Search results for: slurry transportation
334 Geospatial Network Analysis Using Particle Swarm Optimization
Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh
Abstract:
The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.
Keywords: GIS, Outliers, PSO, Traffic Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2895333 Truck Routing Problem Considering Platooning and Drivers’ Breaks
Authors: Xiaoyuan Yan, Min Xu
Abstract:
Truck platooning refers to a convoy of digitally connected automated trucks traveling safely with a small inter-vehicle gap. It has been identified as one of the most promising and applicable technologies towards automated and sustainable freight transportation. Although truck platooning delivers significant energy-saving benefits, it cannot be realized without good coordination of drivers’ shifts to lead the platoons subject to their mandatory breaks. Therefore, this study aims to route a fleet of trucks to their destinations using the least amount of fuel by maximizing platoon opportunities under the regulations of drivers’ mandatory breaks. We formulate this platoon coordination problem as a mixed-integer linear programming problem and solve it by CPLEX. Numerical experiments are conducted to demonstrate the effectiveness and efficiency of our proposed model. In addition, we also explore the impacts of drivers’ compulsory breaks on the fuel-savings performance. The results show a slight increase in the total fuel costs in the presence of drivers’ compulsory breaks, thanks to driving-while-resting benefit provided for the trailing trucks. This study may serve as a guide for the operators of automated freight transportation.
Keywords: Truck platooning, route optimization, compulsory breaks, energy saving.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620332 Economic Returns of Using Brewery`s Spent Grain in Animal Feed
Authors: U. Ben-Hamed, H. Seddighi, K. Thomas
Abstract:
UK breweries generate extensive by products in the form of spent grain, slurry and yeast. Much of the spent grain is produced by large breweries and processed in bulk for animal feed. Spent brewery grains contain up to 20% protein dry weight and up to 60% fiber and are useful additions to animal feed. Bulk processing is economic and allows spent grain to be sold so providing an income to the brewery. A proportion of spent grain, however, is produced by small local breweries and is more variably distributed to farms or other users using intermittent collection methods. Such use is much less economic and may incur losses if not carefully assessed for transport costs. This study reports an economic returns of using wet brewery spent grain (WBSG) in animal feed using the Co-product Optimizer Decision Evaluator model (Cattle CODE) developed by the University of Nebraska to predict performance and economic returns when byproducts are fed to finishing cattle. The results indicated that distance from brewery to farm had a significantly greater effect on the economics of use of small brewery spent grain and that alternative uses than cattle feed may be important to develop.Keywords: Animal Feed, Brewery Spent Grains, cattle CODE, Economic returns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7821331 Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom
Abstract:
Nowadays the promotion of the public transportation system in the Bangkok Metropolitan Area is increased such as the “Free Bus for Thai Citizen” Campaign and the prospect of the several MRT routes to increase the convenient and comfortable to the Bangkok Metropolitan area citizens. But citizens do not make full use of them it because the citizens are lack of the data and information and also the confident to the public transportation system of Thailand especially in the time and safety aspects. This research is the Public Transport Planning System by Dijkstra Algorithm: Case Study Bangkok Metropolitan Area by focusing on buses, BTS and MRT schedules/routes to give the most information to passengers. They can choose the way and the routes easily by using Dijkstra STAR Algorithm of Graph Theory which also shows the fare of the trip. This Application was evaluated by 30 normal users to find the mean and standard deviation of the developed system. Results of the evaluation showed that system is at a good level of satisfaction (4.20 and 0.40). From these results we can conclude that the system can be used properly and effectively according to the objective.
Keywords: Dijkstra Algorithm, Graph Theory, Shortest Route, Public Transport, Bangkok Metropolitan Area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6340330 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.
Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 453329 Evaluating Accessibility to Bangkok Mass Transit System: Case Study of Saphan Taksin BTS Station
Authors: Rungpansa Noichan, Bart Julien Dewancker
Abstract:
Access to the mass transit system, including rapid elevated and underground transport has become an outstanding issue for many cities. The mass transit access development should focus on behavioral responses of the different passenger groups. Moreover, it should consider about the appearance of intent-oriented action related accessibility that was explored from user’s satisfaction and attitudes related to services quality. This study aims to evaluate mass transit accessibility from passenger’s satisfaction, therefore, understanding the passenger’s attitudes about mass transit accessibility. The study area of this research is Bangkok Mass Transit system (BTS Skytrain) at Saphan Taksin station. 200 passengers at Saphan Taksin station were asked to rate the questionnaires survey that considers accessibility aspects of convenience, safety, feeder connectivity, and other dimensions. The survey was to find out the passenger attitudes and satisfaction for access to the BTS station, and the result shows several factors that influence the passenger choice of using the BTS as a public transportation mode and passenger’s opinion that needs to concern for the development mass transit system and accessibility performance.
Keywords: Urban transportation, user satisfaction, accessibility, Bangkok mass transit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792328 Comparison of Three Turbulence Models in Wear Prediction of Multi-Size Particulate Flow through Rotating Channel
Authors: Pankaj K. Gupta, Krishnan V. Pagalthivarthi
Abstract:
The present work compares the performance of three turbulence modeling approach (based on the two-equation k -ε model) in predicting erosive wear in multi-size dense slurry flow through rotating channel. All three turbulence models include rotation modification to the production term in the turbulent kineticenergy equation. The two-phase flow field obtained numerically using Galerkin finite element methodology relates the local flow velocity and concentration to the wear rate via a suitable wear model. The wear models for both sliding wear and impact wear mechanisms account for the particle size dependence. Results of predicted wear rates using the three turbulence models are compared for a large number of cases spanning such operating parameters as rotation rate, solids concentration, flow rate, particle size distribution and so forth. The root-mean-square error between FE-generated data and the correlation between maximum wear rate and the operating parameters is found less than 2.5% for all the three models.Keywords: Rotating channel, maximum wear rate, multi-sizeparticulate flow, k −ε turbulence models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775327 Rheological Characteristics of Ice Slurries Based on Propylene- and Ethylene-Glycol at High Ice Fractions
Authors: Senda Trabelsi, Sébastien Poncet, Michel Poirier
Abstract:
Ice slurries are considered as a promising phase-changing secondary fluids for air-conditioning, packaging or cooling industrial processes. An experimental study has been here carried out to measure the rheological characteristics of ice slurries. Ice slurries consist in a solid phase (flake ice crystals) and a liquid phase. The later is composed of a mixture of liquid water and an additive being here either (1) Propylene-Glycol (PG) or (2) Ethylene-Glycol (EG) used to lower the freezing point of water. Concentrations of 5%, 14% and 24% of both additives are investigated with ice mass fractions ranging from 5% to 85%. The rheological measurements are carried out using a Discovery HR-2 vane-concentric cylinder with four full-length blades. The experimental results show that the behavior of ice slurries is generally non-Newtonian with shear-thinning or shear-thickening behaviors depending on the experimental conditions. In order to determine the consistency and the flow index, the Herschel-Bulkley model is used to describe the behavior of ice slurries. The present results are finally validated against an experimental database found in the literature and the predictions of an Artificial Neural Network model.
Keywords: Ice slurry, propylene-glycol, ethylene-glycol, rheology, artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135326 Exploration of the Communication Area of Infrared Short-Range Communication Systems for Intervehicle Communication
Authors: Wern-Yarng Shieh, Hsin-Chuan Chen, Ti-Ho Wang, Bo-Wei Chen
Abstract:
Infrared communication in the wavelength band 780- 950 nm is very suitable for short-range point-to-point communications. It is a good choice for vehicle-to-vehicle communication in several intelligent-transportation-system (ITS) applications such as cooperative driving, collision warning, and pileup-crash prevention. In this paper, with the aid of a physical model established in our previous works, we explore the communication area of an infrared intervehicle communication system utilizing a typical low-cost cormmercial lightemitting diodes (LEDs) as the emitter and planar p-i-n photodiodes as the receiver. The radiation pattern of the emitter fabricated by aforementioned LEDs and the receiving pattern of the receiver are approximated by a linear combination of cosinen functions. This approximation helps us analyze the system performance easily. Both multilane straight-road conditions and curved-road conditions with various radius of curvature are taken into account. The condition of a small car communicating with a big truck, i.e., there is a vertical mounting height difference between the emitter and the receiver, is also considered. Our results show that the performance of the system meets the requirement of aforementioned ITS applications in terms of the communication area.
Keywords: Dedicated short-range communication (DSRC), infrared communication, intervehicle communication, intelligent transportation system (ITS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657325 Semisolid Structure and Parameters for A360 Aluminum Alloy Prepared by Mechanical Stirring
Authors: MM.Kaykha, A. Kamarei, M. Safari, V. Arbabi
Abstract:
Semisolid metal processing uses solid–liquid slurries containing fine and globular solid particles uniformly distributed in a liquid matrix, which can be handled as a solid and flow like a liquid. In the recent years, many methods have been introduced for the production of semisolid slurries since it is scientifically sound and industrially viable with such preferred microstructures called thixotropic microstructures as feedstock materials. One such process that needs very low equipment investment and running costs is the cooling slope. In this research by using a mechanical stirrer slurry maker constructed by the authors, the effects of mechanical stirring parameters such as: stirring time, stirring temperature and stirring Speed on micro-structure and mechanical properties of A360 aluminum alloy in semi-solid forming, are investigated. It is determined that mold temperature and holding time of part in temperature of 580ºC have a great effect on micro-structure and mechanical properties(stirring temperature of 585ºC, stirring time of 20 minutes and stirring speed of 425 RPM). By optimizing the forming parameters, dendrite microstructure changes to globular and mechanical properties improves. This is because of breaking and globularzing dendrites of primary α-AL.Keywords: Semi-Solid Forming, Mechanical properties, Shear Rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188324 Structural Performance Evaluation of Segmented Wind Turbine Blade through Finite Element Simulation
Authors: Chandrashekhar Bhat, Dilifa J. Noronha, Faber A. Saldanha
Abstract:
Transportation of long turbine blades from one place to another is a difficult process. Hence a feasibility study of modularization of wind turbine blade was taken from structural standpoint through finite element analysis. Initially, a non-segmented blade is modeled and its structural behavior is evaluated to serve as reference. The resonant, static bending and fatigue tests are simulated in accordance with IEC61400-23 standard for comparison purpose. The non-segmented test blade is separated at suitable location based on trade off studies and the segments are joined with an innovative double strap bonded joint configuration. The adhesive joint is modeled by adopting cohesive zone modeling approach in ANSYS. The developed blade model is analyzed for its structural response through simulation. Performances of both the blades are found to be similar, which indicates that, efficient segmentation of the long blade is possible which facilitates easy transportation of the blades and on site reassembling. The location selected for segmentation and adopted joint configuration has resulted in an efficient segmented blade model which proves the methodology adopted for segmentation was quite effective. The developed segmented blade appears to be the viable alternative considering its structural response specifically in fatigue within considered assumptions.Keywords: Cohesive zone modeling, fatigue, segmentation, wind turbine blade.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299323 CFD Simulations to Validate Two and Three Phase Up-flow in Bubble Columns
Authors: Shyam Kumar, Nannuri Srinivasulu, Ashok Khanna
Abstract:
Bubble columns have a variety of applications in absorption, bio-reactions, catalytic slurry reactions, and coal liquefaction; because they are simple to operate, provide good heat and mass transfer, having less operational cost. The use of Computational Fluid Dynamics (CFD) for bubble column becomes important, since it can describe the fluid hydrodynamics on both local and global scale. Euler- Euler two-phase fluid model has been used to simulate two-phase (air and water) transient up-flow in bubble column (15cm diameter) using FLUENT6.3. These simulations and experiments were operated over a range of superficial gas velocities in the bubbly flow and churn turbulent regime (1 to16 cm/s) at ambient conditions. Liquid velocity was varied from 0 to 16cm/s. The turbulence in the liquid phase is described using the standard k-ε model. The interactions between the two phases are described through drag coefficient formulations (Schiller Neumann). The objectives are to validate CFD simulations with experimental data, and to obtain grid-independent numerical solutions. Quantitatively good agreements are obtained between experimental data for hold-up and simulation values. Axial liquid velocity profiles and gas holdup profiles were also obtained for the simulation.Keywords: Bubble column, Computational fluid dynamics, Gas holdup profile, k-ε model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2722322 Info-participation of the Disabled Using the Mixed Preference Data in Improving Their Travel Quality
Authors: Y. Duvarci, S. Mizokami
Abstract:
Today, the preferences and participation of the TD groups such as the elderly and disabled is still lacking in decision-making of transportation planning, and their reactions to certain type of policies are not well known. Thus, a clear methodology is needed. This study aimed to develop a method to extract the preferences of the disabled to be used in the policy-making stage that can also guide to future estimations. The method utilizes the combination of cluster analysis and data filtering using the data of the Arao city (Japan). The method is a process that follows: defining the TD group by the cluster analysis tool, their travel preferences in tabular form from the household surveys by policy variableimpact pairs, zones, and by trip purposes, and the final outcome is the preference probabilities of the disabled. The preferences vary by trip purpose; for the work trips, accessibility and transit system quality policies with the accompanying impacts of modal shifts towards public mode use as well as the decreasing travel costs, and the trip rate increase; for the social trips, the same accessibility and transit system policies leading to the same mode shift impact, together with the travel quality policy area leading to trip rate increase. These results explain the policies to focus and can be used in scenario generation in models, or any other planning purpose as decision support tool.
Keywords: Transportation Disadvantaged, Disabled, Mixed Preference, Stated Preference Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081321 Processing and Assessment of Quality Characteristics of Composite Baby Foods
Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi
Abstract:
The usefulness of weaning foods to meet the nutrient needs of children is well recognized, and most of them are precooked roller dried mixtures of cereal and/or legume flours which posses a high viscosity and bulk when reconstituted. The objective of this study was to formulate composite weaning foods using cereals, malted legumes and vegetable powders and analyze them for nutrients, functional properties and sensory attributes. Selected legumes (green gram and lentil) were germinated, dried and dehulled. Roasted wheat, rice, carrot powder and skim milk powder also were used. All the ingredients were mixed in different proportions to get four formulations, made into 30% slurry and dried in roller drier. The products were analyzed for proximate principles, mineral content, functional and sensory qualities. The results of analysis showed following range of constituents per 100g of formulations on dry weight basis, protein, 18.1-18.9 g ; fat, 0.78-1.36 g ; iron, 5.09-6.53 mg; calcium, 265-310 mg. The lowest water absorption capacity was in case of wheat green gram based and the highest was in rice lentil based sample. Overall sensory qualities of all foods were graded as “good" and “very good" with no significant differences. The results confirm that formulated weaning foods were nutritionally superior, functionally appropriate and organoleptically acceptable.Keywords: malted legumes, weaning foods, nutrition, functional properties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2087320 How to Win Passengers and Influence Motorists? Lessons Learned from a Comparative Study of Global Transit Systems
Authors: Oliver F. Shyr, Yu-Hsuan Hsiao, David E. Andersson
Abstract:
Due to the call of global warming effects, city planners aim at actions for reducing carbon emission. One of the approaches is to promote the usage of public transportation system toward the transit-oriented-development. For example, rapid transit system in Taipei city and Kaohsiung city are opening. However, until November 2008 the average daily patronage counted only 113,774 passengers at Kaohsiung MRT systems, much less than which was expected. Now the crucial questions: how the public transport competes with private transport? And more importantly, what factors would enhance the use of public transport? To give the answers to those questions, our study first applied regression to analyze the factors attracting people to use public transport around cities in the world. It is shown in our study that the number of MRT stations, city population, cost of living, transit fare, density, gasoline price, and scooter being a major mode of transport are the major factors. Subsequently, our study identified successful and unsuccessful cities in regard of the public transport usage based on the diagnosis of regression residuals. Finally, by comparing transportation strategies adopted by those successful cities, our conclusion stated that Kaohsiung City could apply strategies such as increasing parking fees, reducing parking spaces in downtown area, and reducing transfer time by providing more bus services and public bikes to promote the usage of public transport.
Keywords: Public Transit System, Comparative Study, Transport Demand Management, Regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2095319 Key Performance Indicators of Cold Supply Chain Practices in the Agriculture Sector: An Empirical Study on Egyptian Export Companies
Authors: Ahmed Barakat, Nourhan A. Saad, Mahmoud Hammad
Abstract:
Tracking and monitoring agricultural products, cold chain activities, and transportation in real-time can effectively ensure both the quality and safety of agricultural products, as well as reduce overall logistics costs. Effective supply chain practices are one of the main requirements for enhancing agricultural business in Egypt. Cold chain is among the best practices for the storage and transportation of perishable goods and has potential within the agricultural sector in Egypt. This practice has the scope of reducing the wastage of food and increasing the profitability with a reduction in costs. Even though it has several implementation challenges for the farmers, traders, and people involved in the entire supply chain, it has highlighted better benefits for all and for the export of goods for the economic progression for Egypt. The aim of this paper is to explore cold supply chain practices for the agriculture sector in Egypt, to enhance the export performance of fresh goods. In this context, this study attempts to explore those aspects of the performance of cold supply chain practices that can enhance the functioning of the agriculture sector in Egypt from the perspective of export companies (traders) and farmers. Based on the empirical results obtained by data collection from the farmers and traders, the study argues that there is a significant association between cold supply chain practices and enhancement of the agriculture value chain. The paper thus highlights the contribution of the study with final conclusions and limitations with scope for future research.
Keywords: Agriculture sector, cold chain management, export companies, non-traded goods, supply chain management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988318 An Architectural Study on the Railway Station Buildings in Malaysia during British Era, 1885-1957
Authors: Nor Hafizah Anuar, M. Gul Akdeniz
Abstract:
This paper attempted on emphasize on the station buildings façade elements. Station buildings were essential part of the transportation that reflected the technology. Comparative analysis on architectural styles will also be made between the railway station buildings of Malaysia and any railway station buildings which have similarities. The Malay Peninsula which is strategically situated between the Straits of Malacca and the South China Sea makes it an ideal location for trade. Malacca became an important trading port whereby merchants from around the world stopover to exchange various products. The Portuguese ruled Malacca for 130 years (1511–1641) and for the next century and a half (1641–1824), the Dutch endeavoured to maintain an economic monopoly along the coasts of Malaya. Malacca came permanently under British rule under the Anglo-Dutch Treaty, 1824. Up to Malaysian independence in 1957, Malaya saw a great influx of Chinese and Indian migrants as workers to support its growing industrial needs facilitated by the British. The growing tin ore mining and rubber industry resulted as the reason of the development of the railways as urgency to transport it from one place to another. The existence of railway transportation becomes more significant when the city started to bloom and the British started to build grandeur buildings that have different functions; administrative buildings, town and city halls, railway stations, public works department, courts, and post offices.
Keywords: Malaysia, railway station, architectural design, façade elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665317 Impact of Proposed Modal Shift from Private Users to Bus Rapid Transit System: An Indian City Case Study
Authors: Rakesh Kumar, Fatima Electricwala
Abstract:
One of the major thrusts of the Bus Rapid Transit System is to reduce the commuter’s dependency on private vehicles and increase the shares of public transport to make urban transportation system environmentally sustainable. In this study, commuter mode choice analysis is performed that examines behavioral responses to the proposed Bus Rapid Transit System (BRTS) in Surat, with estimation of the probable shift from private mode to public mode. Further, evaluation of the BRTS scenarios, using Surat’s transportation ecological footprint was done. A multi-modal simulation model was developed in Biogeme environment to explicitly consider private users behaviors and non-linear environmental impact. The data of the different factors (variables) and its impact that might cause modal shift of private mode users to proposed BRTS were collected through home-interview survey using revealed and stated preference approach. A multi modal logit model of mode-choice was then calibrated using the collected data and validated using proposed sample. From this study, a set of perception factors, with reliable and predictable data base, to explain the variation in modal shift behaviour and their impact on Surat’s ecological environment has been identified. A case study of the proposed BRTS connecting the Surat Industrial Hub to the coastal area is provided to illustrate the approach.
Keywords: BRTS, Private Modes, Mode choice models, Ecological footprint.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3371316 Spatial Query Localization Method in Limited Reference Point Environment
Authors: Victor Krebss
Abstract:
Task of object localization is one of the major challenges in creating intelligent transportation. Unfortunately, in densely built-up urban areas, localization based on GPS only produces a large error, or simply becomes impossible. New opportunities arise for the localization due to the rapidly emerging concept of a wireless ad-hoc network. Such network, allows estimating potential distance between these objects measuring received signal level and construct a graph of distances in which nodes are the localization objects, and edges - estimates of the distances between pairs of nodes. Due to the known coordinates of individual nodes (anchors), it is possible to determine the location of all (or part) of the remaining nodes of the graph. Moreover, road map, available in digital format can provide localization routines with valuable additional information to narrow node location search. However, despite abundance of well-known algorithms for solving the problem of localization and significant research efforts, there are still many issues that currently are addressed only partially. In this paper, we propose localization approach based on the graph mapped distances on the digital road map data basis. In fact, problem is reduced to distance graph embedding into the graph representing area geo location data. It makes possible to localize objects, in some cases even if only one reference point is available. We propose simple embedding algorithm and sample implementation as spatial queries over sensor network data stored in spatial database, allowing employing effectively spatial indexing, optimized spatial search routines and geometry functions.Keywords: Intelligent Transportation System, Sensor Network, Localization, Spatial Query, GIS, Graph Embedding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540315 Rail Corridors between Minimal Use of Train and Unsystematic Tightening of Population: A Methodological Essay
Authors: A. Benaiche
Abstract:
In the current situation, the automobile has become the main means of locomotion. It allows traveling long distances, encouraging urban sprawl. To counteract this trend, the train is often proposed as an alternative to the car. Simultaneously, the favoring of urban development around public transport nodes such as railway stations is one of the main issues of the coordination between urban planning and transportation and the keystone of the sustainable urban development implementation. In this context, this paper focuses on the study of the spatial structuring dynamics around the railway. Specifically, it is a question of studying the demographic dynamics in rail corridors of Nantes, Angers and Le Mans (Western France) basing on the radiation of railway stations. Consequently, the methodology is concentrated on the knowledge of demographic weight and gains of these corridors, the index of urban intensity and the mobility behaviors (workers’ travels, scholars' travels, modal practices of travels). The perimeter considered to define the rail corridors includes the communes of urban area which have a railway station and communes with an access time to the railway station is less than fifteen minutes by car (time specified by the Regional Transport Scheme of Travelers). The main tools used are the statistical data from the census of population, the basis of detailed tables and databases on mobility flows. The study reveals that the population is not tightened along rail corridors and train use is minimal despite the presence of a nearby railway station. These results lead to propose guidelines to make the train, a real vector of mobility across the rail corridors.
Keywords: Coordination between urban planning and transportation, Rail corridors, Railway stations, Travels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1135314 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach
Authors: Y. Abdelrazig, R. Moses
Abstract:
Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.Keywords: Optimization, planning, roadway alignment, FDOT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039313 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System
Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain
Abstract:
Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.
Keywords: CO2 emission, IoT, EDA, Weighted Sum Model, WSM, regression, smart parking system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748312 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland
Authors: Alireza Ansariyar, Safieh Laaly
Abstract:
Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates Connected and Autonomous Vehicles (CAVs) fuel consumption and air pollutants including Carbon Monoxide (CO), Particulate Matter (PM), and Nitrogen Oxides (NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.
Keywords: Connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 473311 Physicochemical Characterization of MFI–Ceramic Hollow Fibres Membranes for CO2 Separation with Alkali Metal Cation
Authors: A. Alshebani, Y. Swesi, S. Mrayed, F. Altaher
Abstract:
This paper present some preliminary work on the preparation and physicochemical caracterization of nanocomposite MFI-alumina structures based on alumina hollow fibres. The fibers are manufactured by a wet spinning process. α-alumina particles were dispersed in a solution of polysulfone in NMP. The resulting slurry is pressed through the annular gap of a spinneret into a precipitation bath. The resulting green fibres are sintered. The mechanical strength of the alumina hollow fibres is determined by a three-point-bending test while the pore size is characterized by bubble-point testing. The bending strength is in the range of 110 MPa while the average pore size is 450 nm for an internal diameter of 1 mm and external diameter of 1.7 mm. To characterize the MFI membranes various techniques were used for physicochemical characterization of MFI–ceramic hollow fibres membranes: The nitrogen adsorption, X-ray diffractometry, scanning electron microscopy combined with X emission microanalysis. Scanning Electron Microscopy (SEM) and Energy Dispersive Microanalysis by the X-ray were used to observe the morphology of the hollow fibre membranes (thickness, infiltration into the carrier, defects, homogeneity). No surface film, has been obtained, as observed by SEM and EDX analysis and confirmed by high temperature variation of N2 and CO2 gas permeances before cation exchange. Local analysis and characterise (SEM and EDX) and overall (by ICP elemental analysis) were conducted on two samples exchanged to determine the quantity and distribution of the cation of cesium on the cross section fibre of the zeolite between the cavities.
Keywords: Physicochemical characterization of MFI, Ceramic hollow fibre, CO2, Ion-exchange.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066310 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles
Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo
Abstract:
Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.
Keywords: Surface texturing, surface modification, topography, ultrasonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 968309 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites
Authors: S. Ghanaraja, Subrata Ray, S. K. Nath
Abstract:
Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.
Keywords: Aluminum, alumina, nanoparticle reinforced composites, porosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478308 Sensor and Actuator Fault Detection in Connected Vehicles under a Packet Dropping Network
Authors: Z. Abdollahi Biron, P. Pisu
Abstract:
Connected vehicles are one of the promising technologies for future Intelligent Transportation Systems (ITS). A connected vehicle system is essentially a set of vehicles communicating through a network to exchange their information with each other and the infrastructure. Although this interconnection of the vehicles can be potentially beneficial in creating an efficient, sustainable, and green transportation system, a set of safety and reliability challenges come out with this technology. The first challenge arises from the information loss due to unreliable communication network which affects the control/management system of the individual vehicles and the overall system. Such scenario may lead to degraded or even unsafe operation which could be potentially catastrophic. Secondly, faulty sensors and actuators can affect the individual vehicle’s safe operation and in turn will create a potentially unsafe node in the vehicular network. Further, sending that faulty sensor information to other vehicles and failure in actuators may significantly affect the safe operation of the overall vehicular network. Therefore, it is of utmost importance to take these issues into consideration while designing the control/management algorithms of the individual vehicles as a part of connected vehicle system. In this paper, we consider a connected vehicle system under Co-operative Adaptive Cruise Control (CACC) and propose a fault diagnosis scheme that deals with these aforementioned challenges. Specifically, the conventional CACC algorithm is modified by adding a Kalman filter-based estimation algorithm to suppress the effect of lost information under unreliable network. Further, a sliding mode observer-based algorithm is used to improve the sensor reliability under faults. The effectiveness of the overall diagnostic scheme is verified via simulation studies.
Keywords: Fault diagnostics, communication network, connected vehicles, packet drop out, platoon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2005307 Deregulation of Turkish State Railways Based on Public-Private Partnership Approaches
Authors: S. Shakibaei, P. Alpkokin
Abstract:
The railway network is one of the major components of a transportation system in a country which may be an indicator of the country’s level of economic improvement. Since 2000s on, revival of national railways and development of High Speed Rail (HSR) lines are one of the most remarkable policies of Turkish government in railway sector. Within this trend, the railway age is to be revived and coming decades will be a golden opportunity. Indubitably, major infrastructures such as road and railway networks require sizeable investment capital, precise maintenance and reparation. Traditionally, governments are held responsible for funding, operating and maintaining these infrastructures. However, lack or shortage of financial resources, risk responsibilities (particularly cost and time overrun), and in some cases inefficacy in constructional, operational and management phases persuade governments to find alternative options. Financial power, efficient experiences and background of private sector are the factors convincing the governments to make a collaboration with private parties to develop infrastructures. Public-Private Partnerships (PPP or 3P or P3) and related regulatory issues are born considering these collaborations. In Turkey, PPP approaches have attracted attention particularly during last decade and these types of investments have been accelerated by government to overcome budget limitations and cope with inefficacy of public sector in improving transportation network and its operation. This study mainly tends to present a comprehensive overview of PPP concept, evaluate the regulatory procedure in Europe and propose a general framework for Turkish State Railways (TCDD) as an outlook on privatization, liberalization and deregulation of railway network.
Keywords: Deregulation, high-speed rail, liberalization, privatization, public-private partnership.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1087306 Numerical Investigation of Multiphase Flow in Pipelines
Authors: Gozel Judakova, Markus Bause
Abstract:
We present and analyze reliable numerical techniques for simulating complex flow and transport phenomena related to natural gas transportation in pipelines. Such kind of problems are of high interest in the field of petroleum and environmental engineering. Modeling and understanding natural gas flow and transformation processes during transportation is important for the sake of physical realism and the design and operation of pipeline systems. In our approach a two fluid flow model based on a system of coupled hyperbolic conservation laws is considered for describing natural gas flow undergoing hydratization. The accurate numerical approximation of two-phase gas flow remains subject of strong interest in the scientific community. Such hyperbolic problems are characterized by solutions with steep gradients or discontinuities, and their approximation by standard finite element techniques typically gives rise to spurious oscillations and numerical artefacts. Recently, stabilized and discontinuous Galerkin finite element techniques have attracted researchers’ interest. They are highly adapted to the hyperbolic nature of our two-phase flow model. In the presentation a streamline upwind Petrov-Galerkin approach and a discontinuous Galerkin finite element method for the numerical approximation of our flow model of two coupled systems of Euler equations are presented. Then the efficiency and reliability of stabilized continuous and discontinous finite element methods for the approximation is carefully analyzed and the potential of the either classes of numerical schemes is investigated. In particular, standard benchmark problems of two-phase flow like the shock tube problem are used for the comparative numerical study.Keywords: Discontinuous Galerkin method, Euler system, inviscid two-fluid model, streamline upwind Petrov-Galerkin method, two-phase flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 794305 The Carbon Footprint Model as a Plea for Cities towards Energy Transition: The Case of Algiers Algeria
Authors: Hachaichi Mohamed Nour El-Islem, Baouni Tahar
Abstract:
Environmental sustainability rather than a trans-disciplinary and a scientific issue, is the main problem that characterizes all modern cities nowadays. In developing countries, this concern is expressed in a plethora of critical urban ills: traffic congestion, air pollution, noise, urban decay, increase in energy consumption and CO2 emissions which blemish cities’ landscape and might threaten citizens’ health and welfare. As in the same manner as developing world cities, the rapid growth of Algiers’ human population and increasing in city scale phenomena lead eventually to increase in daily trips, energy consumption and CO2 emissions. In addition, the lack of proper and sustainable planning of the city’s infrastructure is one of the most relevant issues from which Algiers suffers. The aim of this contribution is to estimate the carbon deficit of the City of Algiers, Algeria, using the Ecological Footprint Model (carbon footprint). In order to achieve this goal, the amount of CO2 from fuel combustion has been calculated and aggregated into five sectors (agriculture, industry, residential, tertiary and transportation); as well, Algiers’ biocapacity (CO2 uptake land) has been calculated to determine the ecological overshoot. This study shows that Algiers’ transport system is not sustainable and is generating more than 50% of Algiers total carbon footprint which cannot be sequestered by the local forest land. The aim of this research is to show that the Carbon Footprint Assessment might be a relevant indicator to design sustainable strategies/policies striving to reduce CO2 by setting in motion the energy consumption in the transportation sector and reducing the use of fossil fuels as the main energy input.
Keywords: Biocapacity, carbon footprint, ecological footprint assessment, energy consumption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 907