Search results for: life cycle data.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8986

Search results for: life cycle data.

7216 Automated Knowledge Engineering

Authors: Sandeep Chandana, Rene V. Mayorga, Christine W. Chan

Abstract:

This article outlines conceptualization and implementation of an intelligent system capable of extracting knowledge from databases. Use of hybridized features of both the Rough and Fuzzy Set theory render the developed system flexibility in dealing with discreet as well as continuous datasets. A raw data set provided to the system, is initially transformed in a computer legible format followed by pruning of the data set. The refined data set is then processed through various Rough Set operators which enable discovery of parameter relationships and interdependencies. The discovered knowledge is automatically transformed into a rule base expressed in Fuzzy terms. Two exemplary cancer repository datasets (for Breast and Lung Cancer) have been used to test and implement the proposed framework.

Keywords: Knowledge Extraction, Fuzzy Sets, Rough Sets, Neuro–Fuzzy Systems, Databases

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
7215 Using Data Mining Techniques for Estimating Minimum, Maximum and Average Daily Temperature Values

Authors: S. Kotsiantis, A. Kostoulas, S. Lykoudis, A. Argiriou, K. Menagias

Abstract:

Estimates of temperature values at a specific time of day, from daytime and daily profiles, are needed for a number of environmental, ecological, agricultural and technical applications, ranging from natural hazards assessments, crop growth forecasting to design of solar energy systems. The scope of this research is to investigate the efficiency of data mining techniques in estimating minimum, maximum and mean temperature values. For this reason, a number of experiments have been conducted with well-known regression algorithms using temperature data from the city of Patras in Greece. The performance of these algorithms has been evaluated using standard statistical indicators, such as Correlation Coefficient, Root Mean Squared Error, etc.

Keywords: regression algorithms, supervised machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
7214 A Real-Time Signal Processing Technique for MIDI Generation

Authors: Farshad Arvin, Shyamala Doraisamy

Abstract:

This paper presents a new hardware interface using a microcontroller which processes audio music signals to standard MIDI data. A technique for processing music signals by extracting note parameters from music signals is described. An algorithm to convert the voice samples for real-time processing without complex calculations is proposed. A high frequency microcontroller as the main processor is deployed to execute the outlined algorithm. The MIDI data generated is transmitted using the EIA-232 protocol. The analyses of data generated show the feasibility of using microcontrollers for real-time MIDI generation hardware interface.

Keywords: Signal processing, MIDI, Microcontroller, EIA-232.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
7213 Enhancing Temporal Extrapolation of Wind Speed Using a Hybrid Technique: A Case Study in West Coast of Denmark

Authors: B. Elshafei, X. Mao

Abstract:

The demand for renewable energy is significantly increasing, major investments are being supplied to the wind power generation industry as a leading source of clean energy. The wind energy sector is entirely dependable and driven by the prediction of wind speed, which by the nature of wind is very stochastic and widely random. This s0tudy employs deep multi-fidelity Gaussian process regression, used to predict wind speeds for medium term time horizons. Data of the RUNE experiment in the west coast of Denmark were provided by the Technical University of Denmark, which represent the wind speed across the study area from the period between December 2015 and March 2016. The study aims to investigate the effect of pre-processing the data by denoising the signal using empirical wavelet transform (EWT) and engaging the vector components of wind speed to increase the number of input data layers for data fusion using deep multi-fidelity Gaussian process regression (GPR). The outcomes were compared using root mean square error (RMSE) and the results demonstrated a significant increase in the accuracy of predictions which demonstrated that using vector components of the wind speed as additional predictors exhibits more accurate predictions than strategies that ignore them, reflecting the importance of the inclusion of all sub data and pre-processing signals for wind speed forecasting models.

Keywords: Data fusion, Gaussian process regression, signal denoise, temporal extrapolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 508
7212 Deadline Missing Prediction for Mobile Robots through the Use of Historical Data

Authors: Edwaldo R. B. Monteiro, Patricia D. M. Plentz, Edson R. De Pieri

Abstract:

Mobile robotics is gaining an increasingly important role in modern society. Several potentially dangerous or laborious tasks for human are assigned to mobile robots, which are increasingly capable. Many of these tasks need to be performed within a specified period, i.e, meet a deadline. Missing the deadline can result in financial and/or material losses. Mechanisms for predicting the missing of deadlines are fundamental because corrective actions can be taken to avoid or minimize the losses resulting from missing the deadline. In this work we propose a simple but reliable deadline missing prediction mechanism for mobile robots through the use of historical data and we use the Pioneer 3-DX robot for experiments and simulations, one of the most popular robots in academia.

Keywords: Deadline missing, historical data, mobile robots, prediction mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1815
7211 Understanding the Discharge Activities in Transformer Oil under AC and DC Voltage Adopting UHF Technique

Authors: R. Sarathi, G. Koperundevi

Abstract:

Design of Converter transformer insulation is a major challenge. The insulation of these transformers is stressed by both AC and DC voltages. Particle contamination is one of the major problems in insulation structures, as they generate partial discharges leading it to major failure of insulation. Similarly corona discharges occur in transformer insulation. This partial discharge due to particle movement / corona formation in insulation structure under different voltage wave shapes, are different. In the present study, UHF technique is adopted to understand the discharge activity and could be realized that the characteristics of UHF signal generated under low and high fields are different. In the case of corona generated signal, the frequency content of the UHF sensor output lies in the range 0.3-1.2 GHz and is not much varied except for its increase in magnitude of discharge with the increase in applied voltage. It is realized that the current signal injected due to partial discharges/corona is about 4ns duration measured for first one half cycle. Wavelet technique is adopted in the present study. It allows one to identify the frequency content present in the signal at different instant of time. The STD-MRA analysis helps one to identify the frequency band in which the energy content of the UHF signal is maximum.

Keywords: Contamination, Insulation, Partial Discharges, Transformer oil, UHF sensors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3848
7210 Stability of New Macromycetes Phytases under Room, Cooling and Freezing Temperatures of Storage

Authors: Michele R. Spier, Denise N. X. Salmon, Renato L. Binati, Luíza C. Piva, Adriane B.P. Medeiros, Carlos R. Soccol

Abstract:

Phytases are enzymes used as an important component in monogastric animals feeds in order to improve phosphorous availability, since it is not readily assimilated by these animals in the form of the phytate presented in plants and grains. As these enzymes are used in industrial activities, they must retain its catalytic activities during a certain storage period. This study presents information about the stability of 4 different phytases, produced by four macromycetes fungi through solid-state fermentation (SSF). There is a lack of data in literature concerning phytase from macromycetes shelf-life in storage conditions at room, cooling and freezing temperatures. The 4 phytases from macromycetes still had enzymatic activities around 100 days of storage at room temperature. At cooling temperature in 146 days of studies, the phytase from G. stipitatum was the most stable with 44% of the initial activity, in U.gds (units per gram of dried fermented substrate). The freezing temperature was the best condition storage for phytases from G. stipitatum and T. versicolor. Each condition provided a study for each mushroom phytase, totalizing 12 studies. The phytases showed to be stable for a long period without the addition of additives.

Keywords: macromycetes, phytase, solid-state fermentation, wheat bran, stability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2160
7209 Seasonal Heat Stress Effect on Cholesterol, Estradiol and Progesterone during Follicular Development in Egyptian Buffalo

Authors: Heba F. Hozyen, Hodallah H. Ahmed, S. I. A. Shalaby, G. E. S. Essawy

Abstract:

Biochemical and hormonal changes that occur in both follicular fluid and blood are involved in the control of ovarian physiology. The present study was conducted on follicular fluid and serum samples obtained from 708 buffaloes. Samples were examined for estradiol, progesterone, and cholesterol concentrations in relation to seasonal changes, ovarian follicular size, and stage of estrous cycle. The obtained results revealed that follicular fluid and serum levels of estradiol, progesterone, and cholesterol were significantly lower during summer and autumn when compared to winter and spring seasons. With the increase in follicular size, the follicular fluid levels of progesterone and cholesterol were significantly decreased, while estradiol levels were significantly increased. Estradiol and progesterone levels were significantly higher in follicular fluid than blood, while cholesterol was significantly lower in follicular fluid than serum. In conclusion, the current study threw a light on the hormonal changes in the follicular fluid and blood under the effect of heat stress which could be related to the low fertility of buffalo in the summer.

Keywords: Buffalo, follicular fluid, follicular development, seasonal changes, steroids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1962
7208 Ensemble Approach for Predicting Student's Academic Performance

Authors: L. A. Muhammad, M. S. Argungu

Abstract:

Educational data mining (EDM) has recorded substantial considerations. Techniques of data mining in one way or the other have been proposed to dig out out-of-sight knowledge in educational data. The result of the study got assists academic institutions in further enhancing their process of learning and methods of passing knowledge to students. Consequently, the performance of students boasts and the educational products are by no doubt enhanced. This study adopted a student performance prediction model premised on techniques of data mining with Students' Essential Features (SEF). SEF are linked to the learner's interactivity with the e-learning management system. The performance of the student's predictive model is assessed by a set of classifiers, viz. Bayes Network, Logistic Regression, and Reduce Error Pruning Tree (REP). Consequently, ensemble methods of Bagging, Boosting, and Random Forest (RF) are applied to improve the performance of these single classifiers. The study reveals that the result shows a robust affinity between learners' behaviors and their academic attainment. Result from the study shows that the REP Tree and its ensemble record the highest accuracy of 83.33% using SEF. Hence, in terms of the Receiver Operating Curve (ROC), boosting method of REP Tree records 0.903, which is the best. This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, bagging, Random Forest, boosting, data mining, classifiers, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784
7207 Criminal Protection Objectivity of the Child's Right to Life and Physical and Psychological Safety

Authors: Hezha Hewa, Taher Sur

Abstract:

Nowadays, child affairs is a matter of both national and international interests. This issue is regarded a vital topic for various scientific fields across ages, and for all the communities without exception. However, the nature of child caring may vary due to the verities in science perspectives. So, considering child's affairs from different perspectives is helpful to have a complementary image about this matter. The purpose behind selecting this topic is to keep a balance between the victim on the one hand, and the guardian and the offender on the other hand, (i.e.) to avoid any kind of excessiveness either in the protection of the child and its rights not in the punishment of the offender. This is achieved through considering various legal materials in the Iraqi legislation and in the comparative legislations that are concerned with the child's issue and the extent to which the child makes use of these rights. The scope of this study involves the crimes that are considered as aggressions against the child's right to life, and the crimes that are dangerous to their physical and psychological safety. So, this study comprehensively considers the intentional murder of child, child murder to avoid disgrace, child kidnapping, child abandonment, physical abuse for the sake of punishment or not, child circumcision, verbal violence, and abstaining from leaving a child with a person who has the right of custody. This study ends with the most significant concluding points that have been derived throughout this study, which are: Unlike the Iraqi legislation, the Egyptian legislation defines the child in the Article 2 of the Child Law No. 12 of 1996 amended by the Law No. 126 of 2008 that the child is a person who does not exceed 18 years of age. Some legislation does not provide special criminal protection for child intentional murder, as in the Iraqi and the Egyptian legislation. However, some others have provided special criminal protection for a child, as in French and Syrian legislations. Child kidnapping is regarded as one of the most dangerous crimes that affects the child and the family as well, as it may expose the child's life to danger or to death. The most significant recommendations from the researcher are: The Iraqi legislation is recommended to take the necessary measures to establish a particular legislation for the child by including all the legal provisions that are associated with this weak creature, and make use of the Egyptian legislator’s experience as a pioneer in this respect. Both the Iraqi legislation and the Egyptian legislation are recommended to enact special laws to protect a child from the crimes of intentional murder, as the crime of child murder is currently subjected to the same provisions consider for adult murder.

Keywords: Child abuse, juvenile, legislation, punishment and aggravation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1076
7206 A Retrospective Study of Vaginal Stenosis Following Treatment of Cervical Cancers and the Effectiveness of Rehabilitation Interventions

Authors: Manjusha R. Vagal, Shyam K. Shrivastava, Umesh Mahantshetty, Sudeep Gupta, Supriya Chopra, Reena Engineer, Amita Maheshwari, Atul Buduk

Abstract:

Vaginal stenosis is a common side effect associated with pelvic radiotherapy in cervical cancer patients which contributes negatively to woman’s health and prevents adequate vaginal/cervical examination. Vaginal dilation with a dilator is routine practice and is internationally advocated as a prophylactic measure to preserve vaginal patency. This retrospective study was carried out with the aim to know the usefulness of vaginal dilation following pelvic radiation therapy in cervical cancer patients in India. Data from medical records of 183 cervical cancer patients, which met the study criteria, were collected related to the stage of the disease, treatment received, commencement period of dilation post radiation therapy, sexual status and side effects associated to dilation practice. Data related to vaginal dimensions as per the length of insertion of a small, medium and large dilator were collected on regular follow-ups until 36 months and/or more. Vaginal dimensions as measured with the length of medium dilator insertion were used for analysis of dilation therapy results using paired t-test. Patients who underwent vaginal dilation with dilator maintained vaginal patency, also the mean vaginal length significantly increased, from 8.02 cm ± 2.69 to 9.96 ± 2.89 cm with a p value <0.001. There was no significant difference found on vaginal patency with different intervals of initiation of dilation therapy. At the third year and more following dilation therapy, significant increase in vaginal length observed with a p value of 0.0001 in both sexually active and inactive patients. Compilation of vaginal dosage during brachytherapy was inadequate, and hence, the secondary objective of the study to determine the effect of radiotherapy on the outcome of rehabilitation intervention was not studied in detail. This retrospective study has found that dilation therapy with vaginal dilators post pelvic radiotherapy is effective in preventing vaginal stenosis and improving vaginal patency and cannot be substituted with vaginal intercourse. Sexual quality of life assessment in the Indian population needs much attention.

Keywords: Dilator, sexually active, vaginal dilation, vaginal stenosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
7205 A Survey on Facial Feature Points Detection Techniques and Approaches

Authors: Rachid Ahdid, Khaddouj Taifi, Said Safi, Bouzid Manaut

Abstract:

Automatic detection of facial feature points plays an important role in applications such as facial feature tracking, human-machine interaction and face recognition. The majority of facial feature points detection methods using two-dimensional or three-dimensional data are covered in existing survey papers. In this article chosen approaches to the facial features detection have been gathered and described. This overview focuses on the class of researches exploiting facial feature points detection to represent facial surface for two-dimensional or three-dimensional face. In the conclusion, we discusses advantages and disadvantages of the presented algorithms.

Keywords: Facial feature points, face recognition, facial feature tracking, two-dimensional data, three-dimensional data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
7204 Mining Network Data for Intrusion Detection through Naïve Bayesian with Clustering

Authors: Dewan Md. Farid, Nouria Harbi, Suman Ahmmed, Md. Zahidur Rahman, Chowdhury Mofizur Rahman

Abstract:

Network security attacks are the violation of information security policy that received much attention to the computational intelligence society in the last decades. Data mining has become a very useful technique for detecting network intrusions by extracting useful knowledge from large number of network data or logs. Naïve Bayesian classifier is one of the most popular data mining algorithm for classification, which provides an optimal way to predict the class of an unknown example. It has been tested that one set of probability derived from data is not good enough to have good classification rate. In this paper, we proposed a new learning algorithm for mining network logs to detect network intrusions through naïve Bayesian classifier, which first clusters the network logs into several groups based on similarity of logs, and then calculates the prior and conditional probabilities for each group of logs. For classifying a new log, the algorithm checks in which cluster the log belongs and then use that cluster-s probability set to classify the new log. We tested the performance of our proposed algorithm by employing KDD99 benchmark network intrusion detection dataset, and the experimental results proved that it improves detection rates as well as reduces false positives for different types of network intrusions.

Keywords: Clustering, detection rate, false positive, naïveBayesian classifier, network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5543
7203 Evaluation of Model Evaluation Criterion for Software Development Effort Estimation

Authors: S. K. Pillai, M. K. Jeyakumar

Abstract:

Estimation of model parameters is necessary to predict the behavior of a system. Model parameters are estimated using optimization criteria. Most algorithms use historical data to estimate model parameters. The known target values (actual) and the output produced by the model are compared. The differences between the two form the basis to estimate the parameters. In order to compare different models developed using the same data different criteria are used. The data obtained for short scale projects are used here. We consider software effort estimation problem using radial basis function network. The accuracy comparison is made using various existing criteria for one and two predictors. Then, we propose a new criterion based on linear least squares for evaluation and compared the results of one and two predictors. We have considered another data set and evaluated prediction accuracy using the new criterion. The new criterion is easy to comprehend compared to single statistic. Although software effort estimation is considered, this method is applicable for any modeling and prediction.

Keywords: Software effort estimation, accuracy, Radial Basis Function, linear least squares.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
7202 Graphic Animation: Innovative Language Learning for Autistic Children

Authors: Norfishah Mat Rabi, Rosma Osman, Norziana Mat Rabi

Abstract:

It is difficult for autistic children to mix with and be around with other people. Language difficulties are a problem that affects their social life. A lack of knowledge and ability in language are factors that greatly influence their behavior, and their ability to communicate and interact. Autistic children need to be assisted to improve their language abilities through the use of suitable learning resources. This study is conducted to identify weather graphic animation resources can help autistic children learn and use transitive verbs more effectively. The study was conducted in a rural secondary school in Penang, Malaysia. The research subject comprised of three autistic students ranging in age from 14 years to 16 years. The 14-year-old student is placed in A Class and two 16-year-old students placed in B Class. The class placement of the subjects is based on the diagnostic test results conducted by the teacher and not based on age. Data collection is done through observation and interviews for the duration of five weeks; with the researcher allocating 30 minutes for every learning activity carried out. The research finding shows that the subjects learn transitive verbs better using graphic animation compared to static pictures. It is hoped that this study will give a new perspective towards the learning processes of autistic children.

Keywords: Autistic, graphic animation, language learning, transitive verbs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2235
7201 Four Decades of Greek Artistic Presence in Paris (1970-2010): Theory and Interpretation

Authors: Sapfo A. Mortaki

Abstract:

This article examines the presence of Greek immigrant artists (painters and sculptors) in Paris during 1970-2010. The aim is to highlight their presence in the French capital through archival research in the daily and periodical press as well as present the impact of their artistic activity on the French intellectual life and society. At the same time, their contribution to the development of cultural life in Greece becomes apparent. The integration of those migrant artists into an environment of cultural coexistence and the understanding of the social phenomenon of their migration, in the context of postmodernity, are being investigated. The cultural relations between the two countries are studied in the context of support mechanisms, such as the Greek community, cultural institutions, museums and galleries. The recognition of the Greek artists by the French society and the social dimension in the context of their activity in Paris, are discussed in terms of the assimilation theory. Since the 1970s, and especially since the fall of the dictatorship in Greece, in opposition to the prior situation, artists' contacts with their homeland have been significantly enhanced, with most of them now travelling to Paris, while others work in parallel in both countries. As a result, not only do the stages of the development of their work through their pursuits become visible, but, most importantly, the artistic world becomes informed about the multifaceted expression of art through the succession of various contemporary currents. Thus, the participation of Greek artists in the international cultural landscape is demonstrated.

Keywords: Artistic migration, cultural impact, Greek artists, postmodernity, theory of assimilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
7200 Solar Seawater Desalination Still with Seawater Preheater Using Efficient Heat Transfer Oil: Numerical Investigation and Data Verification

Authors: Ahmed N. Shmroukh, Gamal Tag Abdel-Jaber, Rashed D. Aldughpassi

Abstract:

The feasibility of improving the performance of the proposed solar still unit which operated in very hot climate is investigated numerically and verified with experimental data. This solar desalination unit with proposed auxiliary device as seawater preheating system using petrol based textherm oil was used to produce pure fresh water from seawater. The effective evaporation area of basin is about 1 m2. The unit was tested in two main operation modes which are normal and with seawater preheating system. The results showed that, there is good agreement between the theoretical data and the experimental data; this means that the numerical model can be accurately dependable for predicting the proposed solar still performance and design parameters. The results also showed that the fresh water productivity of the solar still in the modified preheating case which is higher than normal case, leads to an increase in productivity of 42%.

Keywords: Improving productivity, seawater desalination, solar stills, theoretical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787
7199 The Necessity to Standardize Procedures of Providing Engineering Geological Data for Designing Road and Railway Tunneling Projects

Authors: Atefeh Saljooghi Khoshkar, Jafar Hassanpour

Abstract:

One of the main problems of design stage relating to many tunneling projects is the lack of an appropriate standard for the provision of engineering geological data in a predefined format. In particular, this is more reflected in highway and railroad tunnels projects in which there is a number of tunnels and different professional teams involved. In this regard, a comprehensive software needs to be designed using the accepted methods in order to help engineering geologists to prepare standard reports, which contain sufficient input data for the design stage. Regarding this necessity, an applied software has been designed using macro capabilities and Visual Basic programming language (VBA) through Microsoft Excel. In this software, all of the engineering geological input data, which are required for designing different parts of tunnels such as discontinuities properties, rock mass strength parameters, rock mass classification systems, boreability classification, the penetration rate and so forth can be calculated and reported in a standard format.

Keywords: Engineering geology, rock mass classification, rock mechanic, tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149
7198 Physical Activity and Cognitive Functioning Relationship in Children

Authors: Comfort Mokgothu

Abstract:

This study investigated the relation between processing information and fitness level of active (fit) and sedentary (unfit) children drawn from rural and urban areas in Botswana. It was hypothesized that fit children would display faster simple reaction time (SRT), choice reaction times (CRT) and movement times (SMT). 60, third grade children (7.0 – 9.0 years) were initially selected and based upon fitness testing, 45 participated in the study (15 each of fit urban, unfit urban, fit rural). All children completed anthropometric measures, skinfold testing and submaximal cycle ergometer testing. The cognitive testing included SRT, CRT, SMT and Choice Movement Time (CMT) and memory sequence length. Results indicated that the rural fit group exhibited faster SMT than the urban fit and unfit groups. For CRT, both fit groups were faster than the unfit group. Collectively, the study shows that the relationship that exists between physical fitness and cognitive function amongst the elderly can tentatively be extended to the pediatric population. Physical fitness could be a factor in the speed at which we process information, including decision making, even in children.

Keywords: Decision making, fitness, information processing, reaction time, cognition movement time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
7197 Finite Element Analysis of Connecting Rod

Authors: Mohammed Mohsin Ali H., Mohamed Haneef

Abstract:

The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.

Keywords: Connecting rod, ASTM a514 cold quenched steel, static analysis, fatigue analysis, stress life approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2743
7196 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan

Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid

Abstract:

In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.

Keywords: Data quality, null hypothesis, seismic lines, seismic reflection survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 622
7195 Biomass Gasification and Microcogeneration Unit – EZOB Technology

Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála

Abstract:

This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.

Keywords: Biomass, combustion, gasification, microcogeneration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
7194 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
7193 Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit

Authors: Ahmed Elrewainy

Abstract:

Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no information about the given data cube. Sparsity is one of the recent approaches used in the source recovery or unmixing techniques. The l1-norm optimization problem “basis pursuit” could be used as a sparsity-based approach to solve this unmixing problem where the endmembers is assumed to be sparse in an appropriate domain known as dictionary. This optimization problem is solved using proximal method “iterative thresholding”. The l1-norm basis pursuit optimization problem as a sparsity-based unmixing technique was used to unmix real and synthetic hyperspectral data cubes.

Keywords: Basis pursuit, blind source separation, hyperspectral imaging, spectral unmixing, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
7192 System for Monitoring Marine Turtles Using Unstructured Supplementary Service Data

Authors: Luís Pina

Abstract:

The conservation of marine biodiversity keeps ecosystems in balance and ensures the sustainable use of resources. In this context, technological resources have been used for monitoring marine species to allow biologists to obtain data in real-time. There are different mobile applications developed for data collection for monitoring purposes, but these systems are designed to be utilized only on third-generation (3G) phones or smartphones with Internet access and in rural parts of the developing countries, Internet services and smartphones are scarce. Thus, the objective of this work is to develop a system to monitor marine turtles using Unstructured Supplementary Service Data (USSD), which users can access through basic mobile phones. The system aims to improve the data collection mechanism and enhance the effectiveness of current systems in monitoring sea turtles using any type of mobile device without Internet access. The system will be able to report information related to the biological activities of marine turtles. Also, it will be used as a platform to assist marine conservation entities to receive reports of illegal sales of sea turtles. The system can also be utilized as an educational tool for communities, providing knowledge and allowing the inclusion of communities in the process of monitoring marine turtles. Therefore, this work may contribute with information to decision-making and implementation of contingency plans for marine conservation programs.

Keywords: GSM, marine biology, marine turtles, USSD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 945
7191 A New Version of Annotation Method with a XML-based Knowledge Base

Authors: Mohammad Yasrebi, Somayeh Khosravi

Abstract:

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.

Keywords: Knowledge base, ontology, semantic annotation, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
7190 Implementing Fault Tolerance with Proxy Signature on the Improvement of RSA System

Authors: H. El-Kamchouchi, Heba Gaber, Fatma Ahmed, Dalia H. El-Kamchouchi

Abstract:

Fault tolerance and data security are two important issues in modern communication systems. During the transmission of data between the sender and receiver, errors may occur frequently. Therefore, the sender must re-transmit the data to the receiver in order to correct these errors, which makes the system very feeble. To improve the scalability of the scheme, we present a proxy signature scheme with fault tolerance over an efficient and secure authenticated key agreement protocol based on the improved RSA system. Authenticated key agreement protocols have an important role in building a secure communications network between the two parties.

Keywords: Proxy signature, fault tolerance, improved RSA, key agreement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1268
7189 A Distance Function for Data with Missing Values and Its Application

Authors: Loai AbdAllah, Ilan Shimshoni

Abstract:

Missing values in data are common in real world applications. Since the performance of many data mining algorithms depend critically on it being given a good metric over the input space, we decided in this paper to define a distance function for unlabeled datasets with missing values. We use the Bhattacharyya distance, which measures the similarity of two probability distributions, to define our new distance function. According to this distance, the distance between two points without missing attributes values is simply the Mahalanobis distance. When on the other hand there is a missing value of one of the coordinates, the distance is computed according to the distribution of the missing coordinate. Our distance is general and can be used as part of any algorithm that computes the distance between data points. Because its performance depends strongly on the chosen distance measure, we opted for the k nearest neighbor classifier to evaluate its ability to accurately reflect object similarity. We experimented on standard numerical datasets from the UCI repository from different fields. On these datasets we simulated missing values and compared the performance of the kNN classifier using our distance to other three basic methods. Our  experiments show that kNN using our distance function outperforms the kNN using other methods. Moreover, the runtime performance of our method is only slightly higher than the other methods.

Keywords: Missing values, Distance metric, Bhattacharyya distance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
7188 Exploring Performance-Based Music Attributes for Stylometric Analysis

Authors: Abdellghani Bellaachia, Edward Jimenez

Abstract:

Music Information Retrieval (MIR) and modern data mining techniques are applied to identify style markers in midi music for stylometric analysis and author attribution. Over 100 attributes are extracted from a library of 2830 songs then mined using supervised learning data mining techniques. Two attributes are identified that provide high informational gain. These attributes are then used as style markers to predict authorship. Using these style markers the authors are able to correctly distinguish songs written by the Beatles from those that were not with a precision and accuracy of over 98 per cent. The identification of these style markers as well as the architecture for this research provides a foundation for future research in musical stylometry.

Keywords: Music Information Retrieval, Music Data Mining, Stylometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
7187 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study

Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple

Abstract:

There is a dramatic surge in the adoption of Machine Learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. Artificial Intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and two defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt ML techniques without rigorous testing, since they may be vulnerable to adversarial attacks, especially in security-critical areas such as the nuclear industry. We observed that while the adopted defence methods can effectively defend against different attacks, none of them could protect against all five adversarial attacks entirely.

Keywords: Resilient Machine Learning, attacks, defences, nuclear industry, crack detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522