Search results for: Real Coded Genetic Algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5451

Search results for: Real Coded Genetic Algorithm

3681 Comparative Study on Recent Integer DCTs

Authors: Sakol Udomsiri, Masahiro Iwahashi

Abstract:

This paper presents comparative study on recent integer DCTs and a new method to construct a low sensitive structure of integer DCT for colored input signals. The method refers to sensitivity of multiplier coefficients to finite word length as an indicator of how word length truncation effects on quality of output signal. The sensitivity is also theoretically evaluated as a function of auto-correlation and covariance matrix of input signal. The structure of integer DCT algorithm is optimized by combination of lower sensitive lifting structure types of IRT. It is evaluated by the sensitivity of multiplier coefficients to finite word length expression in a function of covariance matrix of input signal. Effectiveness of the optimum combination of IRT in integer DCT algorithm is confirmed by quality improvement comparing with existing case. As a result, the optimum combination of IRT in each integer DCT algorithm evidently improves output signal quality and it is still compatible with the existing one.

Keywords: DCT, sensitivity, lossless, wordlength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1381
3680 Correlation-based Feature Selection using Ant Colony Optimization

Authors: M. Sadeghzadeh, M. Teshnehlab

Abstract:

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.

Keywords: Ant colony optimization, Classification, Datamining, Feature selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2420
3679 Exploring the Ambiguity Resolution in Spacecraft Attitude Determination Using GNSS Phase Measurement

Authors: Lv Meibo, Naqvi Najam Abbas, Li YanJun

Abstract:

Attitude Determination (AD) of a spacecraft using the phase measurements of the Global Navigation Satellite System (GNSS) is an active area of research. Various attitude determination algorithms have been developed in yester years for spacecrafts using different sensors but the last two decades have witnessed a phenomenal increase in research related with GPS receivers as a stand-alone sensor for determining the attitude of satellite using the phase measurements of the signals from GNSS. The GNSS-based Attitude determination algorithms have been experimented in many real missions. The problem of AD algorithms using GNSS phase measurements has two important parts; the ambiguity resolution and the determining of attitude. Ambiguity resolution is the widely addressed topic in literature for implementing the AD algorithm using GNSS phase measurements for achieving the accuracy of millimeter level. This paper broadly overviews the different techniques for resolving the integer ambiguities encountered in AD using GNSS phase measurements.

Keywords: Attitude Determination, Ambiguity Resolution, GNSS, LAMBDA Method, Satellite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2744
3678 Optimizing Allocation of Two Dimensional Irregular Shapes using an Agent Based Approach

Authors: Ramin Halavati, Saeed B. Shouraki, Mahdieh Noroozian, Saman H. Zadeh

Abstract:

Packing problems arise in a wide variety of application areas. The basic problem is that of determining an efficient arrangement of different objects in a region without any overlap and with minimal wasted gap between shapes. This paper presents a novel population based approach for optimizing arrangement of irregular shapes. In this approach, each shape is coded as an agent and the agents' reproductions and grouping policies results in arrangements of the objects in positions with least wasted area between them. The approach is implemented in an application for cutting sheets and test results on several problems from literature are presented.

Keywords: Optimization, Bin Packing, Agent Based Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2493
3677 An Ant Colony Optimization for Dynamic JobScheduling in Grid Environment

Authors: Siriluck Lorpunmanee, Mohd Noor Sap, Abdul Hanan Abdullah, Chai Chompoo-inwai

Abstract:

Grid computing is growing rapidly in the distributed heterogeneous systems for utilizing and sharing large-scale resources to solve complex scientific problems. Scheduling is the most recent topic used to achieve high performance in grid environments. It aims to find a suitable allocation of resources for each job. A typical problem which arises during this task is the decision of scheduling. It is about an effective utilization of processor to minimize tardiness time of a job, when it is being scheduled. This paper, therefore, addresses the problem by developing a general framework of grid scheduling using dynamic information and an ant colony optimization algorithm to improve the decision of scheduling. The performance of various dispatching rules such as First Come First Served (FCFS), Earliest Due Date (EDD), Earliest Release Date (ERD), and an Ant Colony Optimization (ACO) are compared. Moreover, the benefit of using an Ant Colony Optimization for performance improvement of the grid Scheduling is also discussed. It is found that the scheduling system using an Ant Colony Optimization algorithm can efficiently and effectively allocate jobs to proper resources.

Keywords: Grid computing, Distributed heterogeneous system, Ant colony optimization algorithm, Grid scheduling, Dispatchingrules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2706
3676 A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest

Authors: Amri Yusoff, Shahrizuan Shafiril, Ashardi Abas, Norma Che Yusoff

Abstract:

Nowadays, illegal logging has been causing many effects including flash flood, avalanche, global warming, and etc. The purpose of this study was to maintain the earth ecosystem by keeping and regulate Malaysia’s treasurable rainforest by utilizing a new technology that will assist in real-time alert and give faster response to the authority to act on these illegal activities. The methodology of this research consisted of design stages that have been conducted as well as the system model and system architecture of the prototype in addition to the proposed hardware and software that have been mainly used such as microcontroller, sensor with the implementation of GSM, and GPS integrated system. This prototype was deployed at Royal Belum forest in December 2014 for phase 1 and April 2015 for phase 2 at 21 pinpoint locations. The findings of this research were the capture of data in real-time such as temperature, humidity, gaseous, fire, and rain detection which indicate the current natural state and habitat in the forest. Besides, this device location can be detected via GPS of its current location and then transmitted by SMS via GSM system. All of its readings were sent in real-time for further analysis. The data that were compared to meteorological department showed that the precision of this device was about 95% and these findings proved that the system is acceptable and suitable to be used in the field.

Keywords: Remote monitoring system, forest data, GSM, GPS, wireless sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1621
3675 Financing - Scheduling Optimization for Construction Projects by using Genetic Algorithms

Authors: Hesham Abdel-Khalek, Sherif M. Hafez, Abdel-Hamid M. el-Lakany, Yasser Abuel-Magd

Abstract:

Investment in a constructed facility represents a cost in the short term that returns benefits only over the long term use of the facility. Thus, the costs occur earlier than the benefits, and the owners of facilities must obtain the capital resources to finance the costs of construction. A project cannot proceed without an adequate financing, and the cost of providing an adequate financing can be quite large. For these reasons, the attention to the project finance is an important aspect of project management. Finance is also a concern to the other organizations involved in a project such as the general contractor and material suppliers. Unless an owner immediately and completely covers the costs incurred by each participant, these organizations face financing problems of their own. At a more general level, the project finance is the only one aspect of the general problem of corporate finance. If numerous projects are considered and financed together, then the net cash flow requirements constitute the corporate financing problem for capital investment. Whether project finance is performed at the project or at the corporate level does not alter the basic financing problem .In this paper, we will first consider facility financing from the owner's perspective, with due consideration for its interaction with other organizations involved in a project. Later, we discuss the problems of construction financing which are crucial to the profitability and solvency of construction contractors. The objective of this paper is to present the steps utilized to determine the best combination of minimum project financing. The proposed model considers financing; schedule and maximum net area .The proposed model is called Project Financing and Schedule Integration using Genetic Algorithms "PFSIGA". This model intended to determine more steps (maximum net area) for any project with a subproject. An illustrative example will demonstrate the feature of this technique. The model verification and testing are put into consideration.

Keywords: Project Management, Large-scale ConstructionProjects, Cash flow, Interest, Investment, Loan, Optimization, Scheduling, Financing and Genetic Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
3674 A Generic Approach to Achieve Optimal Server Consolidation by Using Existing Servers in Virtualized Data Center

Authors: Siyuan Jing, Kun She

Abstract:

Virtualization-based server consolidation has been proven to be an ideal technique to solve the server sprawl problem by consolidating multiple virtualized servers onto a few physical servers leading to improved resource utilization and return on investment. In this paper, we solve this problem by using existing servers, which are heterogeneous and diversely preferred by IT managers. Five practical consolidation rules are introduced, and a decision model is proposed to optimally allocate source services to physical target servers while maximizing the average resource utilization and preference value. Our model can be regarded as a multi-objective multi-dimension bin-packing (MOMDBP) problem with constraints, which is strongly NP-hard. An improved grouping generic algorithm (GGA) is introduced for the problem. Extensive simulations were performed and the results are given.

Keywords: GGA-based Heuristics, Preference, Real-worldConstraints, Resource Utilization, Server Consolidation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647
3673 A Mobile Agent-based Clustering Data Fusion Algorithm in WSN

Authors: Xiangbin Zhu, Wenjuan Zhang

Abstract:

In wireless sensor networks,the mobile agent technology is used in data fusion. According to the node residual energy and the results of partial integration,we design the node clustering algorithm. Optimization of mobile agent in the routing within the cluster strategy for wireless sensor networks to further reduce the amount of data transfer. Through the experiments, using mobile agents in the integration process within the cluster can be reduced the path loss in some extent.

Keywords: wireless sensor networks, data fusion, mobile agent

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
3672 Simulation Based VLSI Implementation of Fast Efficient Lossless Image Compression System Using Adjusted Binary Code & Golumb Rice Code

Authors: N. Muthukumaran, R. Ravi

Abstract:

The Simulation based VLSI Implementation of FELICS (Fast Efficient Lossless Image Compression System) Algorithm is proposed to provide the lossless image compression and is implemented in simulation oriented VLSI (Very Large Scale Integrated). To analysis the performance of Lossless image compression and to reduce the image without losing image quality and then implemented in VLSI based FELICS algorithm. In FELICS algorithm, which consists of simplified adjusted binary code for Image compression and these compression image is converted in pixel and then implemented in VLSI domain. This parameter is used to achieve high processing speed and minimize the area and power. The simplified adjusted binary code reduces the number of arithmetic operation and achieved high processing speed. The color difference preprocessing is also proposed to improve coding efficiency with simple arithmetic operation. Although VLSI based FELICS Algorithm provides effective solution for hardware architecture design for regular pipelining data flow parallelism with four stages. With two level parallelisms, consecutive pixels can be classified into even and odd samples and the individual hardware engine is dedicated for each one. This method can be further enhanced by multilevel parallelisms.

Keywords: Image compression, Pixel, Compression Ratio, Adjusted Binary code, Golumb Rice code, High Definition display, VLSI Implementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
3671 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling

Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König

Abstract:

As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.

Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1777
3670 Induction of Expressive Rules using the Binary Coding Method

Authors: Seyed R Mousavi

Abstract:

In most rule-induction algorithms, the only operator used against nominal attributes is the equality operator =. In this paper, we first propose the use of the inequality operator, , in addition to the equality operator, to increase the expressiveness of induced rules. Then, we present a new method, Binary Coding, which can be used along with an arbitrary rule-induction algorithm to make use of the inequality operator without any need to change the algorithm. Experimental results suggest that the Binary Coding method is promising enough for further investigation, especially in cases where the minimum number of rules is desirable.

Keywords: Data mining, Inequality operator, Number of rules, Rule-induction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1257
3669 Visual Text Analytics Technologies for Real-Time Big Data: Chronological Evolution and Issues

Authors: Siti Azrina B. A. Aziz, Siti Hafizah A. Hamid

Abstract:

New approaches to analyze and visualize data stream in real-time basis is important in making a prompt decision by the decision maker. Financial market trading and surveillance, large-scale emergency response and crowd control are some example scenarios that require real-time analytic and data visualization. This situation has led to the development of techniques and tools that support humans in analyzing the source data. With the emergence of Big Data and social media, new techniques and tools are required in order to process the streaming data. Today, ranges of tools which implement some of these functionalities are available. In this paper, we present chronological evolution evaluation of technologies for supporting of real-time analytic and visualization of the data stream. Based on the past research papers published from 2002 to 2014, we gathered the general information, main techniques, challenges and open issues. The techniques for streaming text visualization are identified based on Text Visualization Browser in chronological order. This paper aims to review the evolution of streaming text visualization techniques and tools, as well as to discuss the problems and challenges for each of identified tools.

Keywords: Information visualization, visual analytics, text mining, visual text analytics tools, big data visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1002
3668 Higher Order Statistics for Identification of Minimum Phase Channels

Authors: Mohammed Zidane, Said Safi, Mohamed Sabri, Ahmed Boumezzough

Abstract:

This paper describes a blind algorithm, which is compared with two another algorithms proposed in the literature, for estimating of the minimum phase channel parameters. In order to identify blindly the impulse response of these channels, we have used Higher Order Statistics (HOS) to build our algorithm. The simulation results in noisy environment, demonstrate that the proposed method could estimate the phase and magnitude with high accuracy of these channels blindly and without any information about the input, except that the input excitation is identically and independent distribute (i.i.d) and non-Gaussian.

Keywords: System Identification, Higher Order Statistics, Communication Channels.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
3667 Optimal Simultaneous Sizing and Siting of DGs and Smart Meters Considering Voltage Profile Improvement in Active Distribution Networks

Authors: T. Sattarpour, D. Nazarpour

Abstract:

This paper investigates the effect of simultaneous placement of DGs and smart meters (SMs), on voltage profile improvement in active distribution networks (ADNs). A substantial center of attention has recently been on responsive loads initiated in power system problem studies such as distributed generations (DGs). Existence of responsive loads in active distribution networks (ADNs) would have undeniable effect on sizing and siting of DGs. For this reason, an optimal framework is proposed for sizing and siting of DGs and SMs in ADNs. SMs are taken into consideration for the sake of successful implementing of demand response programs (DRPs) such as direct load control (DLC) with end-side consumers. Looking for voltage profile improvement, the optimization procedure is solved by genetic algorithm (GA) and tested on IEEE 33-bus distribution test system. Different scenarios with variations in the number of DG units, individual or simultaneous placing of DGs and SMs, and adaptive power factor (APF) mode for DGs to support reactive power have been established. The obtained results confirm the significant effect of DRPs and APF mode in determining the optimal size and site of DGs to be connected in ADN resulting to the improvement of voltage profile as well.

Keywords: Active distribution network (ADN), distributed generations (DGs), smart meters (SMs), demand response programs (DRPs), adaptive power factor (APF).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
3666 Face Detection in Color Images using Color Features of Skin

Authors: Fattah Alizadeh, Saeed Nalousi, Chiman Savari

Abstract:

Because of increasing demands for security in today-s society and also due to paying much more attention to machine vision, biometric researches, pattern recognition and data retrieval in color images, face detection has got more application. In this article we present a scientific approach for modeling human skin color, and also offer an algorithm that tries to detect faces within color images by combination of skin features and determined threshold in the model. Proposed model is based on statistical data in different color spaces. Offered algorithm, using some specified color threshold, first, divides image pixels into two groups: skin pixel group and non-skin pixel group and then based on some geometric features of face decides which area belongs to face. Two main results that we received from this research are as follow: first, proposed model can be applied easily on different databases and color spaces to establish proper threshold. Second, our algorithm can adapt itself with runtime condition and its results demonstrate desirable progress in comparison with similar cases.

Keywords: face detection, skin color modeling, color, colorfulimages, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2313
3665 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. In this study, we developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, we present an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: Indoor positioning, ultra-wideband, error correction, Kalman filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
3664 Enhanced Approaches to Rectify the Noise, Illumination and Shadow Artifacts

Authors: M. Sankari, C. Meena

Abstract:

Enhancing the quality of two dimensional signals is one of the most important factors in the fields of video surveillance and computer vision. Usually in real-life video surveillance, false detection occurs due to the presence of random noise, illumination and shadow artifacts. The detection methods based on background subtraction faces several problems in accurately detecting objects in realistic environments: In this paper, we propose a noise removal algorithm using neighborhood comparison method with thresholding. The illumination variations correction is done in the detected foreground objects by using an amalgamation of techniques like homomorphic decomposition, curvelet transformation and gamma adjustment operator. Shadow is removed using chromaticity estimator with local relation estimator. Results are compared with the existing methods and prove as high robustness in the video surveillance.

Keywords: Chromaticity Estimator, Curvelet Transformation, Denoising, Gamma correction, Homomorphic, Neighborhood Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960
3663 Limits Problem Solving in Engineering Careers: Competences and Errors

Authors: Veronica Diaz Quezada

Abstract:

In this article, the performance and errors are featured and analysed in the limit problems solving of a real-valued function, in correspondence to competency-based education in engineering careers, in the south of Chile. The methodological component is contextualised in a qualitative research, with a descriptive and explorative design, with elaboration, content validation and application of quantitative instruments, consisting of two parallel forms of open answer tests, based on limit application problems. The mathematical competences and errors made by students from five engineering careers from a public University are identified and characterized. Results show better performance only to solve routine-context problem-solving competence, thus they are oriented towards a rational solution or they use a suitable problem-solving method, achieving the correct solution. Regarding errors, most of them are related to techniques and the incorrect use of theorems and definitions of real-valued function limits of real variable.

Keywords: Engineering education, errors, limits, mathematics competences, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
3662 An Optimized Virtual Scheme for Reducing Collisions in MAC Layer

Authors: M. Sivakumar, S. Saravanan

Abstract:

The main function of Medium Access Control (MAC) is to share the channel efficiently between all nodes. In the real-time scenario, there will be certain amount of wastage in bandwidth due to back-off periods. More bandwidth will be wasted in idle state if the back-off period is very high and collision may occur if the back-off period is small. So, an optimization is needed for this problem. The main objective of the work is to reduce delay due to back-off period thereby reducing collision and increasing throughput. Here a method, called the virtual back-off algorithm (VBA) is used to optimize the back-off period and thereby it increases throughput and reduces collisions. The main idea is to optimize the number of transmission for every node. A counter is introduced at each node to implement this idea. Here counter value represents the sequence number. VBA is classified into two types VBA with counter sharing (VBA-CS) and VBA with no counter sharing (VBA-NCS). These two classifications of VBA are compared for various parameters. Simulation is done in NS-2 environment. The results obtained are found to be promising. 

Keywords: VBA, sequence number, counter, back-off period.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
3661 On Reversal and Transposition Medians

Authors: Martin Bader

Abstract:

During the last years, the genomes of more and more species have been sequenced, providing data for phylogenetic recon- struction based on genome rearrangement measures. A main task in all phylogenetic reconstruction algorithms is to solve the median of three problem. Although this problem is NP-hard even for the sim- plest distance measures, there are exact algorithms for the breakpoint median and the reversal median that are fast enough for practical use. In this paper, this approach is extended to the transposition median as well as to the weighted reversal and transposition median. Although there is no exact polynomial algorithm known even for the pairwise distances, we will show that it is in most cases possible to solve these problems exactly within reasonable time by using a branch and bound algorithm.

Keywords: Comparative genomics, genome rearrangements, me-dian, reversals, transpositions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
3660 Self-evolving Artificial Immune System via Developing T and B Cell for Permutation Flow-shop Scheduling Problems

Authors: Pei-Chann Chang, Wei-Hsiu Huang, Ching-Jung Ting, Hwei-Wen Luo, Yu-Peng Yu

Abstract:

Artificial Immune System is applied as a Heuristic Algorithm for decades. Nevertheless, many of these applications took advantage of the benefit of this algorithm but seldom proposed approaches for enhancing the efficiency. In this paper, a Self-evolving Artificial Immune System is proposed via developing the T and B cell in Immune System and built a self-evolving mechanism for the complexities of different problems. In this research, it focuses on enhancing the efficiency of Clonal selection which is responsible for producing Affinities to resist the invading of Antigens. T and B cell are the main mechanisms for Clonal Selection to produce different combinations of Antibodies. Therefore, the development of T and B cell will influence the efficiency of Clonal Selection for searching better solution. Furthermore, for better cooperation of the two cells, a co-evolutional strategy is applied to coordinate for more effective productions of Antibodies. This work finally adopts Flow-shop scheduling instances in OR-library to validate the proposed algorithm.

Keywords: Artificial Immune System, Clonal Selection, Flow-shop Scheduling Problems, Co-evolutional strategy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
3659 Comparison of GSA, SA and PSO Based Intelligent Controllers for Path Planning of Mobile Robot in Unknown Environment

Authors: P. K. Panigrahi, Saradindu Ghosh, Dayal R. Parhi

Abstract:

Now-a-days autonomous mobile robots have found applications in diverse fields. An autonomous robot system must be able to behave in an intelligent manner to deal with complex and changing environment. This work proposes the performance of path planning and navigation of autonomous mobile robot using Gravitational Search Algorithm (GSA), Simulated Annealing (SA) and Particle Swarm optimization (PSO) based intelligent controllers in an unstructured environment. The approach not only finds a valid collision free path but also optimal one. The main aim of the work is to minimize the length of the path and duration of travel from a starting point to a target while moving in an unknown environment with obstacles without collision. Finally, a comparison is made between the three controllers, it is found that the path length and time duration made by the robot using GSA is better than SA and PSO based controllers for the same work.

Keywords: Autonomous Mobile Robot, Gravitational Search Algorithm, Particle Swarm Optimization, Simulated Annealing Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3119
3658 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
3657 DWT-SATS Based Detection of Image Region Cloning

Authors: Michael Zimba

Abstract:

A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency subband of the DWT of the suspicious image thereby leaving valuable information in the other three subbands, the proposed algorithm simultaneously extracts features from all the four subbands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates. 

Keywords: Affine Transformation, Discrete Wavelet Transform, Radix Sort, SATS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
3656 Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation

Authors: M. Momeni Feyli

Abstract:

Many recent high energy physics calculations involving charm and beauty invoke wave function at the origin (WFO) for the meson bound state. Uncertainties of charm and beauty quark masses and different models for potentials governing these bound states require a simple numerical algorithm for evaluation of the WFO's for these bound states. We present a simple algorithm for this propose which provides WFO's with high precision compared with similar ones already obtained in the literature.

Keywords: Mesons, Bound states, Schrodinger equation, Nonrelativistic quark model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
3655 Fast Database Indexing for Large Protein Sequence Collections Using Parallel N-Gram Transformation Algorithm

Authors: Jehad A. H. Hammad, Nur'Aini binti Abdul Rashid

Abstract:

With the rapid development in the field of life sciences and the flooding of genomic information, the need for faster and scalable searching methods has become urgent. One of the approaches that were investigated is indexing. The indexing methods have been categorized into three categories which are the lengthbased index algorithms, transformation-based algorithms and mixed techniques-based algorithms. In this research, we focused on the transformation based methods. We embedded the N-gram method into the transformation-based method to build an inverted index table. We then applied the parallel methods to speed up the index building time and to reduce the overall retrieval time when querying the genomic database. Our experiments show that the use of N-Gram transformation algorithm is an economical solution; it saves time and space too. The result shows that the size of the index is smaller than the size of the dataset when the size of N-Gram is 5 and 6. The parallel N-Gram transformation algorithm-s results indicate that the uses of parallel programming with large dataset are promising which can be improved further.

Keywords: Biological sequence, Database index, N-gram indexing, Parallel computing, Sequence retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
3654 3A Distributed Method Algorithm for Exact Side Load Managing Smart Grid Using LABVIEW

Authors: N. Ravi Kumar, R. Kamalakannan

Abstract:

The advancement of hybrid energy resources such as solar and wind power leading to the emergence of customer owned grid. It provides an opportunity to regulars to obtain low energy costs as well as enabling the power supplier to regulate the utility grid. There is a need to develop smart systems that will automatically submit energy demand schedule and monitors energy price signals in real-time without the prompt of customers. In this paper, a demand side energy management for a grid connected household and also smart preparation of electrical appliance have been presented. It also reduces electricity bill for the consumers in the grid. In addition to this, when production is high, the surplus energy fashioned in the customer owned grid is given to main grid or neighboring micro grids. The simulation of the entire system is presented using LabVIEW software.

Keywords: Distributed renewable energy resource, power storage devices, scheduling, smart meters, smart micro grid, electric vehicle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
3653 A Post Processing Method for Quantum Prime Factorization Algorithm based on Randomized Approach

Authors: Mir Shahriar Emami, Mohammad Reza Meybodi

Abstract:

Prime Factorization based on Quantum approach in two phases has been performed. The first phase has been achieved at Quantum computer and the second phase has been achieved at the classic computer (Post Processing). At the second phase the goal is to estimate the period r of equation xrN ≡ 1 and to find the prime factors of the composite integer N in classic computer. In this paper we present a method based on Randomized Approach for estimation the period r with a satisfactory probability and the composite integer N will be factorized therefore with the Randomized Approach even the gesture of the period is not exactly the real period at least we can find one of the prime factors of composite N. Finally we present some important points for designing an Emulator for Quantum Computer Simulation.

Keywords: Quantum Prime Factorization, RandomizedAlgorithms, Quantum Computer Simulation, Quantum Computation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494
3652 Probability-Based Damage Detection of Structures Using Model Updating with Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Model updating method has received increasing attention in damage detection structures based on measured modal parameters. Therefore, a probability-based damage detection (PBDD) procedure based on a model updating procedure is presented in this paper, in which a one-stage model-based damage identification technique based on the dynamic features of a structure is investigated. The presented framework uses a finite element updating method with a Monte Carlo simulation that considers the uncertainty caused by measurement noise. Enhanced ideal gas molecular movement (EIGMM) is used as the main algorithm for model updating. Ideal gas molecular movement (IGMM) is a multiagent algorithm based on the ideal gas molecular movement. Ideal gas molecules disperse rapidly in different directions and cover all the space inside. This is embedded in the high speed of molecules, collisions between them and with the surrounding barriers. In IGMM algorithm to accomplish the optimal solutions, the initial population of gas molecules is randomly generated and the governing equations related to the velocity of gas molecules and collisions between those are utilized. In this paper, an enhanced version of IGMM, which removes unchanged variables after specified iterations, is developed. The proposed method is implemented on two numerical examples in the field of structural damage detection. The results show that the proposed method can perform well and competitive in PBDD of structures.

Keywords: Enhanced ideal gas molecular movement, ideal gas molecular movement, model updating method, probability-based damage detection, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075