Search results for: flow duration curve
1050 Stresses Distribution in Spot, Bonded, and Weld- Bonded Joints during the Process of Axial Load
Authors: Essam A. Al-Bahkali, Mahir H. Es-saheb, Jonny Herwan
Abstract:
In this study the elastic-plastic stress distribution in weld-bonded joint, fabricated from austenitic stainless steel (AISI 304) sheet of 1.00 mm thickness and Epoxy adhesive Araldite 2011, subjected to axial loading is investigated. This is needed to improve design procedures and welding codes, and saving efforts in the cumbersome experiments and analysis. Therefore, a complete 3-D finite element modelling and analysis of spot welded, bonded and weld-bonded joints under axial loading conditions is carried out. A comprehensive systematic experimental program is conducted to determine many properties and quantities, of the base metals and the adhesive, needed for FE modelling, such like the elastic – plastic properties, modulus of elasticity, fracture limit, the nugget and heat affected zones (HAZ) properties, etc. Consequently, the finite element models developed, for each case, are used to evaluate stresses distributions across the entire joint, in both the elastic and plastic regions. The stress distribution curves are obtained, particularly in the elastic regions and found to be consistent and in excellent agreement with the published data. Furthermore, the stresses distributions are obtained in the weld-bonded joint and display the best results with almost uniform smooth distribution compared to spot and bonded cases. The stress concentration peaks at the edges of the weld-bonded region, are almost eliminated resulting in achieving the strongest joint of all processes.Keywords: Spot Welded, Weld-Bonded, Load-Displacement curve, Stress distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25721049 Evaluating Probable Bending of Frames for Near-Field and Far-Field Records
Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar
Abstract:
Most reinforced concrete structures are designed only under heavy loads have large transverse reinforcement spacing values, and therefore suffer severe failure after intense ground movements. The main goal of this paper is to compare the shear- and axial failure of concrete bending frames available in Tehran using Incremental Dynamic Analysis (IDA) under near- and far-field records. For this purpose, IDA of 5, 10, and 15-story concrete structures were done under seven far-fault records and five near-faults records. The results show that in two-dimensional models of short-rise, mid-rise and high-rise reinforced concrete frames located on Type-3 soil, increasing the distance of the transverse reinforcement can increase the maximum inter-story drift ratio values up to 37%. According to the existing results on 5, 10, and 15-story reinforced concrete models located on Type-3 soil, records with characteristics such as fling-step and directivity create maximum drift values between floors more than far-fault earthquakes. The results indicated that in the case of seismic excitation modes under earthquake encompassing directivity or fling-step, the probability values of failure and failure possibility increasing rate values are much smaller than the corresponding values of far-fault earthquakes. However, in near-fault frame records, the probability of exceedance occurs at lower seismic intensities compared to far-fault records.
Keywords: Directivity, fling-step, fragility curve, IDA, inter story drift ratio.v
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3651048 Numerical Modeling of the Depth-Averaged Flow Over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D1 depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. κ − ε and 2D LES turbulence models were consider in this article. 2D CFD2 simulations for one hill was done to check the depth-averaged model in practise.
Keywords: Depth-averaged equations, numerical modeling, CFD
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19431047 Chase Trainer Exercise Program in Athlete with Unilateral Patellofemoral Pain Syndrome (PFPS)
Authors: Asha Hasnimy Mohd Hashim, Lee Ai Choo
Abstract:
We investigated the effects of modified preprogrammed training mode Chase Trainer from Balance Trainer (BT3, HurLab, Tampere, Finland) on athlete who experienced unilateral Patellofemoral Pain Syndrome (PFPS). Twenty-seven athletes with mean age= 14.23 ±1.31 years, height = 164.89 ± 7.85 cm, weight = 56.94 ± 9.28 kg were randomly assigned to two groups: experiment (EG; n = 14) and injured (IG; n = 13). EG performed a series of Chase Trainer program which required them to shift their body weight at different directions, speeds and angle of leaning twice a week for duration of 8 weeks. The static postural control and perceived pain level measures were taken at baseline, after 6 weeks and 8 weeks of training. There was no significant difference in any of tested variables between EG and IG before and after 6-week the intervention period. However, after 8-week of training, the postural control (eyes open) and perceived pain level of EG improved compared to IG (p<0.05). The postural control with eyes closed of EG improved (p<0.05) but the values were not significantly different compared to IG after training. The results suggest that using Chase Trainer exercise program it is possible to improve individual postural control and decreased perceived pain level in athlete with unilateral Patellofemoral Pain Syndrome (PFPS).
Keywords: Patellofemoral Pain Syndrome, perceived pain level, postural control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14701046 Centralized Controller for Microgrid
Authors: Adel Hamad Rafa
Abstract:
This paper, proposes a control system for use with microgrid consiste of multiple small scale embedded generation networks (SSEG networks) connected to the 33kV distribution network. The proposed controller controls power flow in the grid-connected mode of operation, enables voltage and frequency control when the SSEG networks are islanded, and resynchronises the SSEG networks with the utility before reconnecting them. The performance of the proposed controller has been tested in simulations using PSCAD.
Keywords: Microgrid, Small scale embedded generation, island mode, resynchronisation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20311045 CT Medical Images Denoising Based on New Wavelet Thresholding Compared with Curvelet and Contourlet
Authors: Amir Moslemi, Amir Movafeghi, Shahab Moradi
Abstract:
One of the most important challenging factors in medical images is nominated as noise. Image denoising refers to the improvement of a digital medical image that has been infected by Additive White Gaussian Noise (AWGN). The digital medical image or video can be affected by different types of noises. They are impulse noise, Poisson noise and AWGN. Computed tomography (CT) images are subjects to low quality due to the noise. Quality of CT images is dependent on absorbed dose to patients directly in such a way that increase in absorbed radiation, consequently absorbed dose to patients (ADP), enhances the CT images quality. In this manner, noise reduction techniques on purpose of images quality enhancement exposing no excess radiation to patients is one the challenging problems for CT images processing. In this work, noise reduction in CT images was performed using two different directional 2 dimensional (2D) transformations; i.e., Curvelet and Contourlet and Discrete Wavelet Transform (DWT) thresholding methods of BayesShrink and AdaptShrink, compared to each other and we proposed a new threshold in wavelet domain for not only noise reduction but also edge retaining, consequently the proposed method retains the modified coefficients significantly that result good visual quality. Data evaluations were accomplished by using two criterions; namely, peak signal to noise ratio (PSNR) and Structure similarity (Ssim).Keywords: Computed Tomography (CT), noise reduction, curve-let, contour-let, Signal to Noise Peak-Peak Ratio (PSNR), Structure Similarity (Ssim), Absorbed Dose to Patient (ADP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29211044 The Influence of the Fin Set-up to the Cooling Output of the Floor Heating Convector
Authors: F. Lemfeld, K. Frana
Abstract:
This article deals with the numerical simulation of the floor heating convector in 3D. Presented convector can operate in two modes – cooling mode and heating mode. This initial numerical simulation is focused on cooling mode of the convector. Models with different temperature of the fins are compared and three various shapes of the fins are examined as well. The objective of the work is to predict air flow and heat transfer inside convector for further optimalization of these devices. For the numerical simulation was used commercial software Ansys Fluent.Keywords: Cooling output, floor heating convector, numericalsimulation, optimalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14661043 Non–Geometric Sensitivities Using the Adjoint Method
Authors: Marcelo Hayashi, João Lima, Bruno Chieregatti, Ernani Volpe
Abstract:
The adjoint method has been used as a successful tool to obtain sensitivity gradients in aerodynamic design and optimisation for many years. This work presents an alternative approach to the continuous adjoint formulation that enables one to compute gradients of a given measure of merit with respect to control parameters other than those pertaining to geometry. The procedure is then applied to the steady 2–D compressible Euler and incompressible Navier–Stokes flow equations. Finally, the results are compared with sensitivities obtained by finite differences and theoretical values for validation.Keywords: Adjoint method, optimisation, non–geometric sensitivities, boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17731042 Effects of Chlorhexidine in Application to Hybrid Layers
Authors: Ilma Robo, Saimir Heta, Edona Hasanaj, Vera Ostreni
Abstract:
The hybrid layer (HL), the way it is created and how it is protected against degradation over time, is the key to the clinical success of a composite restoration. The composite supports the dentinal structure exactly with the realized surface of micro-retention. Thus, this surface is in direct proportion to its size versus the duration of clinical use of composite dental restoration. Micro-retention occurs between dentin or acidified enamel and adhesive resin extensions versus pre-prepared spaces, such as hollow dentinal tubules. The way the adhesive resin binds to the acidified dentinal structure depends on the physical or chemical factors of this interrelationship between two structures with very different characteristics. During the acidification process, a precursor to the placement of the adhesive resin layer, activation of metalloproteinases of dental origin occurs, enzymes which are responsible for the degradation of the HL. These enzymes have expressed activity depending on the presence of Zn2+ or Ca2+ ions. There are several ways to inhibit these enzymes, and consequently, there are several ways to inhibit the degradation process of the HL. The study aim is to evaluate chlorhexidine (CHX) as a solution element, inhibitor of dentin activated metalloproteinases, as a result of the application of acidification. This study aims to look at this solution in advantage or contraindication theories, already published in the literature.
Keywords: Hybrid layer, chlorhexidine, degradation, smear layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3491041 Investigation of Rehabilitation Effects on Fire Damaged High Strength Concrete Beams
Authors: Eun Mi Ryu, Ah Young An, Ji Yeon Kang, Yeong Soo Shin, Hee Sun Kim
Abstract:
When high strength reinforced concrete is exposed to high temperature due to a fire, deteriorations occur such as loss in strength and elastic modulus, cracking and spalling of the concrete. Therefore, it is important to understand risk of structural safety in building structures by studying structural behaviors and rehabilitation of fire damaged high strength concrete structures. This paper aims at investigating rehabilitation effect on fire damaged high strength concrete beams using experimental and analytical methods. In the experiments, flexural specimens with high strength concrete are exposed to high temperatures according to ISO 834 standard time temperature curve. From four-point loading test, results show that maximum loads of the rehabilitated beams are similar to or higher than those of the non-fire damaged RC beam. In addition, structural analyses are performed using ABAQUS 6.10-3 with same conditions as experiments to provide accurate predictions on structural and mechanical behaviors of rehabilitated RC beams. The parameters are the fire cover thickness and strengths of repairing mortar. Analytical results show good rehabilitation effects, when the results predicted from the rehabilitated models are compared to structural behaviors of the non-damaged RC beams. In this study, fire damaged high strength concrete beams are rehabilitated using polymeric cement mortar. The predictions from the finite element (FE) models show good agreements with the experimental results and the modeling approaches can be used to investigate applicability of various rehabilitation methods for further study.Keywords: Fire, High strength concrete, Rehabilitation, Reinforced concrete beam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23771040 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.
Keywords: Brain-machine interface, EEGLAB, emotiv EEG neuroheadset, openViBE, simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28041039 Development of the Gas Safety Management System using an Intelligent Gasmeter with Wireless ZigBee Network
Authors: Gyou-tae Park, Young-gyu Kim, Jeong-rock Kwon, Yongwoo Lee, Hiesik Kim
Abstract:
The gas safety management system using an intelligent gas meter we proposed is to monitor flow and pressure of gas, earthquake, temperature, smoke and leak of methane. Then our system takes safety measures to protect a serious risk by the result of an event, to communicate with a wall-pad including a gateway by zigbee network in buildings and to report the event to user by the safety management program in a server. Also, the inner cutoff valve of an intelligent gas meter is operated if any event occurred or abnormal at each sensor.Keywords: micom gas-meter, gas safety, zigbee, ubiquitous
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19491038 Velocity Distribution in Open Channels with Sand: An Experimental Study
Authors: E. Keramaris
Abstract:
In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.
Keywords: Particle image velocimetry, sand bed, velocity distribution, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17111037 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures
Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar
Abstract:
Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.
Keywords: Wavelet transform, computational error, computational duration, strong ground motion data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13761036 Minimization of Power Loss in Distribution Networks by Different Techniques
Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt
Abstract:
Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62361035 CQAR: Closed Quarter Aerial Robot Design for Reconnaissance, Surveillance and Target Acquisition Tasks in Urban Areas
Authors: Paul Y. Oh, William E. Green
Abstract:
This paper describes a prototype aircraft that can fly slowly, safely and transmit wireless video for tasks like reconnaissance, surveillance and target acquisition. The aircraft is designed to fly in closed quarters like forests, buildings, caves and tunnels which are often spacious but GPS reception is poor. Envisioned is that a small, safe and slow flying vehicle can assist in performing dull, dangerous and dirty tasks like disaster mitigation, search-and-rescue and structural damage assessment.Keywords: Unmanned aerial vehicles, autonomous collisionavoidance, optic flow, near-Earth environments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17611034 The Adsorption of SDS on Ferro-Precipitates
Authors: R.Marsalek
Abstract:
This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.Keywords: ferro-precipitate, adsorption, SDS, zeta potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19091033 Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System
Authors: D. Nebbali, R. Nebbali, A. Ouibrahim
Abstract:
This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000W.m2) in a case of no wind.
Keywords: Energy conversion, efficiency, balance energy, solar cell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24791032 Effect of Anoxia on Root Growth and Grain Yield of Wheat Cultivars
Authors: M. E. Ghobadi, M. Ghobadi
Abstract:
Waterlogging reduces shoot and root growth and final yield of wheat. Waterlogged sites have a combination of low slope, high rainfall, heavy texture and low permeability. This study was aimed the importance of waterlogging on root growth and wheat yield. In order to study the effects of different waterlogging duration (0, 10, 20 and 30 days) at growth stages (1-leaf stage, tillering stage and stem elongation stage) on root growth of wheat cultivars (Chamran, Vee/Nac and Yavaroos), one pot experiment was carried out. The experiment was a factorial according to a RCBD with three replications. Results showed that root dry weight and total root length in the anthesis and grain ripening stages and biological and grain yields were significantly different between cultivars, growth stages and waterlogging durations. Vee/Nac was found superior with respect to other cultivars. Susceptibility to waterlogging at different growth stages for cultivars was 1-leaf stage > tillering stage > stem elongation stage. Under waterlogging treatments, grain and biological yields, were decreased 44.5 and 39.8%, respectively. Root length and root dry weight were reduced 55.1 and 45.2%, respectively, too. In this experiment, decrease at root growth because of waterlogging reduced grain and biological yields. Based on the results, even short period (10 days) of waterlogging had unrecoverable effects on the root growth and grain yield of wheat.Keywords: Wheat, waterlogging, root length, root dry weight, grain yield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18921031 FSM-based Recognition of Dynamic Hand Gestures via Gesture Summarization Using Key Video Object Planes
Authors: M. K. Bhuyan
Abstract:
The use of human hand as a natural interface for humancomputer interaction (HCI) serves as the motivation for research in hand gesture recognition. Vision-based hand gesture recognition involves visual analysis of hand shape, position and/or movement. In this paper, we use the concept of object-based video abstraction for segmenting the frames into video object planes (VOPs), as used in MPEG-4, with each VOP corresponding to one semantically meaningful hand position. Next, the key VOPs are selected on the basis of the amount of change in hand shape – for a given key frame in the sequence the next key frame is the one in which the hand changes its shape significantly. Thus, an entire video clip is transformed into a small number of representative frames that are sufficient to represent a gesture sequence. Subsequently, we model a particular gesture as a sequence of key frames each bearing information about its duration. These constitute a finite state machine. For recognition, the states of the incoming gesture sequence are matched with the states of all different FSMs contained in the database of gesture vocabulary. The core idea of our proposed representation is that redundant frames of the gesture video sequence bear only the temporal information of a gesture and hence discarded for computational efficiency. Experimental results obtained demonstrate the effectiveness of our proposed scheme for key frame extraction, subsequent gesture summarization and finally gesture recognition.
Keywords: Hand gesture, MPEG-4, Hausdorff distance, finite state machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20271030 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current
Authors: S. Mezghani, E. Perrin, J. L Bodnar, J. Marthe, B. Cauwe, V. Vrabie
Abstract:
Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows obtaining a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 μm and 130 μm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for nonconductive substrates.Keywords: Nondestructive, paint coating, thickness, infrared thermography, laser, heterogeneity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20751029 GCM Based Fuzzy Clustering to Identify Homogeneous Climatic Regions of North-East India
Authors: Arup K. Sarma, Jayshree Hazarika
Abstract:
The North-eastern part of India, which receives heavier rainfall than other parts of the subcontinent, is of great concern now-a-days with regard to climate change. High intensity rainfall for short duration and longer dry spell, occurring due to impact of climate change, affects river morphology too. In the present study, an attempt is made to delineate the North-eastern region of India into some homogeneous clusters based on the Fuzzy Clustering concept and to compare the resulting clusters obtained by using conventional methods and nonconventional methods of clustering. The concept of clustering is adapted in view of the fact that, impact of climate change can be studied in a homogeneous region without much variation, which can be helpful in studies related to water resources planning and management. 10 IMD (Indian Meteorological Department) stations, situated in various regions of the North-east, have been selected for making the clusters. The results of the Fuzzy C-Means (FCM) analysis show different clustering patterns for different conditions. From the analysis and comparison it can be concluded that nonconventional method of using GCM data is somehow giving better results than the others. However, further analysis can be done by taking daily data instead of monthly means to reduce the effect of standardization.
Keywords: Climate change, conventional and nonconventional methods of clustering, FCM analysis, homogeneous regions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22111028 Enhancing Oscillation Amplitude Response Generated by Vortex Induced Vibrations Through Experimental Identification of Optimum Parameters
Authors: Mohammed F. Alhaddad
Abstract:
Vortex Induced Vibrations (VIV) is a phenomenon that occurs as a result of a flow passing by a bluff body. The aim of this paper is to identify factors for maximizing oscillation amplitude generated by VIV in order to enhance the energy harnessed through this method. The experimental study in this paper will examine the effect of oscillating cylinder diameter, surface roughness, the location of surface roughness with respect to the centreline of the oscillating cylinder and the velocity on the oscillation amplitude of the used module.
Keywords: Energy, renewable, electrostatic, vibration, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841027 Qualitative Survey on Managing Building Maintenance Projects
Authors: Edmond W.M. Lam, Albert P.C. Chan, Daniel W.M. Chan
Abstract:
Buildings are one of the valuable assets to provide people with shelters for work, leisure and rest. After years of attacks by weather, buildings will deteriorate which need proper maintenance in order to fulfill the requirements and satisfaction of the users. Poorly managed buildings not just give a negative image to the city itself, but also pose potential risk hazards to the health and safety of the general public. As a result, the management of maintenance projects has played an important role in cities like Hong Kong where the problem of urban decay has drawn much attention. However, most research has focused on managing new construction, and little research effort has been put on maintenance projects. Given the short duration and more diversified nature of work, repair and maintenance works are found to be more difficult to monitor and regulate when compared with new works. Project participants may face with problems in running maintenance projects which should be investigated so that proper strategies can be established. This paper aims to provide a thorough analysis on the problems of running maintenance projects. A review of literature on the characteristics of building maintenance projects was firstly conducted, which forms a solid basis for the empirical study. Results on the problems and difficulties of running maintenance projects from the viewpoints of industry practitioners will also be delivered with a view to formulating effective strategies for managing maintenance projects successfully.Keywords: characteristics, problems, building maintenance, Hong Kong
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21151026 An Approach on Integrating Cooperative Education Experience into the Engineering Curriculum
Authors: Robin Lok-Wang
Abstract:
The center/unit for industry engagement and collaboration, as well as Internship, plays a significant role at a university. In general, the Center serves as the official interface between industry and the school or department to cultivate students’ early exposure to professional experience. The missions of the Center are not limited to provide a communication channel and collaborative platform for the industries and the university but also to assist students to build their career paths early while still at the university. In recent years, a cooperative education experience (commonly known as a co-op) has been strongly advocated for students to make the school-to-work transition. The nature of the co-op program is not only consistent with the internships/final year design projects, but it is also more industrial-oriented with academic support from faculty at the university. The purpose of this paper is to describe an approach to how cooperative education experience can be integrated into the engineering curriculum. It provides a mutual understanding and exchange of ideas for the approach between the university and industry. A suggested format in terms of timeline, duration, selection of candidates, students, and companies’ expectations for the co-op program is described. Also, feedback from employers/industries shows that a longer-term co-op program is well suited for students compared with a short-term internship. To this end, it provides an insight into collaboration and/or partnership between the university and the industries to prepare professional work-ready graduates.
Keywords: Cooperative education, internship, industry collaboration, engineering curriculum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871025 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses
Authors: M. Y. Ismail, Arslan Kiyani
Abstract:
Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.
Keywords: Numerical model, Reflectarray resonant elements, Scattering parameter measurements, Variable substrate thickness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17231024 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.
Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9001023 A Two-Stage Expert System for Diagnosis of Leukemia Based on Type-2 Fuzzy Logic
Authors: Ali Akbar Sadat Asl
Abstract:
Diagnosis and deciding about diseases in medical fields is facing innate uncertainty which can affect the whole process of treatment. This decision is made based on expert knowledge and the way in which an expert interprets the patient's condition, and the interpretation of the various experts from the patient's condition may be different. Fuzzy logic can provide mathematical modeling for many concepts, variables, and systems that are unclear and ambiguous and also it can provide a framework for reasoning, inference, control, and decision making in conditions of uncertainty. In systems with high uncertainty and high complexity, fuzzy logic is a suitable method for modeling. In this paper, we use type-2 fuzzy logic for uncertainty modeling that is in diagnosis of leukemia. The proposed system uses an indirect-direct approach and consists of two stages: In the first stage, the inference of blood test state is determined. In this step, we use an indirect approach where the rules are extracted automatically by implementing a clustering approach. In the second stage, signs of leukemia, duration of disease until its progress and the output of the first stage are combined and the final diagnosis of the system is obtained. In this stage, the system uses a direct approach and final diagnosis is determined by the expert. The obtained results show that the type-2 fuzzy expert system can diagnose leukemia with the average accuracy about 97%.
Keywords: Expert system, leukemia, medical diagnosis, type-2 fuzzy logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10531022 An Investigation into the Impact of Techno-Entrepreneurship Education on Self-Employment
Authors: F. Farzin
Abstract:
Research has shown that techno-entrepreneurship is economically significant. Therefore, it is suggested that teaching techno-entrepreneurship may be important because such programmes would prepare current and future generations of learners to recognise and act on high-technology opportunities. Education in technoentrepreneurship may increase the knowledge of how to start one’s own enterprise and recognise the technological opportunities for commercialisation to improve decision-making about starting a new venture; also it influence decisions about capturing the business opportunities and turning them into successful ventures. Universities can play a main role in connecting and networking technoentrepreneurship students towards a cooperative attitude with real business practice and industry knowledge. To investigate and answer whether education for techno-entrepreneurs really helps, this paper choses a comparison of literature reviews as its method of research. After reviewing literature related to the impact of technoentrepreneurship education on self-employment 6 studies which had similar aim and objective to this paper were. These particular papers were selected based on a keywords search and as their aim, objectives, and gaps were close to the current research. In addition, they were all based on the influence of techno-entrepreneurship education in self-employment and intention of students to start new ventures. The findings showed that teaching techno-entrepreneurship education may have an influence on students’ intention and their future self-employment, but which courses should be covered and the duration of programmes, needs further investigation.Keywords: Techno-entrepreneurship education, training, higher education, intention, self-employment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731021 Effects of Aerobic Dance on Cardiovascular Level and Body Weight among Women
Authors: Mohd Faridz Ahmad, Muhammad Amir Asyraf Rosli
Abstract:
Aerobic dance has becoming a popular mode of exercise especially among women due to its fun nature. With a catchy music background and joyful dance steps, aerobic dancers would be able to have fun while sweating out. Depending on its level of aggressiveness, aerobic may also improve and maintain cardiorespiratory fitness other than being a great tool for weight loss. This study intends to prove that aerobic dance activity can bring the same, if not better impacts on health than other types of cardiovascular exercise such as jogging and cycling. The objective of this study was to evaluate and identify the effect of six weeks aerobic dance on cardiovascular fitness and weight loss among women. This study, which was held in Seremban Fit Challenge, used a quasiexperimental design. The subjects selected include a total of 14 women (n = 14) with age (32.4 years old ± 9.1), weight (65.93 kg ± 11.24) and height (165.36 ± 3.46) who joined the Seremban Fit Challenge Season 13. The subjects were asked to join an aerobic dance class with a duration of one hour for six weeks in a row. As for the outcome, cardiovascular fitness was measured with a 1-mile run test while any changes on weight were measured using the weighing scale. The result showed that there was a significant difference between pre and post-test for cardiovascular fitness when p = 0.02 < 0.05 and weight loss when p = 0.00 < 0.05. In conclusion, a six-week long aerobic dance program would have a positive effect on cardiovascular fitness and weight. Therefore, aerobic dance may be used as an alternative for people who wish to lead a healthy lifestyle in a fun way.
Keywords: Aerobic dance, cardiovascular fitness, weight loss, 1-mile run test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3776