Search results for: Data consistency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7570

Search results for: Data consistency

7420 On the Combination of Patient-Generated Data with Data from a Secure Clinical Network Environment – A Practical Example

Authors: Jeroen S. de Bruin, Karin Schindler, Christian Schuh

Abstract:

With increasingly more mobile health applications appearing due to the popularity of smartphones, the possibility arises that these data can be used to improve the medical diagnostic process, as well as the overall quality of healthcare, while at the same time lowering costs. However, as of yet there have been no reports of a successful combination of patient-generated data from smartphones with data from clinical routine. In this paper we describe how these two types of data can be combined in a secure way without modification to hospital information systems, and how they can together be used in a medical expert system for automatic nutritional classification and triage.

Keywords: Data integration, disease-related malnutrition, expert systems, mobile health.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2194
7419 Comparison of Imputation Techniques for Efficient Prediction of Software Fault Proneness in Classes

Authors: Geeta Sikka, Arvinder Kaur Takkar, Moin Uddin

Abstract:

Missing data is a persistent problem in almost all areas of empirical research. The missing data must be treated very carefully, as data plays a fundamental role in every analysis. Improper treatment can distort the analysis or generate biased results. In this paper, we compare and contrast various imputation techniques on missing data sets and make an empirical evaluation of these methods so as to construct quality software models. Our empirical study is based on NASA-s two public dataset. KC4 and KC1. The actual data sets of 125 cases and 2107 cases respectively, without any missing values were considered. The data set is used to create Missing at Random (MAR) data Listwise Deletion(LD), Mean Substitution(MS), Interpolation, Regression with an error term and Expectation-Maximization (EM) approaches were used to compare the effects of the various techniques.

Keywords: Missing data, Imputation, Missing Data Techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
7418 Cluster Analysis for the Statistical Modeling of Aesthetic Judgment Data Related to Comics Artists

Authors: George E. Tsekouras, Evi Sampanikou

Abstract:

We compare three categorical data clustering algorithms with respect to the problem of classifying cultural data related to the aesthetic judgment of comics artists. Such a classification is very important in Comics Art theory since the determination of any classes of similarities in such kind of data will provide to art-historians very fruitful information of Comics Art-s evolution. To establish this, we use a categorical data set and we study it by employing three categorical data clustering algorithms. The performances of these algorithms are compared each other, while interpretations of the clustering results are also given.

Keywords: Aesthetic judgment, comics artists, cluster analysis, categorical data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
7417 IoT Device Cost Effective Storage Architecture and Real-Time Data Analysis/Data Privacy Framework

Authors: Femi Elegbeleye, Seani Rananga

Abstract:

This paper focused on cost effective storage architecture using fog and cloud data storage gateway, and presented the design of the framework for the data privacy model and data analytics framework on a real-time analysis when using machine learning method. The paper began with the system analysis, system architecture and its component design, as well as the overall system operations. Several results obtained from this study on data privacy models show that when two or more data privacy models are integrated via a fog storage gateway, we often have more secure data. Our main focus in the study is to design a framework for the data privacy model, data storage, and real-time analytics. This paper also shows the major system components and their framework specification. And lastly, the overall research system architecture was shown, including its structure, and its interrelationships.

Keywords: IoT, fog storage, cloud storage, data analysis, data privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 224
7416 Replicating Brain’s Resting State Functional Connectivity Network Using a Multi-Factor Hub-Based Model

Authors: B. L. Ho, L. Shi, D. F. Wang, V. C. T. Mok

Abstract:

The brain’s functional connectivity while temporally non-stationary does express consistency at a macro spatial level. The study of stable resting state connectivity patterns hence provides opportunities for identification of diseases if such stability is severely perturbed. A mathematical model replicating the brain’s spatial connections will be useful for understanding brain’s representative geometry and complements the empirical model where it falls short. Empirical computations tend to involve large matrices and become infeasible with fine parcellation. However, the proposed analytical model has no such computational problems. To improve replicability, 92 subject data are obtained from two open sources. The proposed methodology, inspired by financial theory, uses multivariate regression to find relationships of every cortical region of interest (ROI) with some pre-identified hubs. These hubs acted as representatives for the entire cortical surface. A variance-covariance framework of all ROIs is then built based on these relationships to link up all the ROIs. The result is a high level of match between model and empirical correlations in the range of 0.59 to 0.66 after adjusting for sample size; an increase of almost forty percent. More significantly, the model framework provides an intuitive way to delineate between systemic drivers and idiosyncratic noise while reducing dimensions by more than 30 folds, hence, providing a way to conduct attribution analysis. Due to its analytical nature and simple structure, the model is useful as a standalone toolkit for network dependency analysis or as a module for other mathematical models.

Keywords: Functional magnetic resonance imaging, multivariate regression, network hubs, resting state functional connectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 795
7415 A Novel Approach to Allocate Channels Dynamically in Wireless Mesh Networks

Authors: Y. Harold Robinson, M. Rajaram

Abstract:

Wireless mesh networking is rapidly gaining in popularity with a variety of users: from municipalities to enterprises, from telecom service providers to public safety and military organizations. This increasing popularity is based on two basic facts: ease of deployment and increase in network capacity expressed in bandwidth per footage; WMNs do not rely on any fixed infrastructure. Many efforts have been used to maximizing throughput of the network in a multi-channel multi-radio wireless mesh network. Current approaches are purely based on either static or dynamic channel allocation approaches. In this paper, we use a hybrid multichannel multi radio wireless mesh networking architecture, where static and dynamic interfaces are built in the nodes. Dynamic Adaptive Channel Allocation protocol (DACA), it considers optimization for both throughput and delay in the channel allocation. The assignment of the channel has been allocated to be codependent with the routing problem in the wireless mesh network and that should be based on passage flow on every link. Temporal and spatial relationship rises to re compute the channel assignment every time when the pattern changes in mesh network, channel assignment algorithms assign channels in network. In this paper a computing path which captures the available path bandwidth is the proposed information and the proficient routing protocol based on the new path which provides both static and dynamic links. The consistency property guarantees that each node makes an appropriate packet forwarding decision and balancing the control usage of the network, so that a data packet will traverse through the right path.

Keywords: Wireless mesh network, spatial time division multiple access, hybrid topology, timeslot allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
7414 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
7413 Analysis of One Dimensional Advection Diffusion Model Using Finite Difference Method

Authors: Vijay Kumar Kukreja, Ravneet Kaur

Abstract:

In this paper, one dimensional advection diffusion model is analyzed using finite difference method based on Crank-Nicolson scheme. A practical problem of filter cake washing of chemical engineering is analyzed. The model is converted into dimensionless form. For the grid Ω × ω = [0, 1] × [0, T], the Crank-Nicolson spatial derivative scheme is used in space domain and forward difference scheme is used in time domain. The scheme is found to be unconditionally convergent, stable, first order accurate in time and second order accurate in space domain. For a test problem, numerical results are compared with the analytical ones for different values of parameter.

Keywords: Consistency, Crank-Nicolson scheme, Gerschgorin circle, Lax-Richtmyer theorem, Peclet number, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 749
7412 The Impact of System and Data Quality on Organizational Success in the Kingdom of Bahrain

Authors: Amal M. Alrayes

Abstract:

Data and system quality play a central role in organizational success, and the quality of any existing information system has a major influence on the effectiveness of overall system performance. Given the importance of system and data quality to an organization, it is relevant to highlight their importance on organizational performance in the Kingdom of Bahrain. This research aims to discover whether system quality and data quality are related, and to study the impact of system and data quality on organizational success. A theoretical model based on previous research is used to show the relationship between data and system quality, and organizational impact. We hypothesize, first, that system quality is positively associated with organizational impact, secondly that system quality is positively associated with data quality, and finally that data quality is positively associated with organizational impact. A questionnaire was conducted among public and private organizations in the Kingdom of Bahrain. The results show that there is a strong association between data and system quality, that affects organizational success.

Keywords: Data quality, performance, system quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2112
7411 Roller Compacting Concrete “RCC” in Dams

Authors: Orod Zarrin, Mohsen Ramezan Shirazi

Abstract:

Rehabilitation of dam components such as foundations, buttresses, spillways and overtopping protection require a wide range of construction and design methodologies. Geotechnical Engineering considerations play an important role in the design and construction of foundations of new dams. Much investigation is required to assess and evaluate the existing dams. The application of roller compacting concrete (RCC) has been accepted as a new method for constructing new dams or rehabilitating old ones. In the past 40 years there have been so many changes in the usage of RCC and now it is one of most satisfactory solutions of water and hydropower resource throughout the world. The considerations of rehabilitation and construction of dams might differ due to upstream reservoir and its influence on penetrating and dewatering of downstream, operations requirements and plant layout. One of the advantages of RCC is its rapid placement which allows the dam to be operated quickly. Unlike ordinary concrete it is a drier mix, and stiffs enough for compacting by vibratory rollers. This paper evaluates some different aspects of RCC and focuses on its preparation progress.

Keywords: Spillway, Vibrating Consistency, Fly Ash, Water Tightness, Foundation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3136
7410 Integration of Multi-Source Data to Monitor Coral Biodiversity

Authors: K. Jitkue, W. Srisang, C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

This study aims at using multi-source data to monitor coral biodiversity and coral bleaching. We used coral reef at Racha Islands, Phuket as a study area. There were three sources of data: coral diversity, sensor based data and satellite data.

Keywords: Coral reefs, Remote sensing, Sea surfacetemperatue, Satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
7409 Decision Support System Based on Data Warehouse

Authors: Yang Bao, LuJing Zhang

Abstract:

Typical Intelligent Decision Support System is 4-based, its design composes of Data Warehouse, Online Analytical Processing, Data Mining and Decision Supporting based on models, which is called Decision Support System Based on Data Warehouse (DSSBDW). This way takes ETL,OLAP and DM as its implementing means, and integrates traditional model-driving DSS and data-driving DSS into a whole. For this kind of problem, this paper analyzes the DSSBDW architecture and DW model, and discusses the following key issues: ETL designing and Realization; metadata managing technology using XML; SQL implementing, optimizing performance, data mapping in OLAP; lastly, it illustrates the designing principle and method of DW in DSSBDW.

Keywords: Decision Support System, Data Warehouse, Data Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3855
7408 A New History Based Method to Handle the Recurring Concept Shifts in Data Streams

Authors: Hossein Morshedlou, Ahmad Abdollahzade Barforoush

Abstract:

Recent developments in storage technology and networking architectures have made it possible for broad areas of applications to rely on data streams for quick response and accurate decision making. Data streams are generated from events of real world so existence of associations, which are among the occurrence of these events in real world, among concepts of data streams is logical. Extraction of these hidden associations can be useful for prediction of subsequent concepts in concept shifting data streams. In this paper we present a new method for learning association among concepts of data stream and prediction of what the next concept will be. Knowing the next concept, an informed update of data model will be possible. The results of conducted experiments show that the proposed method is proper for classification of concept shifting data streams.

Keywords: Data Stream, Classification, Concept Shift, History.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
7407 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
7406 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data

Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala

Abstract:

Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.

Keywords: Databases, data mining, multi-agent, spatial datamart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
7405 Latent Topic Based Medical Data Classification

Authors: Jian-hua Yeh, Shi-yi Kuo

Abstract:

This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.

Keywords: classification, latent topics, outlier adjustment, feature scaling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1636
7404 Data Collection in Hospital Emergencies: A Questionnaire Survey

Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala

Abstract:

Many methods are used to collect data like questionnaires, surveys, focus group interviews. Or the collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses. In this context, and to overcome the aforementioned problems, we suggest in this paper an approach to achieve the collection of relevant data, by carrying out a large-scale questionnaire-based survey. We have been able to collect good quality, consistent and practical data on hospital emergencies to improve emergency services in hospitals, especially in the case of epidemics or pandemics.

Keywords: Data collection, survey, database, data analysis, hospital emergencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 642
7403 Data Transformation Services (DTS): Creating Data Mart by Consolidating Multi-Source Enterprise Operational Data

Authors: J. D. D. Daniel, K. N. Goh, S. M. Yusop

Abstract:

Trends in business intelligence, e-commerce and remote access make it necessary and practical to store data in different ways on multiple systems with different operating systems. As business evolve and grow, they require efficient computerized solution to perform data update and to access data from diverse enterprise business applications. The objective of this paper is to demonstrate the capability of DTS [1] as a database solution for automatic data transfer and update in solving business problem. This DTS package is developed for the sales of variety of plants and eventually expanded into commercial supply and landscaping business. Dimension data modeling is used in DTS package to extract, transform and load data from heterogeneous database systems such as MySQL, Microsoft Access and Oracle that consolidates into a Data Mart residing in SQL Server. Hence, the data transfer from various databases is scheduled to run automatically every quarter of the year to review the efficient sales analysis. Therefore, DTS is absolutely an attractive solution for automatic data transfer and update which meeting today-s business needs.

Keywords: Data Transformation Services (DTS), ObjectLinking and Embedding Database (OLEDB), Data Mart, OnlineAnalytical Processing (OLAP), Online Transactional Processing(OLTP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
7402 Extraction of Data from Web Pages: A Vision Based Approach

Authors: P. S. Hiremath, Siddu P. Algur

Abstract:

With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.

Keywords: Web data records, web data regions, web mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1893
7401 Visual-Graphical Methods for Exploring Longitudinal Data

Authors: H. W. Ker

Abstract:

Longitudinal data typically have the characteristics of changes over time, nonlinear growth patterns, between-subjects variability, and the within errors exhibiting heteroscedasticity and dependence. The data exploration is more complicated than that of cross-sectional data. The purpose of this paper is to organize/integrate of various visual-graphical techniques to explore longitudinal data. From the application of the proposed methods, investigators can answer the research questions include characterizing or describing the growth patterns at both group and individual level, identifying the time points where important changes occur and unusual subjects, selecting suitable statistical models, and suggesting possible within-error variance.

Keywords: Data exploration, exploratory analysis, HLMs/LMEs, longitudinal data, visual-graphical methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
7400 A Materialized Approach to the Integration of XML Documents: the OSIX System

Authors: H. Ahmad, S. Kermanshahani, A. Simonet, M. Simonet

Abstract:

The data exchanged on the Web are of different nature from those treated by the classical database management systems; these data are called semi-structured data since they do not have a regular and static structure like data found in a relational database; their schema is dynamic and may contain missing data or types. Therefore, the needs for developing further techniques and algorithms to exploit and integrate such data, and extract relevant information for the user have been raised. In this paper we present the system OSIX (Osiris based System for Integration of XML Sources). This system has a Data Warehouse model designed for the integration of semi-structured data and more precisely for the integration of XML documents. The architecture of OSIX relies on the Osiris system, a DL-based model designed for the representation and management of databases and knowledge bases. Osiris is a viewbased data model whose indexing system supports semantic query optimization. We show that the problem of query processing on a XML source is optimized by the indexing approach proposed by Osiris.

Keywords: Data integration, semi-structured data, views, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
7399 Data-Driven Decision-Making in Digital Entrepreneurship

Authors: Abeba Nigussie Turi, Xiangming Samuel Li

Abstract:

Data-driven business models are more typical for established businesses than early-stage startups that strive to penetrate a market. This paper provided an extensive discussion on the principles of data analytics for early-stage digital entrepreneurial businesses. Here, we developed data-driven decision-making (DDDM) framework that applies to startups prone to multifaceted barriers in the form of poor data access, technical and financial constraints, to state some. The startup DDDM framework proposed in this paper is novel in its form encompassing startup data analytics enablers and metrics aligning with startups' business models ranging from customer-centric product development to servitization which is the future of modern digital entrepreneurship.

Keywords: Startup data analytics, data-driven decision-making, data acquisition, data generation, digital entrepreneurship.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
7398 Classifying Bio-Chip Data using an Ant Colony System Algorithm

Authors: Minsoo Lee, Yearn Jeong Kim, Yun-mi Kim, Sujeung Cheong, Sookyung Song

Abstract:

Bio-chips are used for experiments on genes and contain various information such as genes, samples and so on. The two-dimensional bio-chips, in which one axis represent genes and the other represent samples, are widely being used these days. Instead of experimenting with real genes which cost lots of money and much time to get the results, bio-chips are being used for biological experiments. And extracting data from the bio-chips with high accuracy and finding out the patterns or useful information from such data is very important. Bio-chip analysis systems extract data from various kinds of bio-chips and mine the data in order to get useful information. One of the commonly used methods to mine the data is classification. The algorithm that is used to classify the data can be various depending on the data types or number characteristics and so on. Considering that bio-chip data is extremely large, an algorithm that imitates the ecosystem such as the ant algorithm is suitable to use as an algorithm for classification. This paper focuses on finding the classification rules from the bio-chip data using the Ant Colony algorithm which imitates the ecosystem. The developed system takes in consideration the accuracy of the discovered rules when it applies it to the bio-chip data in order to predict the classes.

Keywords: Ant Colony System, DNA chip data, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
7397 Trust and Reliability for Public Sector Data

Authors: Klaus Stranacher, Vesna Krnjic, Thomas Zefferer

Abstract:

The public sector holds large amounts of data of various areas such as social affairs, economy, or tourism. Various initiatives such as Open Government Data or the EU Directive on public sector information aim to make these data available for public and private service providers. Requirements for the provision of public sector data are defined by legal and organizational frameworks. Surprisingly, the defined requirements hardly cover security aspects such as integrity or authenticity. In this paper we discuss the importance of these missing requirements and present a concept to assure the integrity and authenticity of provided data based on electronic signatures. We show that our concept is perfectly suitable for the provisioning of unaltered data. We also show that our concept can also be extended to data that needs to be anonymized before provisioning by incorporating redactable signatures. Our proposed concept enhances trust and reliability of provided public sector data.

Keywords: Trusted Public Sector Data, Integrity, Authenticity, Reliability, Redactable Signatures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
7396 Aircraft Selection Process Using Reference Linear Combination in Multiple Criteria Decision Making Analysis

Authors: C. Ardil

Abstract:

This paper introduces a new method for multiplecriteria decision making (MCDM) that avoids order reversal and ensures consistency in decision-making. The proposed method involves range targeting of benefit and cost criteria vectors for range normalization of the initial decision matrix. The Reference Linear Combination (RLC) is used to avoid the rank reversal problem. The preference order generated from the target score matrix does not require relative comparisons between alternatives but relies on a chosen reference solution point after transforming the original decision matrix into an MCDM problem by specifying the minimum and maximum bounds of each criterion. The efficiency and applicability of the proposed RLC method were demonstrated in the selection of commercial passenger aircraft. 

Keywords: Aircraft selection, reference linear combination (RLC), multiple criteria decision-making, MCDM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343
7395 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance

Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat

Abstract:

Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.

Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
7394 Towards Development of Solution for Business Process-Oriented Data Analysis

Authors: M. Klimavicius

Abstract:

This paper proposes a modeling methodology for the development of data analysis solution. The Author introduce the approach to address data warehousing issues at the at enterprise level. The methodology covers the process of the requirements eliciting and analysis stage as well as initial design of data warehouse. The paper reviews extended business process model, which satisfy the needs of data warehouse development. The Author considers that the use of business process models is necessary, as it reflects both enterprise information systems and business functions, which are important for data analysis. The Described approach divides development into three steps with different detailed elaboration of models. The Described approach gives possibility to gather requirements and display them to business users in easy manner.

Keywords: Data warehouse, data analysis, business processmanagement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1386
7393 Viability of Eggshells Ash Affecting the Setting Time of Cement

Authors: Fazeera Ujin, Kamran Shavarebi Ali, Zarina Yasmin Hanur Harith

Abstract:

This research paper reports on the feasibility and viability of eggshells ash and its effects on the water content and setting time of cement. An experiment was carried out to determine the quantity of water required in order to follow standard cement paste of normal consistency in accordance with MS EN 196-3:2007. The eggshells ash passing the 90µm sieve was used in the investigation. Eggshells ash with percentage of 0%, 0.1%, 0.5%, 1.0%, 1.5% and 2.0% were constituted to replace the cement. Chemical properties of both eggshells ash and cement are compared. From the results obtained, both eggshells ash and cement have the same chemical composition and primary composition which is the calcium compounds. Results from the setting time show that by adding the eggshells ash to the cement, the setting time of the cement decreases. In short, the higher amount of eggshells ash, the faster the rate of setting and apply to all percentage of eggshells ash that were used in this investigation. Both initial and final setting times fulfill the setting time requirements by Malaysian Standard. Hence, it is suggested that eggshells ash can be used as an admixture in concrete mix.

Keywords: Construction Materials, Eggshells Ash, Solid Waste, Setting Time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
7392 Preliminary Overview of Data Mining Technology for Knowledge Management System in Institutions of Higher Learning

Authors: Muslihah Wook, Zawiyah M. Yusof, Mohd Zakree Ahmad Nazri

Abstract:

Data mining has been integrated into application systems to enhance the quality of the decision-making process. This study aims to focus on the integration of data mining technology and Knowledge Management System (KMS), due to the ability of data mining technology to create useful knowledge from large volumes of data. Meanwhile, KMS vitally support the creation and use of knowledge. The integration of data mining technology and KMS are popularly used in business for enhancing and sustaining organizational performance. However, there is a lack of studies that applied data mining technology and KMS in the education sector; particularly students- academic performance since this could reflect the IHL performance. Realizing its importance, this study seeks to integrate data mining technology and KMS to promote an effective management of knowledge within IHLs. Several concepts from literature are adapted, for proposing the new integrative data mining technology and KMS framework to an IHL.

Keywords: Data mining, Institutions of Higher Learning, Knowledge Management System, Students' academic performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
7391 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: Access control, data integrity, data confidentiality, Kerberos authentication, cloud security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763