Search results for: Ontology search
762 Urban Search and Rescue and Rapid Field Assessment of Damaged and Collapsed Building Structures
Authors: Abid I. Abu-Tair, Gavin M. Wilde, John M. Kinuthia
Abstract:
Urban Search and Rescue (USAR) is a functional capability that has been developed to allow the United Kingdom Fire and Rescue Service to deal with ‘major incidents’ primarily involving structural collapse. The nature of the work undertaken by USAR means that staying out of a damaged or collapsed building structure is not usually an option for search and rescue personnel. As a result there is always a risk that they themselves could become victims. For this paper, a systematic and investigative review using desk research was undertaken to explore the role which structural engineering can play in assisting search and rescue personnel to conduct structural assessments when in the field. The focus is on how search and rescue personnel can assess damaged and collapsed building structures, not just in terms of structural damage that may been countered, but also in relation to structural stability. Natural disasters, accidental emergencies, acts of terrorism and other extreme events can vary significantly in nature and ferocity, and can cause a wide variety of damage to building structures. It is not possible or, even realistic, to provide search and rescue personnel with definitive guidelines and procedures to assess damaged and collapsed building structures as there are too many variables to consider. However, understanding what implications damage may have upon the structural stability of a building structure will enable search and rescue personnel to better judge and quantify risk from a life-safety standpoint. It is intended that this will allow search and rescue personnel to make informed decisions and ensure every effort is made to mitigate risk, so that they themselves do not become victims.
Keywords: Damaged and collapsed building structures, life safety, quantifying risk, search and rescue personnel, structural assessments in the field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3120761 Non-Population Search Algorithms for Capacitated Material Requirement Planning in Multi-Stage Assembly Flow Shop with Alternative Machines
Authors: Watcharapan Sukkerd, Teeradej Wuttipornpun
Abstract:
This paper aims to present non-population search algorithms called tabu search (TS), simulated annealing (SA) and variable neighborhood search (VNS) to minimize the total cost of capacitated MRP problem in multi-stage assembly flow shop with two alternative machines. There are three main steps for the algorithm. Firstly, an initial sequence of orders is constructed by a simple due date-based dispatching rule. Secondly, the sequence of orders is repeatedly improved to reduce the total cost by applying TS, SA and VNS separately. Finally, the total cost is further reduced by optimizing the start time of each operation using the linear programming (LP) model. Parameters of the algorithm are tuned by using real data from automotive companies. The result shows that VNS significantly outperforms TS, SA and the existing algorithm.
Keywords: Capacitated MRP, non-population search algorithms, linear programming, assembly flow shop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958760 Cross-Search Technique and its Visualization of Peer-to-Peer Distributed Clinical Documents
Authors: Yong Jun Choi, Juman Byun, Simon Berkovich
Abstract:
One of the ubiquitous routines in medical practice is searching through voluminous piles of clinical documents. In this paper we introduce a distributed system to search and exchange clinical documents. Clinical documents are distributed peer-to-peer. Relevant information is found in multiple iterations of cross-searches between the clinical text and its domain encyclopedia.
Keywords: Clinical documents, cross-search, document exchange, information retrieval, peer-to-peer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302759 The Implementation of Spatio-Temporal Graph to Represent Situations in the Virtual World
Authors: Gung-Hun Jung, Jong-Hee Park
Abstract:
In this paper, we develop a Spatio-Temporal graph as of a key component of our knowledge representation Scheme. We design an integrated representation Scheme to depict not only present and past but future in parallel with the spaces in an effective and intuitive manner. The resulting multi-dimensional comprehensive knowledge structure accommodates multi-layered virtual world developing in the time to maximize the diversity of situations in the historical context. This knowledge representation Scheme is to be used as the basis for simulation of situations composing the virtual world and for implementation of virtual agents' knowledge used to judge and evaluate the situations in the virtual world. To provide natural contexts for situated learning or simulation games, the virtual stage set by this Spatio-Temporal graph is to be populated by agents and other objects interrelated and changing which are abstracted in the ontology.Keywords: Ontology, Virtual Reality, Spatio-Temporal graph.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693758 Web Server with Multi-Agent Support for Medical Practitioners by JADE Technology
Authors: O. Saravanan, A. Nagappan, P. Gnanasekar, S. Sharavanan, D. Vinodkumar, T. Elayabharathi, G. Karthik
Abstract:
The multi-agent system for processing Bio-signals will help the medical practitioners to have a standard examination procedure stored in web server. Web Servers supporting any standard Search Engine follow all possible combinations of the search keywords as an input by the user to a Search Engine. As a result, a huge number of Web-pages are shown in the Web browser. It also helps the medical practitioner to interact with the expert in the field his need in order to make a proper judgment in the diagnosis phase [3].A web server uses a web server plug in to establish and maintained the medical practitioner to make a fast analysis. If the user uses the web server client can get a related data requesting their search. DB agent, EEG / ECG / EMG agents- user placed with difficult aspects for updating medical information-s in web server.Keywords: DB agent, EEG, ECG, EMG, Web server agent, JADE
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076757 A Comparative Study of the Effectiveness of Trained Inspectors in Different Workloads between Feed Forward and Feedback Training
Authors: Sittichai K., Anucha W., Phonsak L.
Abstract:
Objective of this study was to study and compare the effectiveness of inspectors who had different workloads for feed forward and feedback training. The visual search task was simulated to search for specified alphabets called defects. These defects were included of four alphabets in Thai and English such as s ภ, ถ, X, and V with different background. These defects were combined in the specified alphabets and were given the different three backgrounds i.e., Thai, English, and mixed English and Thai alphabets. Sixty students were chosen as a sample in this study and test for final selection subject. Finally, five subjects were taken into testing process. They were asked to search for defects after they were provided basic information. Experiment design was used factorial design and subjects were trained for feed forward and the feedback training. The results show that both trainings were affected on mean search time. It was also found that the feedback training can increase the effectiveness of visual inspectors rather than the feed forward training significantly different at the level of .05
Keywords: visual search, feed forward, feedback training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156756 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches
Authors: Shilpy Sharma
Abstract:
As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.Keywords: Search engines; machine learning, Informationretrieval, Active logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083755 An Experiment on Personal Archiving and Retrieving Image System (PARIS)
Authors: Pei-Jeng Kuo, Terumasa Aoki, Hiroshi Yasuda
Abstract:
PARIS (Personal Archiving and Retrieving Image System) is an experiment personal photograph library, which includes more than 80,000 of consumer photographs accumulated within a duration of approximately five years, metadata based on our proposed MPEG-7 annotation architecture, Dozen Dimensional Digital Content (DDDC), and a relational database structure. The DDDC architecture is specially designed for facilitating the managing, browsing and retrieving of personal digital photograph collections. In annotating process, we also utilize a proposed Spatial and Temporal Ontology (STO) designed based on the general characteristic of personal photograph collections. This paper explains PRAIS system.Keywords: Ontology, Databases and Information Retrieval, MPEG-7, Spatial-Temporal, Digital Library Designs l, metadata, Semantic Web, semi-automatic annotation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117754 Optimization Technique in Scheduling Duck Tours
Authors: Norhazwani M. Y., Khoo, C. F., Hasrul Nisham R.
Abstract:
Tourism industries are rapidly increased for the last few years especially in Malaysia. In order to attract more tourists, Malaysian Governance encourages any effort to increase Malaysian tourism industry. One of the efforts in attracting more tourists in Malacca, Malaysia is a duck tour. Duck tour is an amphibious sightseeing tour that works in two types of engines, hence, it required a huge cost to operate and maintain the vehicle. To other country, it is not so new but in Malaysia, it is just introduced, thus it does not have any systematic routing yet. Therefore, this paper proposed an optimization technique to formulate and schedule this tour to minimize the operating costs by considering it into Travelling Salesman Problem (TSP). The problem is then can be solved by one of the optimization technique especially meta-heuristics approach such as Tabu Search (TS) and Reactive Tabu Search (RTS).Keywords: Optimization, Reactive Tabu Search, Tabu Search, Travelling Salesman Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1701753 A Review on Marine Search and Rescue Operations Using Unmanned Aerial Vehicles
Authors: S. P. Yeong, L. M. King, S. S. Dol
Abstract:
There have been rigorous research and development of unmanned aerial vehicles in the field of search and rescue (SAR) operation recently. UAVs reduce unnecessary human risks while assisting rescue efforts through aerial imagery, topographic mapping and emergency delivery. The application of UAVs in offshore and nearshore marine SAR missions is discussed in this paper. Projects that integrate UAV technology into their systems are introduced to highlight the great advantages and capabilities of UAVs. Scenarios where UAVs could provide invaluable assistance are also suggested.Keywords: Marine SAR, nearshore, offshore, search and rescue, UAS, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5533752 The Knapsack Sharing Problem: A Tree Search Exact Algorithm
Authors: Mhand Hifi, Hedi Mhalla
Abstract:
In this paper, we study the knapsack sharing problem, a variant of the well-known NP-Hard single knapsack problem. We investigate the use of a tree search for optimally solving the problem. The used method combines two complementary phases: a reduction interval search phase and a branch and bound procedure one. First, the reduction phase applies a polynomial reduction strategy; that is used for decomposing the problem into a series of knapsack problems. Second, the tree search procedure is applied in order to attain a set of optimal capacities characterizing the knapsack problems. Finally, the performance of the proposed optimal algorithm is evaluated on a set of instances of the literature and its runtime is compared to the best exact algorithm of the literature.
Keywords: Branch and bound, combinatorial optimization, knap¬sack, knapsack sharing, heuristics, interval reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559751 Extensions to Some AOSE Methodologies
Authors: Louay M. Jeroudaih, Mohamed S. Hajji
Abstract:
This paper looks into areas not covered by prominent Agent-Oriented Software Engineering (AOSE) methodologies. Extensive paper review led to the identification of two issues, first most of these methodologies almost neglect semantic web and ontology. Second, as expected, each one has its strength and weakness and may focus on some phases of the development lifecycle but not all of the phases. The work presented here builds extensions to a highly regarded AOSE methodology (MaSE) in order to cover the areas that this methodology does not concentrate on. The extensions include introducing an ontology stage for semantic representation and integrating early requirement specification from a methodology which mainly focuses on that. The integration involved developing transformation rules (with the necessary handling of nonmatching notions) between the two sets of representations and building the software which automates the transformation. The application of this integration on a case study is also presented in the paper. The main flow of MaSE stages was changed to smoothly accommodate the new additions.Keywords: Agents, Intelligent Agents, Software Engineering(SE), UML, AUML, and Design Patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1886750 A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization
Authors: Sasadhar Bera, Indrajit Mukherjee
Abstract:
Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.Keywords: Ant Colony Optimization, Diversification Scheme, Intensification, Mahalanobis Distance, Nelder-Mead Simplex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745749 Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines
Authors: Wahyudin P. Syam, Ibrahim M. Al-Harkan
Abstract:
This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.
Keywords: Flow shop, genetic algorithm, simulated annealing, tabu search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066748 An Algebra for Protein Structure Data
Authors: Yanchao Wang, Rajshekhar Sunderraman
Abstract:
This paper presents an algebraic approach to optimize queries in domain-specific database management system for protein structure data. The approach involves the introduction of several protein structure specific algebraic operators to query the complex data stored in an object-oriented database system. The Protein Algebra provides an extensible set of high-level Genomic Data Types and Protein Data Types along with a comprehensive collection of appropriate genomic and protein functions. The paper also presents a query translator that converts high-level query specifications in algebra into low-level query specifications in Protein-QL, a query language designed to query protein structure data. The query transformation process uses a Protein Ontology that serves the purpose of a dictionary.Keywords: Domain-Specific Data Management, Protein Algebra, Protein Ontology, Protein Structure Data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543747 NOHIS-Tree: High-Dimensional Index Structure for Similarity Search
Authors: Mounira Taileb, Sami Touati
Abstract:
In Content-Based Image Retrieval systems it is important to use an efficient indexing technique in order to perform and accelerate the search in huge databases. The used indexing technique should also support the high dimensions of image features. In this paper we present the hierarchical index NOHIS-tree (Non Overlapping Hierarchical Index Structure) when we scale up to very large databases. We also present a study of the influence of clustering on search time. The performance test results show that NOHIS-tree performs better than SR-tree. Tests also show that NOHIS-tree keeps its performances in high dimensional spaces. We include the performance test that try to determine the number of clusters in NOHIS-tree to have the best search time.Keywords: High-dimensional indexing, k-nearest neighborssearch.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444746 Measurement Scheme Improving for State Estimation Using Stochastic Tabu Search
Authors: T. Kerdchuen
Abstract:
This paper proposes the stochastic tabu search (STS) for improving the measurement scheme for power system state estimation. If the original measured scheme is not observable, the additional measurements with minimum number of measurements are added into the system by STS so that there is no critical measurement pair. The random bit flipping and bit exchanging perturbations are used for generating the neighborhood solutions in STS. The Pδ observable concept is used to determine the network observability. Test results of 10 bus, IEEE 14 and 30 bus systems are shown that STS can improve the original measured scheme to be observable without critical measurement pair. Moreover, the results of STS are superior to deterministic tabu search (DTS) in terms of the best solution hit.Keywords: Measurement Scheme, Power System StateEstimation, Network Observability, Stochastic Tabu Search (STS).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275745 Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem
Authors: Ruskartina Eki, Vincent F. Yu, Santosa Budi, A. A. N. Perwira Redi
Abstract:
This paper introduces symbiotic organism search (SOS) for solving capacitated vehicle routing problem (CVRP). SOS is a new approach in metaheuristics fields and never been used to solve discrete problems. A sophisticated decoding method to deal with a discrete problem setting in CVRP is applied using the basic symbiotic organism search (SOS) framework. The performance of the algorithm was evaluated on a set of benchmark instances and compared results with best known solution. The computational results show that the proposed algorithm can produce good solution as a preliminary testing. These results indicated that the proposed SOS can be applied as an alternative to solve the capacitated vehicle routing problem.Keywords: Symbiotic organism search, vehicle routing problem, metaheuristics, Solution Representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3037744 Deriving Causal Explanation from Qualitative Model Reasoning
Authors: Alicia Y. C. Tang, Sharifuddin M. Zain, Noorsaadah A. Rahman, Rukaini Abdullah
Abstract:
This paper discusses a qualitative simulator QRiOM that uses Qualitative Reasoning (QR) technique, and a process-based ontology to model, simulate and explain the behaviour of selected organic reactions. Learning organic reactions requires the application of domain knowledge at intuitive level, which is difficult to be programmed using traditional approach. The main objective of QRiOM is to help learners gain a better understanding of the fundamental organic reaction concepts, and to improve their conceptual comprehension on the subject by analyzing the multiple forms of explanation generated by the software. This paper focuses on the generation of explanation based on causal theories to explicate various phenomena in the chemistry subject. QRiOM has been tested with three classes problems related to organic chemistry, with encouraging results. This paper also presents the results of preliminary evaluation of QRiOM that reveal its explanation capability and usefulness.Keywords: Artificial intelligence, explanation, ontology, organicreactions, qualitative reasoning, QPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648743 A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization
Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang
Abstract:
This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.
Keywords: Differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 442742 Economical Operation of Hydro-Thermal Power System based on Multi-path Adaptive Tabu Search
Authors: J. Kluabwang
Abstract:
An economic operation scheduling problem of a hydro-thermal power generation system has been properly solved by the proposed multipath adaptive tabu search algorithm (MATS). Four reservoirs with their own hydro plants and another one thermal plant are integrated to be a studied system used to formulate the objective function under complicated constraints, eg water managements, power balance and thermal generator limits. MATS with four subsearch units (ATSs) and two stages of discarding mechanism (DM), has been setting and trying to solve the problem through 25 trials under function evaluation criterion. It is shown that MATS can provide superior results with respect to single ATS and other previous methods, genetic algorithms (GA) and differential evolution (DE).Keywords: Hydro-thermal scheduling problem, economic dispatch, adaptive tabu search, multipath adaptive tabu search
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694741 Use of Bayesian Network in Information Extraction from Unstructured Data Sources
Authors: Quratulain N. Rajput, Sajjad Haider
Abstract:
This paper applies Bayesian Networks to support information extraction from unstructured, ungrammatical, and incoherent data sources for semantic annotation. A tool has been developed that combines ontologies, machine learning, and information extraction and probabilistic reasoning techniques to support the extraction process. Data acquisition is performed with the aid of knowledge specified in the form of ontology. Due to the variable size of information available on different data sources, it is often the case that the extracted data contains missing values for certain variables of interest. It is desirable in such situations to predict the missing values. The methodology, presented in this paper, first learns a Bayesian network from the training data and then uses it to predict missing data and to resolve conflicts. Experiments have been conducted to analyze the performance of the presented methodology. The results look promising as the methodology achieves high degree of precision and recall for information extraction and reasonably good accuracy for predicting missing values.Keywords: Information Extraction, Bayesian Network, ontology, Machine Learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232740 Investigating the Performance of Minimax Search and Aggregate Mahalanobis Distance Function in Evolving an Ayo/Awale Player
Authors: Randle O. A., Olugbara, O. O., Lall M.
Abstract:
In this paper we describe a hybrid technique of Minimax search and aggregate Mahalanobis distance function synthesis to evolve Awale game player. The hybrid technique helps to suggest a move in a short amount of time without looking into endgame database. However, the effectiveness of the technique is heavily dependent on the training dataset of the Awale strategies utilized. The evolved player was tested against Awale shareware program and the result is appealing.
Keywords: Minimax Search, Mahalanobis Distance, Strategic Game, Awale
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1654739 Concept for Determining the Focus of Technology Monitoring Activities
Authors: Guenther Schuh, Christina Koenig, Nico Schoen, Markus Wellensiek
Abstract:
Identification and selection of appropriate product and manufacturing technologies are key factors for competitiveness and market success of technology-based companies. Therefore, many companies perform technology intelligence (TI) activities to ensure the identification of evolving technologies at the right time. Technology monitoring is one of the three base activities of TI, besides scanning and scouting. As the technological progress is accelerating, more and more technologies are being developed. Against the background of limited resources it is therefore necessary to focus TI activities. In this paper we propose a concept for defining appropriate search fields for technology monitoring. This limitation of search space leads to more concentrated monitoring activities. The concept will be introduced and demonstrated through an anonymized case study conducted within an industry project at the Fraunhofer Institute for Production Technology IPT. The described concept provides a customized monitoring approach, which is suitable for use in technology-oriented companies. It is shown in this paper that the definition of search fields and search tasks are suitable methods to define topics of interest and thus to align monitoring activities. Current as well as planned product, production and material technologies and existing skills, capabilities and resources form the basis for derivation of relevant search areas. To further improve the concept of technology monitoring the proposed concept should be extended during future research e.g. by the definition of relevant monitoring parameters.
Keywords: Monitoring radar, search field, technology intelligence, technology monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3254738 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees
Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.
Keywords: Cloud storage, decision trees, diagnostic image, search, telemedicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948737 Web Search Engine Based Naming Procedure for Independent Topic
Authors: Takahiro Nishigaki, Takashi Onoda
Abstract:
In recent years, the number of document data has been increasing since the spread of the Internet. Many methods have been studied for extracting topics from large document data. We proposed Independent Topic Analysis (ITA) to extract topics independent of each other from large document data such as newspaper data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis. The topic represented by ITA is represented by a set of words. However, the set of words is quite different from the topics the user imagines. For example, the top five words with high independence of a topic are as follows. Topic1 = {"scor", "game", "lead", "quarter", "rebound"}. This Topic 1 is considered to represent the topic of "SPORTS". This topic name "SPORTS" has to be attached by the user. ITA cannot name topics. Therefore, in this research, we propose a method to obtain topics easy for people to understand by using the web search engine, topics given by the set of words given by independent topic analysis. In particular, we search a set of topical words, and the title of the homepage of the search result is taken as the topic name. And we also use the proposed method for some data and verify its effectiveness.Keywords: Independent topic analysis, topic extraction, topic naming, web search engine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500736 Simulated Annealing Application for Structural Optimization
Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh
Abstract:
Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956735 An Open Source Advertisement System
Authors: Pushkar Umaranikar, Chris Pollett
Abstract:
An online advertisement system and its implementation for the Yioop open source search engine are presented. This system supports both selling advertisements and displaying them within search results. The selling of advertisements is done using a system to auction off daily impressions for keyword searches. This is an open, ascending price auction system in which all accepted bids will receive a fraction of the auctioned day’s impressions. New bids in our system are required to be at least one half of the sum of all previous bids ensuring the number of accepted bids is logarithmic in the total ad spend on a keyword for a day. The mechanics of creating an advertisement, attaching keywords to it, and adding it to an advertisement inventory are described. The algorithm used to go from accepted bids for a keyword to which ads are displayed at search time is also presented. We discuss properties of our system and compare it to existing auction systems and systems for selling online advertisements.Keywords: Online markets, online ad system, online auctions, search engines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363734 A Scatter Search and Help Policies Approaches for a New Mixed Model Assembly Lines Sequencing Problem
Authors: N. Manavizadeh , M. Rabbani , H. Sotudian , F. Jolai
Abstract:
Mixed Model Production is the practice of assembling several distinct and different models of a product on the same assembly line without changeovers and then sequencing those models in a way that smoothes the demand for upstream components. In this paper, we consider an objective function which minimizes total stoppage time and total idle time and it is presented sequence dependent set up time. Many studies have been done on the mixed model assembly lines. But in this paper we specifically focused on reducing the idle times. This is possible through various help policies. For improving the solutions, some cases developed and about 40 tests problem was considered. We use scatter search for optimization and for showing the efficiency of our algorithm, experimental results shows behavior of method. Scatter search and help policies can produce high quality answers, so it has been used in this paper.Keywords: mixed model assembly lines, Scatter search, help policies, idle time, Stoppage time
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491733 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach
Authors: Mukesh Kumar Shah, Tushar Gupta
Abstract:
An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.
Keywords: Economic dispatch, Gaussian selection operator, prohibited operating zones, ramp rate limits, upgraded cuckoo search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 684