Search results for: financial models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3088

Search results for: financial models

2938 Why do Clawback Provisions Affect Financial Reporting Quality? - An Analysis of Trigger Effects

Authors: Yu-Chun Lin

Abstract:

We identify clawback triggers from firms- proxy statements (Form DEF 14A) and use the likelihood of restatements to proxy for financial reporting quality. Based on a sample of 578 U.S. firms that voluntarily adopt clawback provisions during 2003-2009, when restatement-based triggers could be decomposed into two types: fraud and unintentional error, and we do observe the evidence that using fraud triggers is associated with high financial reporting quality. The findings support that fraud triggers can enhance deterrent effect of clawback provision by establishing a viable disincentive against fraud, misconduct, and otherwise harmful acts. These results are robust to controlling for the compensation components, to different sample specifications and to a number of sensitivity.

Keywords: Accruals quality, Clawback provisions, Compensation, Restatements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2591
2937 Financial Statement Fraud: The Need for a Paradigm Shift to Forensic Accounting

Authors: Ifedapo Francis Awolowo

Abstract:

The unrelenting series of embarrassing audit failures should stimulate a paradigm shift in accounting. And in this age of information revolution, there is need for a constant improvement on the products or services one offers to the market in order to be relevant. This study explores the perceptions of external auditors, forensic accountants and accounting academics on whether a paradigm shift to forensic accounting can reduce financial statement frauds. Through Neo-empiricism/inductive analytical approach, findings reveal that a paradigm shift to forensic accounting might be the right step in the right direction in order to increase the chances of fraud prevention and detection in the financial statement. This research has implication on accounting education on the need to incorporate forensic accounting into present day accounting curriculum. Accounting professional bodies, accounting standard setters and accounting firms all have roles to play in incorporating forensic accounting education into accounting curriculum. Particularly, there is need to alter the ISA 240 to make the prevention and detection of frauds the responsibilities of bot those charged with the management and governance of companies and statutory auditors.

Keywords: Financial statement fraud, forensic accounting, fraud prevention and detection, auditing, audit expectation gap, corporate governance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
2936 A Comparison of the Nonparametric Regression Models using Smoothing Spline and Kernel Regression

Authors: Dursun Aydin

Abstract:

This paper study about using of nonparametric models for Gross National Product data in Turkey and Stanford heart transplant data. It is discussed two nonparametric techniques called smoothing spline and kernel regression. The main goal is to compare the techniques used for prediction of the nonparametric regression models. According to the results of numerical studies, it is concluded that smoothing spline regression estimators are better than those of the kernel regression.

Keywords: Kernel regression, Nonparametric models, Prediction, Smoothing spline.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101
2935 Novel GPU Approach in Predicting the Directional Trend of the S&P 500

Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble

Abstract:

Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-ofsample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.

Keywords: Financial algorithm, GPU, S&P 500, stock market prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
2934 Bank Business Models and The Changes in CEE Countries

Authors: I. Erins, J. Erina

Abstract:

The aim of this article is to assess the existing business models used by the banks operating in the CEE countries in the time period from 2006 till 2011. In order to obtain research results, the authors performed qualitative analysis of the scientific literature on bank business models, which have been grouped into clusters that consist of such components as: 1) capital and reserves; 2) assets; 3) deposits, and 4) loans. In their turn, bank business models have been developed based on the types of core activities of the banks, and have been divided into four groups: Wholesale, Investment, Retail and Universal Banks. Descriptive statistics have been used to analyse the models, determining mean, minimal and maximal values of constituent cluster components, as well as standard deviation. The analysis of the data is based on such bank variable indices as Return on Assets (ROA) and Return on Equity (ROE).

Keywords: Banks, Business model, CEE, ROA, ROE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848
2933 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two hybrid price prediction models using artificial neural network and long short-term memory (ANN-LSTM), by Python, that can forecast the average monthly copper prices, traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022 and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices, and economic indicators of the three major exporting countries of copper depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation, and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-month prediction model is better than the 1-month prediction model; but still, both models can act as predicting tools for diverse economic situations.

Keywords: Copper prices, prediction model, neural network, time series forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
2932 A Comparative Analysis of E-Government Quality Models

Authors: Abdoullah Fath-Allah, Laila Cheikhi, Rafa E. Al-Qutaish, Ali Idri

Abstract:

Many quality models have been used to measure egovernment portals quality. However, the absence of an international consensus for e-government portals quality models results in many differences in terms of quality attributes and measures. The aim of this paper is to compare and analyze the existing e-government quality models proposed in literature (those that are based on ISO standards and those that are not) in order to propose guidelines to build a good and useful e-government portals quality model. Our findings show that, there is no e-government portal quality model based on the new international standard ISO 25010. Besides that, the quality models are not based on a best practice model to allow agencies to both; measure e-government portals quality and identify missing best practices for those portals.

Keywords: E-government, portal, best practices, quality model, ISO, standard, ISO 25010, ISO 9126.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3649
2931 Application of Neural Networks in Financial Data Mining

Authors: Defu Zhang, Qingshan Jiang, Xin Li

Abstract:

This paper deals with the application of a well-known neural network technique, multilayer back-propagation (BP) neural network, in financial data mining. A modified neural network forecasting model is presented, and an intelligent mining system is developed. The system can forecast the buying and selling signs according to the prediction of future trends to stock market, and provide decision-making for stock investors. The simulation result of seven years to Shanghai Composite Index shows that the return achieved by this mining system is about three times as large as that achieved by the buy and hold strategy, so it is advantageous to apply neural networks to forecast financial time series, the different investors could benefit from it.

Keywords: Data mining, neural network, stock forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3590
2930 Evaluation Framework for Investments in Rail Infrastructure Projects

Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki

Abstract:

Transport infrastructures are high-cost, long-term investments that serve as vital foundations for the operation of a region or nation and are essential to a country’s or business’s economic development and prosperity, by improving well-being and generating jobs and income. The development of appropriate financing options is of key importance in the decision making process in order develop viable transport infrastructures. The development of transport infrastructure has increasingly been shifting toward alternative methods of project financing such as Public Private Partnership (PPPs) and hybrid forms. In this paper, a methodological decision-making framework based on the evaluation of the financial viability of transportation infrastructure for different financial schemes is presented. The framework leads to an assessment of the financial viability which can be achieved by performing various financing scenarios analyses. To illustrate the application of the proposed methodology, a case study of rail transport infrastructure financing scenario analysis in Greece is developed.

Keywords: Rail transport infrastructure; financial viability, scenario analysis, rail project feasibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
2929 A Comparative Analysis of Artificial Neural Network and Autoregressive Integrated Moving Average Model on Modeling and Forecasting Exchange Rate

Authors: Mogari I. Rapoo, Diteboho Xaba

Abstract:

This paper examines the forecasting performance of Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN) models with the published exchange rate obtained from South African Reserve Bank (SARB). ARIMA is one of the popular linear models in time series forecasting for the past decades. ARIMA and ANN models are often compared and literature revealed mixed results in terms of forecasting performance. The study used the MSE and MAE to measure the forecasting performance of the models. The empirical results obtained reveal the superiority of ARIMA model over ANN model. The findings further resolve and clarify the contradiction reported in literature over the superiority of ARIMA and ANN models.

Keywords: ARIMA, artificial neural networks models, error metrics, exchange rates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
2928 Financial Regulations in the Process of Global Financial Crisis and Macroeconomics Impact of Basel III

Authors: M. Okan Tasar

Abstract:

Basel III (or the Third Basel Accord) is a global regulatory standard on bank capital adequacy, stress testing and market liquidity risk agreed upon by the members of the Basel Committee on Banking Supervision in 2010-2011, and scheduled to be introduced from 2013 until 2018. Basel III is a comprehensive set of reform measures. These measures aim to; (1) improve the banking sector-s ability to absorb shocks arising from financial and economic stress, whatever the source, (2) improve risk management and governance, (3) strengthen banks- transparency and disclosures. Similarly the reform target; (1) bank level or micro-prudential, regulation, which will help raise the resilience of individual banking institutions to periods of stress. (2) Macro-prudential regulations, system wide risk that can build up across the banking sector as well as the pro-cyclical implication of these risks over time. These two approaches to supervision are complementary as greater resilience at the individual bank level reduces the risk system wide shocks. Macroeconomic impact of Basel III; OECD estimates that the medium-term impact of Basel III implementation on GDP growth is in the range -0,05 percent to -0,15 percent per year. On the other hand economic output is mainly affected by an increase in bank lending spreads as banks pass a rise in banking funding costs, due to higher capital requirements, to their customers. Consequently the estimated effects on GDP growth assume no active response from monetary policy. Basel III impact on economic output could be offset by a reduction (or delayed increase) in monetary policy rates by about 30 to 80 basis points. The aim of this paper is to create a framework based on the recent regulations in order to prevent financial crises. Thus the need to overcome the global financial crisis will contribute to financial crises that may occur in the future periods. In the first part of the paper, the effects of the global crisis on the banking system examine the concept of financial regulations. In the second part; especially in the financial regulations and Basel III are analyzed. The last section in this paper explored the possible consequences of the macroeconomic impacts of Basel III.

Keywords: Banking Systems, Basel III, Financial regulation, Global Financial Crisis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2287
2927 Human Resource Management Practices, Person-Environment Fit and Financial Performance in Brazilian Publicly Traded Companies

Authors: Bruno Henrique Rocha Fernandes, Amir Rezaee, Jucelia Appio

Abstract:

The relation between Human Resource Management (HRM) practices and organizational performance remains the subject of substantial literature. Though many studies demonstrated positive relationship, still major influencing variables are not yet clear. This study considers the Person-Environment Fit (PE Fit) and its components, Person-Supervisor (PS), Person-Group (PG), Person-Organization (PO) and Person-Job (PJ) Fit, as possible explanatory variables. We analyzed PE Fit as a moderator between HRM practices and financial performance in the “best companies to work” in Brazil. Data from HRM practices were classified through the High Performance Working Systems (HPWS) construct and data on PE-Fit were obtained through surveys among employees. Financial data, consisting of return on invested capital (ROIC) and price earnings ratio (PER) were collected for publicly traded best companies to work. Findings show that PO Fit and PJ Fit play a significant moderator role for PER but not for ROIC.

Keywords: Financial performance, human resource management, high performance working systems, person-environment fit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
2926 A Comparative Study of PV Models in Matlab/Simulink

Authors: Mohammad Seifi, Azura Bt. Che Soh, Noor Izzrib. Abd. Wahab, Mohd Khair B. Hassan

Abstract:

Solar energy has a major role in renewable energy resources. Solar Cell as a basement of solar system has attracted lots of research. To conduct a study about solar energy system, an authenticated model is required. Diode base PV models are widely used by researchers. These models are classified based on the number of diodes used in them. Single and two-diode models are well studied. Single-diode models may have two, three or four elements. In this study, these solar cell models are examined and the simulation results are compared to each other. All PV models are re-designed in the Matlab/Simulink software and they examined by certain test conditions and parameters. This paper provides comparative studies of these models and it tries to compare the simulation results with manufacturer-s data sheet to investigate model validity and accuracy. The results show a four- element single-diode model is accurate and has moderate complexity in contrast to the two-diode model with higher complexity and accuracy

Keywords: Fill Factor (FF), Matlab/Simulink, Maximum PowerPoint (MPP), Maximum Power Point Tracker (MPPT), Photo Voltaic(PV), Solar cell, Standard Test Condition (STC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5806
2925 European and International Bond Markets Integration

Authors: Dimitris Georgoutsos, Petros M. Migiakis

Abstract:

The concurrent era is characterised by strengthened interactions among financial markets and increased capital mobility globally. In this frames we examine the effects the international financial integration process has on the European bond markets. We perform a comparative study of the interactions of the European and international bond markets and exploit Cointegration analysis results on the elimination of stochastic trends and the decomposition of the underlying long run equilibria and short run causal relations. Our investigation provides evidence on the relation between the European integration process and that of globalisation, viewed through the bond markets- sector. Additionally the structural formulation applied, offers significant implications of the findings. All in all our analysis offers a number of answers on crucial queries towards the European bond markets integration process.

Keywords: financial integration, bond markets, cointegration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
2924 Effect of Inventory Management on Financial Performance: Evidence from Nigerian Conglomerate Companies

Authors: Adamu Danlami Ahmed

Abstract:

Inventory management is the determinant of effective and efficient work for any manager. This study looked at the relationship between inventory management and financial performance. The population of the study comprises all conglomerate quoted companies in the Nigerian Stock Exchange market as at 31st December 2010. The scope of the study covered the period from 2010 to 2014. Descriptive, Pearson correlation and multiple regressions are used to analyze the data. It was found that inventory management is significantly related to the profitability of the company. This entails that an efficient management of the inventory cycle will enhance the profitability of the company. Also, lack of proper management of it will hinder the financial performance of organizations. Based on the results, it was recommended that a conglomerate company should try to see that inventories are kept to a minimum, as well as make sure the proper checks are maintained to make sure only needed inventories are in the store. As well as to keep track of the movement of goods, in order to avoid unnecessary delay of finished and work in progress (WIP) goods in the store and warehouse.

Keywords: Finished goods, work in progress, financial performance, inventory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4621
2923 System Identification Based on Stepwise Regression for Dynamic Market Representation

Authors: Alexander Efremov

Abstract:

A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.

Keywords: market identification, dynamic models, stepwise regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
2922 Advanced Technologies and Algorithms for Efficient Portfolio Selection

Authors: Konstantinos Liagkouras, Konstantinos Metaxiotis

Abstract:

In this paper we present a classification of the various technologies applied for the solution of the portfolio selection problem according to the discipline and the methodological framework followed. We provide a concise presentation of the emerged categories and we are trying to identify which methods considered obsolete and which lie at the heart of the debate. On top of that, we provide a comparative study of the different technologies applied for efficient portfolio construction and we suggest potential paths for future work that lie at the intersection of the presented techniques.

Keywords: Portfolio selection, optimization techniques, financial models, stochastics, heuristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
2921 Virtual Reality Models used on the Visualization of Construction Activities in Civil Engineering Education

Authors: Alcínia Z. Sampaio, Pedro G. Henriques

Abstract:

Three-dimensional geometric models have been used to present architectural and engineering works, showing their final configuration. When the clarification of a detail or the constitution of a construction step in needed, these models are not appropriate. They do not allow the observation of the construction progress of a building. Models that could present dynamically changes of the building geometry are a good support to the elaboration of projects. Techniques of geometric modeling and virtual reality were used to obtain models that could visually simulate the construction activity. The applications explain the construction work of a cavity wall and a bridge. These models allow the visualization of the physical progression of the work following a planned construction sequence, the observation of details of the form of every component of the works and support the study of the type and method of operation of the equipment applied in the construction. These models presented distinct advantage as educational aids in first-degree courses in Civil Engineering. The use of Virtual Reality techniques in the development of educational applications brings new perspectives to the teaching of subjects related to the field of civil construction.

Keywords: Education, Engineering, virtual reality, visualsimulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
2920 Comparison of Deep Convolutional Neural Networks Models for Plant Disease Identification

Authors: Megha Gupta, Nupur Prakash

Abstract:

Identification of plant diseases has been performed using machine learning and deep learning models on the datasets containing images of healthy and diseased plant leaves. The current study carries out an evaluation of some of the deep learning models based on convolutional neural network architectures for identification of plant diseases. For this purpose, the publicly available New Plant Diseases Dataset, an augmented version of PlantVillage dataset, available on Kaggle platform, containing 87,900 images has been used. The dataset contained images of 26 diseases of 14 different plants and images of 12 healthy plants. The CNN models selected for the study presented in this paper are AlexNet, ZFNet, VGGNet (four models), GoogLeNet, and ResNet (three models). The selected models are trained using PyTorch, an open-source machine learning library, on Google Colaboratory. A comparative study has been carried out to analyze the high degree of accuracy achieved using these models. The highest test accuracy and F1-score of 99.59% and 0.996, respectively, were achieved by using GoogLeNet with Mini-batch momentum based gradient descent learning algorithm.

Keywords: comparative analysis, convolutional neural networks, deep learning, plant disease identification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 638
2919 Management of Cultural Heritage: Bologna Gates

Authors: A. Ippolito, C. Bartolomei

Abstract:

A growing demand is felt today for realistic 3D models enabling the cognition and popularization of historical-artistic heritage. Evaluation and preservation of Cultural Heritage is inextricably connected with the innovative processes of gaining, managing, and using knowledge. The development and perfecting of techniques for acquiring and elaborating photorealistic 3D models, made them pivotal elements for popularizing information of objects on the scale of architectonic structures.

Keywords: Cultural heritage, databases, non-contact survey, 2D- 3D models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2250
2918 A Comparative Study of Turbulence Models Performance for Turbulent Flow in a Planar Asymmetric Diffuser

Authors: Samy M. El-Behery, Mofreh H. Hamed

Abstract:

This paper presents a computational study of the separated flow in a planer asymmetric diffuser. The steady RANS equations for turbulent incompressible fluid flow and six turbulence closures are used in the present study. The commercial software code, FLUENT 6.3.26, was used for solving the set of governing equations using various turbulence models. Five of the used turbulence models are available directly in the code while the v2-f turbulence model was implemented via User Defined Scalars (UDS) and User Defined Functions (UDF). A series of computational analysis is performed to assess the performance of turbulence models at different grid density. The results show that the standard k-ω, SST k-ω and v2-f models clearly performed better than other models when an adverse pressure gradient was present. The RSM model shows an acceptable agreement with the velocity and turbulent kinetic energy profiles but it failed to predict the location of separation and attachment points. The standard k-ε and the low-Re k- ε delivered very poor results.

Keywords: Turbulence models, turbulent flow, wall functions, separation, reattachment, diffuser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3770
2917 Non-Parametric, Unconditional Quantile Estimation of Efficiency in Microfinance Institutions

Authors: Komlan Sedzro

Abstract:

We apply the non-parametric, unconditional, hyperbolic order-α quantile estimator to appraise the relative efficiency of Microfinance Institutions in Africa in terms of outreach. Our purpose is to verify if these institutions, which must constantly try to strike a compromise between their social role and financial sustainability are operationally efficient. Using data on African MFIs extracted from the Microfinance Information eXchange (MIX) database and covering the 2004 to 2006 periods, we find that more efficient MFIs are also the most profitable. This result is in line with the view that social performance is not in contradiction with the pursuit of excellent financial performance. Our results also show that large MFIs in terms of asset and those charging the highest fees are not necessarily the most efficient.

Keywords: Data envelopment analysis, microfinance institutions, quantile estimation of efficiency, social and financial performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679
2916 Solving Partially Monotone Problems with Neural Networks

Authors: Marina Velikova, Hennie Daniels, Ad Feelders

Abstract:

In many applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. Here we consider partially monotone problems, where the target variable depends monotonically on some of the predictor variables but not all. We propose an approach to build partially monotone models based on the convolution of monotone neural networks and kernel functions. The results from simulations and a real case study on house pricing show that our approach has significantly better performance than partially monotone linear models. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.

Keywords: Mixture models, monotone neural networks, partially monotone models, partially monotone problems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
2915 Digital Marketing Maturity Models: Overview and Comparison

Authors: Elina Bakhtieva

Abstract:

The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company’s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model.

Keywords: B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3319
2914 Ethical Finance and Islamic Finance: Particularities, Possible Convergence and Potential Development

Authors: Safa Ougoujil, Sidi Mohamed Rigar

Abstract:

Economics is not an exact science. It cannot be from the moment it is a social science that concerns society organization, a human science that depends on the behavior of the men and women who make a part of this society. Therefore, it cannot ignore morality, the instinctive sense of good and evil, the natural order which place us between certain values, and which religion often sheds light on. In terms of finance, the reference to ethics is becoming more popular than ever. This is naturally due to the growing financial crises. Finance is less and less ethical, but some financial practices have continued to do so. This is the case of ethical finance and Islamic finance. After attempting to define the concepts of ethical finance and Islamic finance, in a period when financial innovation seeks to encourage differentiation in order to create more profit margins, this article attempts to expose the particularities, the convergences and the potentialities of development of these two sensibilities.

Keywords: Convergences, ethical finance, Islamic finance, potential development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
2913 Control-Oriented Enhanced Zero-Dimensional Two-Zone Combustion Modelling of Internal Combustion Engines

Authors: Razieh Arian, Hadi Adibi-Asl

Abstract:

This paper investigates an efficient combustion modeling for cycle simulation of internal combustion engine (ICE) studies. The term “efficient model” means that the models must generate desired simulation results while having fast simulation time. In other words, the efficient model is defined based on the application of the model. The objective of this study is to develop math-based models for control applications or shortly control-oriented models. This study compares different modeling approaches used to model the ICEs such as mean-value models, zero dimensional, quasi-dimensional, and multi-dimensional models for control applications. Mean-value models have been widely used for model-based control applications, but recently by developing advanced simulation tools (e.g. Maple/MapleSim) the higher order models (more complex) could be considered as control-oriented models. This paper presents the enhanced zero-dimensional cycle-by-cycle modeling and simulation of a spark ignition engine with a two-zone combustion model. The simulation results are cross-validated against the simulation results from GT-Power package and show a good agreement in terms of trends and values.

Keywords: Two-zone combustion, control-oriented model, wiebe function, internal combustion engine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
2912 Quantification of Periodicities in Fugitive Emission of Gases from Lyari Waterway

Authors: Rana Khalid Naeem, Asif Mansoor

Abstract:

Periodicities in the environmetric time series can be idyllically assessed by utilizing periodic models. In this communication fugitive emission of gases from open sewer channel Lyari which follows periodic behaviour are approximated by employing periodic autoregressive model of order p. The orders of periodic model for each season are selected through the examination of periodic partial autocorrelation or information criteria. The parameters for the selected order of season are estimated individually for each emitted air toxin. Subsequently, adequacies of fitted models are established by examining the properties of the residual for each season. These models are beneficial for schemer and administrative bodies for the improvement of implemented policies to surmount future environmental problems.

Keywords: Exchange of Gases, Goodness of Fit, Open Sewer Channel, PAR(p) Models, Periodicities, Season Wise Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1258
2911 A Comparison between Artificial Neural Network Prediction Models for Coronal Hole Related High-Speed Streams

Authors: Rehab Abdulmajed, Amr Hamada, Ahmed Elsaid, Hisashi Hayakawa, Ayman Mahrous

Abstract:

Solar emissions have a high impact on the Earth’s magnetic field, and the prediction of solar events is of high interest. Various techniques have been used in the prediction of the solar wind using mathematical models, MHD models and neural network (NN) models. This study investigates the coronal hole (CH) derived high-speed streams (HSSs) and their correlation to the CH area and create a neural network model to predict the HSSs. Two different algorithms were used to compare different models to find a model that best simulated the HSSs. A dataset of CH synoptic maps through Carrington rotations 1601 to 2185 along with Omni-data set solar wind speed averaged over the Carrington rotations is used, which covers Solar Cycles (SC) 21, 22, 23, and most of 24.

Keywords: Artificial Neural Network, ANN, Coronal Hole Area Feed-Forward neural network models, solar High-Speed Streams, HSSs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132
2910 Simplified Models to Determine Nodal Voltagesin Problems of Optimal Allocation of Capacitor Banks in Power Distribution Networks

Authors: A. Pereira, S. Haffner, L. V. Gasperin

Abstract:

This paper presents two simplified models to determine nodal voltages in power distribution networks. These models allow estimating the impact of the installation of reactive power compensations equipments like fixed or switched capacitor banks. The procedure used to develop the models is similar to the procedure used to develop linear power flow models of transmission lines, which have been widely used in optimization problems of operation planning and system expansion. The steady state non-linear load flow equations are approximated by linear equations relating the voltage amplitude and currents. The approximations of the linear equations are based on the high relationship between line resistance and line reactance (ratio R/X), which is valid for power distribution networks. The performance and accuracy of the models are evaluated through comparisons with the exact results obtained from the solution of the load flow using two test networks: a hypothetical network with 23 nodes and a real network with 217 nodes.

Keywords: Distribution network models, distribution systems, optimization, power system planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
2909 Ratio-Dependent Food Chain Models with Three Trophic Levels

Authors: R. Kara, M. Can

Abstract:

In this paper we study a food chain model with three trophic levels and Michaelis-Menten type ratio-dependent functional response. Distinctive feature of this model is the sensitive dependence of the dynamical behavior on the initial populations and parameters of the real world. The stability of the equilibrium points are also investigated.

Keywords: Food chain, Ratio dependent models, Three level models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524