Search results for: mean tree weight-density relationship
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1827

Search results for: mean tree weight-density relationship

1677 Soil Evaluation for Cashew, Cocoa and Oil Palm in Akure, South-West Nigeria

Authors: Francis Bukola Dada, Samuel Ojo Ajayi, Babatunde Sunday Ewulo, Kehinde Oseni Saani

Abstract:

A key element in the sustainability of the soil-plant relationship in crop yield and performance is the soil's capacity to support tree crops prior to establishment. With the intention of determining the suitability and limitations of the soils of the locations, the northern and southern portions of Akure, a rainforest in Nigeria, were chosen for the suitability evaluation of land for tree crops. In the study area, 16 pedons were established with the help of the Global Positioning System (GPS), the locations were georeferenced and samples were taken from the pedons. The samples were subjected to standard physical and chemical testing. The findings revealed that soils in the research locations were deep to extremely deep, with pH ranging from highly acidic to slightly acidic (4.94 to 6.71). and that sand predominated. The soils had low levels of organic carbon, effective cation exchange capacity (ECEC), total nitrogen, and available phosphorus, whereas exchangeable cations were evaluated as low to moderate. The suitability result indicated that only Pedon 2 and Pedon 14 are currently highly suitable (S1) for the production of oil palms, while others ranged from moderately suitable to marginally suitable. Pedons 4, 12, and 16 were not suitable (N1), respectively, but other Pedons were moderately suitable (S2) and marginally suitable (S3) for the cultivation of cocoa. None of the study areas are currently highly suitable for the production of oil palms. The poor soil texture and low fertility status were the two main drawbacks found. Finally, sound management practices and soil conservation are essential for fertility sustainability.

Keywords: Cashew, cocoa, land evaluation, oil palm, soil fertility suitability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446
1676 Discovering Complex Regularities: from Tree to Semi-Lattice Classifications

Authors: A. Faro, D. Giordano, F. Maiorana

Abstract:

Data mining uses a variety of techniques each of which is useful for some particular task. It is important to have a deep understanding of each technique and be able to perform sophisticated analysis. In this article we describe a tool built to simulate a variation of the Kohonen network to perform unsupervised clustering and support the entire data mining process up to results visualization. A graphical representation helps the user to find out a strategy to optimize classification by adding, moving or delete a neuron in order to change the number of classes. The tool is able to automatically suggest a strategy to optimize the number of classes optimization, but also support both tree classifications and semi-lattice organizations of the classes to give to the users the possibility of passing from one class to the ones with which it has some aspects in common. Examples of using tree and semi-lattice classifications are given to illustrate advantages and problems. The tool is applied to classify macroeconomic data that report the most developed countries- import and export. It is possible to classify the countries based on their economic behaviour and use the tool to characterize the commercial behaviour of a country in a selected class from the analysis of positive and negative features that contribute to classes formation. Possible interrelationships between the classes and their meaning are also discussed.

Keywords: Unsupervised classification, Kohonen networks, macroeconomics, Visual data mining, Cluster interpretation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
1675 The Relationship between Interpersonal Relationship and the Subjective Well-Being of Chinese Primary and Secondary Teachers: A Mediated Moderation Model

Authors: Xuling Zhang, Yong Wang, Xingyun Liu, Shuangxue Xu

Abstract:

Based on positive psychology, this study presented a mediated moderation model in which character strengths moderated the relationship between interpersonal relationship, job satisfaction and subjective well-being, with job satisfaction taking the mediation role among them. A total of 912 teachers participated in four surveys, which include the Oxford Happiness Questionnaire, Values in Action Inventory of Strengths, job satisfaction questionnaire, and the interpersonal relationship questionnaire. The results indicated that: (1) Taking interpersonal relationship as a typical work environmental variable, the result shows that it is significantly correlated to subjective well-being. (2) The character strengths of "kindness", “authenticity” moderated the effect of the teachers’ interpersonal relationship on subjective well-being. (3) The teachers’ job satisfaction mediated the above mentioned moderation effects. In general, this study shows that the teachers’ interpersonal relationship affects their subjective well-being, with their job satisfaction as mediation and character strengths of “kindness” and “authenticity” as moderation. The managerial implications were also discussed.

Keywords: Character strength, subjective well-being, job satisfaction, interpersonal relationship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
1674 Machine Learning Techniques for Short-Term Rain Forecasting System in the Northeastern Part of Thailand

Authors: Lily Ingsrisawang, Supawadee Ingsriswang, Saisuda Somchit, Prasert Aungsuratana, Warawut Khantiyanan

Abstract:

This paper presents the methodology from machine learning approaches for short-term rain forecasting system. Decision Tree, Artificial Neural Network (ANN), and Support Vector Machine (SVM) were applied to develop classification and prediction models for rainfall forecasts. The goals of this presentation are to demonstrate (1) how feature selection can be used to identify the relationships between rainfall occurrences and other weather conditions and (2) what models can be developed and deployed for predicting the accurate rainfall estimates to support the decisions to launch the cloud seeding operations in the northeastern part of Thailand. Datasets collected during 2004-2006 from the Chalermprakiat Royal Rain Making Research Center at Hua Hin, Prachuap Khiri khan, the Chalermprakiat Royal Rain Making Research Center at Pimai, Nakhon Ratchasima and Thai Meteorological Department (TMD). A total of 179 records with 57 features was merged and matched by unique date. There are three main parts in this work. Firstly, a decision tree induction algorithm (C4.5) was used to classify the rain status into either rain or no-rain. The overall accuracy of classification tree achieves 94.41% with the five-fold cross validation. The C4.5 algorithm was also used to classify the rain amount into three classes as no-rain (0-0.1 mm.), few-rain (0.1- 10 mm.), and moderate-rain (>10 mm.) and the overall accuracy of classification tree achieves 62.57%. Secondly, an ANN was applied to predict the rainfall amount and the root mean square error (RMSE) were used to measure the training and testing errors of the ANN. It is found that the ANN yields a lower RMSE at 0.171 for daily rainfall estimates, when compared to next-day and next-2-day estimation. Thirdly, the ANN and SVM techniques were also used to classify the rain amount into three classes as no-rain, few-rain, and moderate-rain as above. The results achieved in 68.15% and 69.10% of overall accuracy of same-day prediction for the ANN and SVM models, respectively. The obtained results illustrated the comparison of the predictive power of different methods for rainfall estimation.

Keywords: Machine learning, decision tree, artificial neural network, support vector machine, root mean square error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3222
1673 Determining Moment-Curvature Relationship of Reinforced Concrete Rectangular Shear Walls

Authors: Gokhan Dok, Hakan Ozturk, Aydin Demir

Abstract:

The behavior of reinforced concrete (RC) members is quite important in RC structures. When evaluating the performance of structures, the nonlinear properties are defined according to the cross sectional behavior of RC members. To be able to determine the behavior of RC members, its cross sectional behavior should be known well. The moment-curvature (MC) relationship is used to represent cross sectional behavior. The MC relationship of RC cross section can be best determined both experimentally and numerically. But, experimental study on RC members is very difficult. The aim of the study is to obtain the MC relationship of RC shear walls. Additionally, it is aimed to determine the parameters which affect MC relationship. While obtaining MC relationship of RC members, XTRACT which can represent robustly the MC relationship is used. Concrete quality, longitudinal and transverse reinforcing ratios, are selected as parameters which affect MC relationship. As a result of the study, curvature ductility and effective flexural stiffness are determined using this parameter. Effective flexural stiffness is compared with the values defined in design codes.

Keywords: Moment-curvature, reinforced concrete, shear wall, numerical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
1672 Enhanced-Delivery Overlay Multicasting Scheme by Optimizing Bandwidth and Latency Discrepancy Ratios

Authors: Omar F. Hamad, T. Marwala

Abstract:

With optimized bandwidth and latency discrepancy ratios, Node Gain Scores (NGSs) are determined and used as a basis for shaping the max-heap overlay. The NGSs - determined as the respective bandwidth-latency-products - govern the construction of max-heap-form overlays. Each NGS is earned as a synergy of discrepancy ratio of the bandwidth requested with respect to the estimated available bandwidth, and latency discrepancy ratio between the nodes and the source node. The tree leads to enhanceddelivery overlay multicasting – increasing packet delivery which could, otherwise, be hindered by induced packet loss occurring in other schemes not considering the synergy of these parameters on placing the nodes on the overlays. The NGS is a function of four main parameters – estimated available bandwidth, Ba; individual node's requested bandwidth, Br; proposed node latency to its prospective parent (Lp); and suggested best latency as advised by source node (Lb). Bandwidth discrepancy ratio (BDR) and latency discrepancy ratio (LDR) carry weights of α and (1,000 - α ) , respectively, with arbitrary chosen α ranging between 0 and 1,000 to ensure that the NGS values, used as node IDs, maintain a good possibility of uniqueness and balance between the most critical factor between the BDR and the LDR. A max-heap-form tree is constructed with assumption that all nodes possess NGS less than the source node. To maintain a sense of load balance, children of each level's siblings are evenly distributed such that a node can not accept a second child, and so on, until all its siblings able to do so, have already acquired the same number of children. That is so logically done from left to right in a conceptual overlay tree. The records of the pair-wise approximate available bandwidths as measured by a pathChirp scheme at individual nodes are maintained. Evaluation measures as compared to other schemes – Bandwidth Aware multicaSt architecturE (BASE), Tree Building Control Protocol (TBCP), and Host Multicast Tree Protocol (HMTP) - have been conducted. This new scheme generally performs better in terms of trade-off between packet delivery ratio; link stress; control overhead; and end-to-end delays.

Keywords: Overlay multicast, Available bandwidth, Max-heapform overlay, Induced packet loss, Bandwidth-latency product, Node Gain Score (NGS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1671 Topological Queries on Graph-structured XML Data: Models and Implementations

Authors: Hongzhi Wang, Jianzhong Li, Jizhou Luo

Abstract:

In many applications, data is in graph structure, which can be naturally represented as graph-structured XML. Existing queries defined on tree-structured and graph-structured XML data mainly focus on subgraph matching, which can not cover all the requirements of querying on graph. In this paper, a new kind of queries, topological query on graph-structured XML is presented. This kind of queries consider not only the structure of subgraph but also the topological relationship between subgraphs. With existing subgraph query processing algorithms, efficient algorithms for topological query processing are designed. Experimental results show the efficiency of implementation algorithms.

Keywords: XML, Graph Structure, Topological query.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
1670 Comparison of CPW Fed Microstrip Patch Antennas with Varied Ground Structures for Fixed Satellite Applications

Authors: Deepanshu Kaushal, T. Shanmuganantham

Abstract:

This paper draws a comparison between two microstrip patch antennas having different ground structures. The designs utilize 45 mm x 40 mm x 1.6 mm FR4 epoxy substrate (relative permittivity of 4.4 and dielectric loss tangent of 0.02) and CPW feeding technique. The design 1 uses conducting partial ground plates along the two sides of the radiating X’mas tree shaped patch. The design 2 utilizes an X’mas tree shaped slotted ground structure that features a circular radiating patch. A comparative analysis of results of both designs has been carried. The two designs are intended to serve the fixed satellite applications in X and Ku band respectively.

Keywords: CPW feed, partial ground structures, slotted ground structures, fixed satellite applications.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765
1669 Comparative Study - Three Artificial Intelligence Techniques for Rain Domain in Precipitation Forecast

Authors: Nabilah Filzah Mohd Radzuan, Andi Putra, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Precipitation forecast is important in avoid incident of natural disaster which can cause loss in involved area. This review paper involves three techniques from artificial intelligence namely logistic regression, decisions tree, and random forest which used in making precipitation forecast. These combination techniques through VAR model in finding advantages and strength for every technique in forecast process. Data contains variables from rain domain. Adaptation of artificial intelligence techniques involved on rain domain enables the process to be easier and systematic for precipitation forecast.

Keywords: Logistic regression, decisions tree, random forest, VAR model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
1668 Text Mining Technique for Data Mining Application

Authors: M. Govindarajan

Abstract:

Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.

Keywords: C5.0, Error Ratio, text mining, training data, test data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
1667 CBCTL: A Reasoning System of TemporalEpistemic Logic with Communication Channel

Authors: Suguru Yoshioka, Satoshi Tojo

Abstract:

This paper introduces a temporal epistemic logic CBCTL that updates agent-s belief states through communications in them, based on computational tree logic (CTL). In practical environments, communication channels between agents may not be secure, and in bad cases agents might suffer blackouts. In this study, we provide inform* protocol based on ACL of FIPA, and declare the presence of secure channels between two agents, dependent on time. Thus, the belief state of each agent is updated along with the progress of time. We show a prover, that is a reasoning system for a given formula in a given a situation of an agent ; if it is directly provable or if it could be validated through the chains of communications, the system returns the proof.

Keywords: communication channel, computational tree logic, reasoning system, temporal epistemic logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1243
1666 Unnoticeable Mumps Infection in India: Does MMR Vaccine Protect against Circulating Mumps Virus Genotype C?

Authors: Jeevan Malayan, Aparna Warrier, Padmasani Venkat Ramanan, Sanjeeva Reddy N, Elanchezhiyan Manickan

Abstract:

MMR vaccine failure had been reported globally and here we report that it occurs now in India. Samples were collected from clinically suspected mumps cases were subjected for anti mumps antibodies, virus isolation, RT-PCR, sequencing and phylogenetic tree analysis. 56 samples collected from men and women belonging to various age groups. 30 had been vaccinated and the status of 26 patients was unknown. 28 out of 30 samples were found to be symptomatic and positive for Mumps IgM, indicating active mumps infection in 93.4% of the vaccinated population. A phylogenetic tree comparison of the clinical isolate is shown to be genotype C which is distinct from vaccine strain. Our study clearly sending warning signs that MMR vaccine is a failure and it needs to be revamped for the human use by increasing its efficacy and efficiency.

Keywords: Genotype C, Mumps virus, MMR vaccine, Sero types.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
1665 Empirical and Indian Automotive Equity Portfolio Decision Support

Authors: P. Sankar, P. James Daniel Paul, Siddhant Sahu

Abstract:

A brief review of the empirical studies on the methodology of the stock market decision support would indicate that they are at a threshold of validating the accuracy of the traditional and the fuzzy, artificial neural network and the decision trees. Many researchers have been attempting to compare these models using various data sets worldwide. However, the research community is on the way to the conclusive confidence in the emerged models. This paper attempts to use the automotive sector stock prices from National Stock Exchange (NSE), India and analyze them for the intra-sectorial support for stock market decisions. The study identifies the significant variables and their lags which affect the price of the stocks using OLS analysis and decision tree classifiers.

Keywords: Indian Automotive Sector, Stock Market Decisions, Equity Portfolio Analysis, Decision Tree Classifiers, Statistical Data Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
1664 A Spanning Tree for Enhanced Cluster Based Routing in Wireless Sensor Network

Authors: M. Saravanan, M. Madheswaran

Abstract:

Wireless Sensor Network (WSN) clustering architecture enables features like network scalability, communication overhead reduction, and fault tolerance. After clustering, aggregated data is transferred to data sink and reducing unnecessary, redundant data transfer. It reduces nodes transmitting, and so saves energy consumption. Also, it allows scalability for many nodes, reduces communication overhead, and allows efficient use of WSN resources. Clustering based routing methods manage network energy consumption efficiently. Building spanning trees for data collection rooted at a sink node is a fundamental data aggregation method in sensor networks. The problem of determining Cluster Head (CH) optimal number is an NP-Hard problem. In this paper, we combine cluster based routing features for cluster formation and CH selection and use Minimum Spanning Tree (MST) for intra-cluster communication. The proposed method is based on optimizing MST using Simulated Annealing (SA). In this work, normalized values of mobility, delay, and remaining energy are considered for finding optimal MST. Simulation results demonstrate the effectiveness of the proposed method in improving the packet delivery ratio and reducing the end to end delay.

Keywords: Wireless sensor network, clustering, minimum spanning tree, genetic algorithm, low energy adaptive clustering hierarchy, simulated annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784
1663 Estimation Model of Dry Docking Duration Using Data Mining

Authors: Isti Surjandari, Riara Novita

Abstract:

Maintenance is one of the most important activities in the shipyard industry. However, sometimes it is not supported by adequate services from the shipyard, where inaccuracy in estimating the duration of the ship maintenance is still common. This makes estimation of ship maintenance duration is crucial. This study uses Data Mining approach, i.e., CART (Classification and Regression Tree) to estimate the duration of ship maintenance that is limited to dock works or which is known as dry docking. By using the volume of dock works as an input to estimate the maintenance duration, 4 classes of dry docking duration were obtained with different linear model and job criteria for each class. These linear models can then be used to estimate the duration of dry docking based on job criteria.

Keywords: Classification and regression tree (CART), data mining, dry docking, maintenance duration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2431
1662 A CTL Specification of Serializability for Transactions Accessing Uniform Data

Authors: Rafat Alshorman, Walter Hussak

Abstract:

Existing work in temporal logic on representing the execution of infinitely many transactions, uses linear-time temporal logic (LTL) and only models two-step transactions. In this paper, we use the comparatively efficient branching-time computational tree logic CTL and extend the transaction model to a class of multistep transactions, by introducing distinguished propositional variables to represent the read and write steps of n multi-step transactions accessing m data items infinitely many times. We prove that the well known correspondence between acyclicity of conflict graphs and serializability for finite schedules, extends to infinite schedules. Furthermore, in the case of transactions accessing the same set of data items in (possibly) different orders, serializability corresponds to the absence of cycles of length two. This result is used to give an efficient encoding of the serializability condition into CTL.

Keywords: computational tree logic, serializability, multi-step transactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
1661 CART Method for Modeling the Output Power of Copper Bromide Laser

Authors: Iliycho P. Iliev, Desislava S. Voynikova, Snezhana G. Gocheva-Ilieva

Abstract:

This paper examines the available experiment data for a copper bromide vapor laser (CuBr laser), emitting at two wavelengths - 510.6 and 578.2nm. Laser output power is estimated based on 10 independent input physical parameters. A classification and regression tree (CART) model is obtained which describes 97% of data. The resulting binary CART tree specifies which input parameters influence considerably each of the classification groups. This allows for a technical assessment that indicates which of these are the most significant for the manufacture and operation of the type of laser under consideration. The predicted values of the laser output power are also obtained depending on classification. This aids the design and development processes considerably.

Keywords: Classification and regression trees (CART), Copper Bromide laser (CuBr laser), laser generation, nonparametric statistical model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1660 Dynamic Load Balancing Strategy for Grid Computing

Authors: Belabbas Yagoubi, Yahya Slimani

Abstract:

Workload and resource management are two essential functions provided at the service level of the grid software infrastructure. To improve the global throughput of these software environments, workloads have to be evenly scheduled among the available resources. To realize this goal several load balancing strategies and algorithms have been proposed. Most strategies were developed in mind, assuming homogeneous set of sites linked with homogeneous and fast networks. However for computational grids we must address main new issues, namely: heterogeneity, scalability and adaptability. In this paper, we propose a layered algorithm which achieve dynamic load balancing in grid computing. Based on a tree model, our algorithm presents the following main features: (i) it is layered; (ii) it supports heterogeneity and scalability; and, (iii) it is totally independent from any physical architecture of a grid.

Keywords: Grid computing, load balancing, workload, tree based model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
1659 The Role of the Constructivist Learning Theory and Collaborative Learning Environment on Wiki Classroom and the Relationship between Them

Authors: Ibraheem Alzahrani

Abstract:

This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified through given an example of the learning environment. Due to wiki characteristics, wiki can be used to understand the relationship between constructivist learning theory and collaborative learning environment. However, several evidences will come in this paper to support the idea of why wiki is the suitable method to explore the relationship between social constructivist theory and the collaborative learning and their role in learning. Moreover, learning activities in wiki classroom will be discussed in this paper to find out the result of the learners' interaction in the classroom groups, which will be through two types of communication; synchronous and asynchronous.

Keywords: Social constructivist, collaborative, environment, wiki, activities.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3039
1658 UB-Tree Indexing for Semantic Query Optimization of Range Queries

Authors: S. Housseno, A. Simonet, M. Simonet

Abstract:

Semantic query optimization consists in restricting the search space in order to reduce the set of objects of interest for a query. This paper presents an indexing method based on UB-trees and a static analysis of the constraints associated to the views of the database and to any constraint expressed on attributes. The result of the static analysis is a partitioning of the object space into disjoint blocks. Through Space Filling Curve (SFC) techniques, each fragment (block) of the partition is assigned a unique identifier, enabling the efficient indexing of fragments by UB-trees. The search space corresponding to a range query is restricted to a subset of the blocks of the partition. This approach has been developed in the context of a KB-DBMS but it can be applied to any relational system.

Keywords: Index, Range query, UB-tree, Space Filling Curve, Query optimization, Views, Database, Integrity Constraint, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495
1657 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients

Authors: Karina Zaccari, Ernesto Cordeiro Marujo

Abstract:

This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.

Keywords: Machine learning, medical diagnosis, meningitis detection, gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1101
1656 Clustering in WSN Based on Minimum Spanning Tree Using Divide and Conquer Approach

Authors: Uttam Vijay, Nitin Gupta

Abstract:

Due to heavy energy constraints in WSNs clustering is an efficient way to manage the energy in sensors. There are many methods already proposed in the area of clustering and research is still going on to make clustering more energy efficient. In our paper we are proposing a minimum spanning tree based clustering using divide and conquer approach. The MST based clustering was first proposed in 1970’s for large databases. Here we are taking divide and conquer approach and implementing it for wireless sensor networks with the constraints attached to the sensor networks. This Divide and conquer approach is implemented in a way that we don’t have to construct the whole MST before clustering but we just find the edge which will be the part of the MST to a corresponding graph and divide the graph in clusters there itself if that edge from the graph can be removed judging on certain constraints and hence saving lot of computation.

Keywords: Algorithm, Clustering, Edge-Weighted Graph, Weighted-LEACH.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
1655 Computational Identification of MicroRNAs and their Targets in two Species of Evergreen Spruce Tree (Picea)

Authors: Muhammad Y.K. Barozai, Ifthikhar A. Baloch, M. Din

Abstract:

MicroRNAs (miRNAs) are small, non-coding and regulatory RNAs about 20 to 24 nucleotides long. Their conserved nature among the various organisms makes them a good source of new miRNAs discovery by comparative genomics approach. The study resulted in 21 miRNAs of 20 pre-miRNAs belonging to 16 families (miR156, 157, 158, 164, 165, 168, 169, 172, 319, 390, 393, 394, 395, 400, 472 and 861) in evergreen spruce tree (Picea). The miRNA families; miR 157, 158, 164, 165, 168, 169, 319, 390, 393, 394, 400, 472 and 861 are reported for the first time in the Picea. All 20 miRNA precursors form stable minimum free energy stem-loop structure as their orthologues form in Arabidopsis and the mature miRNA reside in the stem portion of the stem loop structure. Sixteen (16) miRNAs are from Picea glauca and five (5) belong to Picea sitchensis. Their targets consist of transcription factors, growth related, stressed related and hypothetical proteins.

Keywords: BLAST, Comparative Genomics, Micro-RNAs, Spruce

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2049
1654 Adaptive Hierarchical Key Structure Generation for Key Management in Wireless Sensor Networks using A*

Authors: Jin Myoung Kim, Tae Ho Cho

Abstract:

Wireless Sensor networks have a wide spectrum of civil and military applications that call for secure communication such as the terrorist tracking, target surveillance in hostile environments. For the secure communication in these application areas, we propose a method for generating a hierarchical key structure for the efficient group key management. In this paper, we apply A* algorithm in generating a hierarchical key structure by considering the history data of the ratio of addition and eviction of sensor nodes in a location where sensor nodes are deployed. Thus generated key tree structure provides an efficient way of managing the group key in terms of energy consumption when addition and eviction event occurs. A* algorithm tries to minimize the number of messages needed for group key management by the history data. The experimentation with the tree shows efficiency of the proposed method.

Keywords: Heuristic search, key management, security, sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
1653 A Comprehensive Method of Fault Detection and Isolation Based On Testability Modeling Data

Authors: Junyou Shi, Weiwei Cui

Abstract:

Testability modeling is a commonly used method in testability design and analysis of system. A dependency matrix will be obtained from testability modeling, and we will give a quantitative evaluation about fault detection and isolation. Based on the dependency matrix, we can obtain the diagnosis tree. The tree provides the procedures of the fault detection and isolation. But the dependency matrix usually includes built-in test (BIT) and manual test in fact. BIT runs the test automatically and is not limited by the procedures. The method above cannot give a more efficient diagnosis and use the advantages of the BIT. A Comprehensive method of fault detection and isolation is proposed. This method combines the advantages of the BIT and Manual test by splitting the matrix. The result of the case study shows that the method is effective.

Keywords: BIT, fault detection, fault isolation, testability modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1665
1652 Investigation of Relationship between Organizational Climate and Organizational Citizenship Behavior: A Research on Health Sector

Authors: Serdar Öge, Pınar Erdogan

Abstract:

The main objective of this research is to describe the relationship between organizational climate and organizational citizenship behavior. In order to examine this relationship, a research is intended to be carried out in relevant institutions and organizations operating in the health sector in Turkey. It will be researched that whether there is a statistically significant relationship between organizational climate and organizational citizenship behavior through elated scientific research methods and statistical analysis. In addition, relationships between the dimensions of organizational climate and organizational citizenship behavior subscales will be questioned statistically.

Keywords: Organizational climate, organizational citizenship, organizational citizenship behavior, climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2340
1651 Adsorption of Ferrous and Ferric Ions in Aqueous and Industrial Effluent onto Pongamia pinnata Tree Bark

Authors: M. Mamatha, H. B. Aravinda, E. T. Puttaiah, S. Manjappa

Abstract:

One of the causes of water pollution is the presence of heavy metals in water. In the present study, an adsorbent prepared from the raw bark of the Pongamia pinnata tree is used for the removal of ferrous or ferric ions from aqueous and waste water containing heavy metals. Adsorption studies were conducted at different pH, concentration of metal ion, amount of adsorbent, contact time, agitation and temperature. The Langmuir and Freundlich adsorption isotherm models were applied for the results. The Langmuir isotherms were best fitted by the equilibrium data. The maximum adsorption was found to 146mg/g in waste water at a temperature of 30°C which is in agreement as comparable to the adsorption capacity of different adsorbents reported in literature. Pseudo second order model best fitted the adsorption of both ferrous and ferric ions.

Keywords: Adsorption, Adsorption isotherms, Heavy metals, Industrial effluents.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3247
1650 Building Relationship Network for Machine Analysis from Wear Debris Measurements

Authors: Qurban A Memon, Mohammad S. Laghari

Abstract:

Integration of system process information obtained through an image processing system with an evolving knowledge database to improve the accuracy and predictability of wear debris analysis is the main focus of the paper. The objective is to automate intelligently the analysis process of wear particle using classification via self-organizing maps. This is achieved using relationship measurements among corresponding attributes of various measurements for wear debris. Finally, visualization technique is proposed that helps the viewer in understanding and utilizing these relationships that enable accurate diagnostics.

Keywords: Relationship Network, Relationship Measurement, Self-organizing Clusters, Wear Debris Analysis, Kohonen Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1935
1649 The Effects of Loyalty Program Quality on Word -of -Mouth Recommendations Intentions

Authors: Nedra Bahri-Ammari

Abstract:

Literature review revealed the importance of the adoption of marketing Relationship for loyalty and retaining profitable customer (Customer Relationship Management). LPQ satisfaction will reinforce the loyalty and customer brand attachment. Customer will communicate the operator to others. The focus of this study is to examine the relationship between the LPPQ and the WOM recommendations through: customer satisfaction, loyalty and attachment. The results show that LPQ affect positively the satisfaction, negatively the loyalty. LPQ has an indirectly effect on WOM recommendations but through the satisfaction and attachment. The mediating effect of satisfaction in the relationship between LPQ and Loyalty is rejected. This finding can be explained by the nature of mobile sector in Tunisia.

Keywords: Attachment, Loyalty program quality, satisfaction, WOM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3516
1648 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: Artificial neural networks, breast cancer, cancer dataset, classifiers, cervical cancer, F-score, logistic regression, machine learning, precision, recall, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1548