracking techniques for the UbiCam environment. The first prototype is called GODTA (GPS-based Moving Object Detection and Tracking Approach). For a moving person carried GPS-enabled mobile device, he can be tracking when he enters the field-of-view (FOV) of a camera according to his real-time GPS coordinate. In this paper, GPS-VT service is applied to the tracking of vehicles. The moving speed of a vehicle is much faster than a person. It means that the time passing through the FOV is much shorter than that of a person. Besides, the update interval of GPS coordinate is once per second, it is asynchronous with the frame rate of the real-time image. The above asynchronous is worsen by the network transmission delay. These factors are the main challenging to fulfill GPS-VT service on a vehicle.In order to overcome the influence of the above factors, a back-propagation neural network (BPNN) is used to predict the possible lane before the vehicle enters the FOV of a camera. Then, a template matching technique is used for the visual tracking of a target vehicle. The experimental result shows that the target vehicle can be located and tracking successfully. The success location rate of the implemented prototype is higher than that of the previous GODTA.

Keywords: visual surveillance, visual tracking, globalpositioning system, intelligent transportation system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
61 Utilizing Ontologies Using Ontology Editor for Creating Initial Unified Modeling Language (UML)Object Model

Authors: Waralak Vongdoiwang Siricharoen

Abstract:

One of object oriented software developing problem is the difficulty of searching the appropriate and suitable objects for starting the system. In this work, ontologies appear in the part of supporting the object discovering in the initial of object oriented software developing. There are many researches try to demonstrate that there is a great potential between object model and ontologies. Constructing ontology from object model is called ontology engineering can be done; On the other hand, this research is aiming to support the idea of building object model from ontology is also promising and practical. Ontology classes are available online in any specific areas, which can be searched by semantic search engine. There are also many helping tools to do so; one of them which are used in this research is Protégé ontology editor and Visual Paradigm. To put them together give a great outcome. This research will be shown how it works efficiently with the real case study by using ontology classes in travel/tourism domain area. It needs to combine classes, properties, and relationships from more than two ontologies in order to generate the object model. In this paper presents a simple methodology framework which explains the process of discovering objects. The results show that this framework has great value while there is possible for expansion. Reusing of existing ontologies offers a much cheaper alternative than building new ones from scratch. More ontologies are becoming available on the web, and online ontologies libraries for storing and indexing ontologies are increasing in number and demand. Semantic and Ontologies search engines have also started to appear, to facilitate search and retrieval of online ontologies.

Keywords: Software Developing, Ontology, Ontology Library, Artificial Intelligent, Protégé, Object Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
60 Hash Based Block Matching for Digital Evidence Image Files from Forensic Software Tools

Authors: M. Kaya, M. Eris

Abstract:

Internet use, intelligent communication tools, and social media have all become an integral part of our daily life as a result of rapid developments in information technology. However, this widespread use increases crimes committed in the digital environment. Therefore, digital forensics, dealing with various crimes committed in digital environment, has become an important research topic. It is in the research scope of digital forensics to investigate digital evidences such as computer, cell phone, hard disk, DVD, etc. and to report whether it contains any crime related elements. There are many software and hardware tools developed for use in the digital evidence acquisition process. Today, the most widely used digital evidence investigation tools are based on the principle of finding all the data taken place in digital evidence that is matched with specified criteria and presenting it to the investigator (e.g. text files, files starting with letter A, etc.). Then, digital forensics experts carry out data analysis to figure out whether these data are related to a potential crime. Examination of a 1 TB hard disk may take hours or even days, depending on the expertise and experience of the examiner. In addition, it depends on examiner’s experience, and may change overall result involving in different cases overlooked. In this study, a hash-based matching and digital evidence evaluation method is proposed, and it is aimed to automatically classify the evidence containing criminal elements, thereby shortening the time of the digital evidence examination process and preventing human errors.

Keywords: Block matching, digital evidence, hash list.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357
59 Interoperable CNC System for Turning Operations

Authors: Yusri Yusof, Stephen Newman, Aydin Nassehi, Keith Case

Abstract:

The changing economic climate has made global manufacturing a growing reality over the last decade, forcing companies from east and west and all over the world to collaborate beyond geographic boundaries in the design, manufacture and assemble of products. The ISO10303 and ISO14649 Standards (STEP and STEP-NC) have been developed to introduce interoperability into manufacturing enterprises so as to meet the challenge of responding to production on demand. This paper describes and illustrates a STEP compliant CAD/CAPP/CAM System for the manufacture of rotational parts on CNC turning centers. The information models to support the proposed system together with the data models defined in the ISO14649 standard used to create the NC programs are also described. A structured view of a STEP compliant CAD/CAPP/CAM system framework supporting the next generation of intelligent CNC controllers for turn/mill component manufacture is provided. Finally a proposed computational environment for a STEP-NC compliant system for turning operations (SCSTO) is described. SCSTO is the experimental part of the research supported by the specification of information models and constructed using a structured methodology and object-oriented methods. SCSTO was developed to generate a Part 21 file based on machining features to support the interactive generation of process plans utilizing feature extraction. A case study component has been developed to prove the concept for using the milling and turning parts of ISO14649 to provide a turn-mill CAD/CAPP/CAM environment.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
58 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2788
57 Control of Vibrations in Flexible Smart Structures using Fast Output Sampling Feedback Technique

Authors: T.C. Manjunath, B. Bandyopadhyay

Abstract:

This paper features the modeling and design of a Fast Output Sampling (FOS) Feedback control technique for the Active Vibration Control (AVC) of a smart flexible aluminium cantilever beam for a Single Input Single Output (SISO) case. Controllers are designed for the beam by bonding patches of piezoelectric layer as sensor / actuator to the master structure at different locations along the length of the beam by retaining the first 2 dominant vibratory modes. The entire structure is modeled in state space form using the concept of piezoelectric theory, Euler-Bernoulli beam theory, Finite Element Method (FEM) and the state space techniques by dividing the structure into 3, 4, 5 finite elements, thus giving rise to three types of systems, viz., system 1 (beam divided into 3 finite elements), system 2 (4 finite elements), system 3 (5 finite elements). The effect of placing the sensor / actuator at various locations along the length of the beam for all the 3 types of systems considered is observed and the conclusions are drawn for the best performance and for the smallest magnitude of the control input required to control the vibrations of the beam. Simulations are performed in MATLAB. The open loop responses, closed loop responses and the tip displacements with and without the controller are obtained and the performance of the proposed smart system is evaluated for vibration control.

Keywords: Smart structure, Finite element method, State spacemodel, Euler-Bernoulli theory, SISO model, Fast output sampling, Vibration control, LMI

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
56 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1836