Search results for: wind speed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1825

Search results for: wind speed

85 Identification of Spam Keywords Using Hierarchical Category in C2C E-commerce

Authors: Shao Bo Cheng, Yong-Jin Han, Se Young Park, Seong-Bae Park

Abstract:

Consumer-to-Consumer (C2C) E-commerce has been growing at a very high speed in recent years. Since identical or nearly-same kinds of products compete one another by relying on keyword search in C2C E-commerce, some sellers describe their products with spam keywords that are popular but are not related to their products. Though such products get more chances to be retrieved and selected by consumers than those without spam keywords, the spam keywords mislead the consumers and waste their time. This problem has been reported in many commercial services like ebay and taobao, but there have been little research to solve this problem. As a solution to this problem, this paper proposes a method to classify whether keywords of a product are spam or not. The proposed method assumes that a keyword for a given product is more reliable if the keyword is observed commonly in specifications of products which are the same or the same kind as the given product. This is because that a hierarchical category of a product in general determined precisely by a seller of the product and so is the specification of the product. Since higher layers of the hierarchical category represent more general kinds of products, a reliable degree is differently determined according to the layers. Hence, reliable degrees from different layers of a hierarchical category become features for keywords and they are used together with features only from specifications for classification of the keywords. Support Vector Machines are adopted as a basic classifier using the features, since it is powerful, and widely used in many classification tasks. In the experiments, the proposed method is evaluated with a golden standard dataset from Yi-han-wang, a Chinese C2C E-commerce, and is compared with a baseline method that does not consider the hierarchical category. The experimental results show that the proposed method outperforms the baseline in F1-measure, which proves that spam keywords are effectively identified by a hierarchical category in C2C E-commerce.

Keywords: Spam Keyword, E-commerce, keyword features, spam filtering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2508
84 Hydrological Modelling of Geological Behaviours in Environmental Planning for Urban Areas

Authors: Sheetal Sharma

Abstract:

Runoff,decreasing water levels and recharge in urban areas have been a complex issue now a days pointing defective urban design and increasing demography as cause. Very less has been discussed or analysed for water sensitive Urban Master Plans or local area plans. Land use planning deals with land transformation from natural areas into developed ones, which lead to changes in natural environment. Elaborated knowledge of relationship between the existing patterns of land use-land cover and recharge with respect to prevailing soil below is less as compared to speed of development. The parameters of incompatibility between urban functions and the functions of the natural environment are becoming various. Changes in land patterns due to built up, pavements, roads and similar land cover affects surface water flow seriously. It also changes permeability and absorption characteristics of the soil. Urban planners need to know natural processes along with modern means and best technologies available,as there is a huge gap between basic knowledge of natural processes and its requirement for balanced development planning leading to minimum impact on water recharge. The present paper analyzes the variations in land use land cover and their impacts on surface flows and sub-surface recharge in study area. The methodology adopted was to analyse the changes in land use and land cover using GIS and Civil 3d auto cad. The variations were used in  computer modeling using Storm-water Management Model to find out the runoff for various soil groups and resulting recharge observing water levels in POW data for last 40 years of the study area. Results were anlayzed again to find best correlations for sustainable recharge in urban areas.

Keywords: Geology, runoff, urban planning, land use-land cover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321
83 A Technical Perspective on Roadway Safety in Eastern Province: Data Evaluation and Spatial Analysis

Authors: Muhammad Farhan, Sayed Faruque, Amr Mohammed, Sami Osman, Omar Al-Jabari, Abdul Almojil

Abstract:

Saudi Arabia in recent years has seen drastic increase in traffic related crashes. With population of over 29 million, Saudi Arabia is considered as a fast growing and emerging economy. The rapid population increase and economic growth has resulted in rapid expansion of transportation infrastructure, which has led to increase in road crashes. Saudi Ministry of Interior reported more than 7,000 people killed and 68,000 injured in 2011 ranking Saudi Arabia to be one of the worst worldwide in traffic safety. The traffic safety issues in the country also result in distress to road users and cause and economic loss exceeding 3.7 billion Euros annually. Keeping this in view, the researchers in Saudi Arabia are investigating ways to improve traffic safety conditions in the country. This paper presents a multilevel approach to collect traffic safety related data required to do traffic safety studies in the region. Two highway corridors including King Fahd Highway 39 kilometre and Gulf Cooperation Council Highway 42 kilometre long connecting the cities of Dammam and Khobar were selected as a study area. Traffic data collected included traffic counts, crash data, travel time data, and speed data. The collected data was analysed using geographic information system to evaluate any correlation. Further research is needed to investigate the effectiveness of traffic safety related data when collected in a concerted effort.

Keywords: Crash Data, Data Collection, Traffic Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2352
82 A Hybrid Fuzzy AGC in a Competitive Electricity Environment

Authors: H. Shayeghi, A. Jalili

Abstract:

This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

Keywords: AGC, Hybrid Fuzzy Controller, Deregulated Power System, Power System Control, GAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
81 Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern

Authors: M. G. Papoutsidakis, G. Chamilothoris, F. Dailami, N. Larsen, A Pipe

Abstract:

Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.

Keywords: Fuzzy logic, gain scheduling, leaky integrator, pneumatic actuator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
80 Predictions and Comparisons of Thermohydrodynamic State for Single and Three Pads Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer-Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

Oil-free turbomachinery is considered one of the critical technologies for future green power generation systems as rotor machinery systems. Oil-free technology allows clean, compact, and maintenance-free working, and gas foil bearings (GFBs) are important for the technology. Since the first applications in the auxiliary power units and air cycle machines in the 1970s, obvious improvement has been created to the computational models for dynamic rotor behavior. However, many technical issues are still poorly understood or remain unsolved, and some of those are thermal management and the pattern of how pressure will be distributed in bearing clearance. This paper presents a three-dimensional (3D) fluid-structure interaction model of single pad foil bearings and three pad foil bearings to predict bearing working behavior that researchers could compare characteristics of those. The coupling analysis model involves dynamic working characteristics applied to all the gas film and mechanical structures. Therefore, the elastic deformation of foil structure and the hydrodynamic pressure of gas film can both be calculated by a finite element method program. As a result, the temperature distribution pattern could also be iteratively solved by coupling analysis. In conclusion, the working fluid state in a gas film of various pad forms of bearings working characteristic at constant rotational speed for both can be solved for comparisons with the experimental results.

Keywords: Fluid structure interaction multi-physics simulations, gas foil bearing, oil-free, transient thermohydrodynamic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 459
79 Elliptical Features Extraction Using Eigen Values of Covariance Matrices, Hough Transform and Raster Scan Algorithms

Authors: J. Prakash, K. Rajesh

Abstract:

In this paper, we introduce a new method for elliptical object identification. The proposed method adopts a hybrid scheme which consists of Eigen values of covariance matrices, Circular Hough transform and Bresenham-s raster scan algorithms. In this approach we use the fact that the large Eigen values and small Eigen values of covariance matrices are associated with the major and minor axial lengths of the ellipse. The centre location of the ellipse can be identified using circular Hough transform (CHT). Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain a small number of nonzero elements they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of circumference pixels is identified using raster scan algorithm which uses the geometrical symmetry property. This method does not require the evaluation of tangents or curvature of edge contours, which are generally very sensitive to noise working conditions. The proposed method has the advantages of small storage, high speed and accuracy in identifying the feature. The new method has been tested on both synthetic and real images. Several experiments have been conducted on various images with considerable background noise to reveal the efficacy and robustness. Experimental results about the accuracy of the proposed method, comparisons with Hough transform and its variants and other tangential based methods are reported.

Keywords: Circular Hough transform, covariance matrix, Eigen values, ellipse detection, raster scan algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2641
78 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
77 A Morphological Examination of Urban Renewal Processes: The Sample of Konya City

Authors: Muzaffer Ali Yaygın, Mehmet Topçu

Abstract:

This research aims to investigate morphological changes in urban patterns in urban renewal areas by using geographic information systems and to reveal pattern differences that occur before and after urban renewal processes by applying a morphological analysis. The concept of urban morphology is not involved in urban renewal and urban planning practices in Turkey. This situation destroys the structural characteristic of urban space which appears as a consequence of changes at city, street or plot level. Different approaches and renewal interventions to urban settlements, which are formed as a reflection of cultural issues, may have positive and negative results. A morphological analysis has been applied to an urban renewal area that covers 325 ha. in Konya, in which city urban renewal projects have gained speed with the increasing of economic investments in this study. The study mentions urban renewal and urban morphology relationship, varied academic approach on the urban morphology issue, urban morphology components, changes in lots pattern and numerical differences that occur on road, construction and green space ratios that are before and after the renewal project, and the results of the morphological analysis. It is seen that the built-up area has significant differences when compared to the previous situation. The amount of green areas decreased significantly in quantitative terms; the transportation systems has been changed completely; and the property ownership has been reconstructed without taking the previous situation into account. Findings show that urban renewal projects in Turkey are put into practice with a rent-oriented approach without making an in-depth analysis. The paper discusses the morphological dimension of urban renewal projects in Turkey through a case study from Konya city.

Keywords: Konya, pattern, urban morphology, urban renewal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
76 Effect of Laser Power and Powder Flow Rate on Properties of Laser Metal Deposited Ti6Al4V

Authors: Mukul Shukla, Rasheedat M. Mahamood, Esther T. Akinlabi, Sisa. Pityana

Abstract:

Laser Metal Deposition (LMD) is an additive manufacturing process with capabilities that include: producing new part directly from 3 Dimensional Computer Aided Design (3D CAD) model, building new part on the existing old component and repairing an existing high valued component parts that would have been discarded in the past. With all these capabilities and its advantages over other additive manufacturing techniques, the underlying physics of the LMD process is yet to be fully understood probably because of high interaction between the processing parameters and studying many parameters at the same time makes it further complex to understand. In this study, the effect of laser power and powder flow rate on physical properties (deposition height and deposition width), metallurgical property (microstructure) and mechanical (microhardness) properties on laser deposited most widely used aerospace alloy are studied. Also, because the Ti6Al4V is very expensive, and LMD is capable of reducing buy-to-fly ratio of aerospace parts, the material utilization efficiency is also studied. Four sets of experiments were performed and repeated to establish repeatability using laser power of 1.8 kW and 3.0 kW, powder flow rate of 2.88 g/min and 5.67 g/min, and keeping the gas flow rate and scanning speed constant at 2 l/min and 0.005 m/s respectively. The deposition height / width are found to increase with increase in laser power and increase in powder flow rate. The material utilization is favoured by higher power while higher powder flow rate reduces material utilization. The results are presented and fully discussed.

Keywords: Laser Metal Deposition, Material Efficiency, Microstructure, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
75 Numerical and Experimental Analyses of a Semi-Active Pendulum Tuned Mass Damper

Authors: H. Juma, F. Al-hujaili, R. Kashani

Abstract:

Modern structures such as floor systems, pedestrian bridges and high-rise buildings have become lighter in mass and more flexible with negligible damping and thus prone to vibration. In this paper, a semi-actively controlled pendulum tuned mass dampers (PTMD) is presented that uses air springs as both the restoring (resilient) and energy dissipating (damping) elements; the tuned mass damper (TMD) uses no passive dampers. The proposed PTMD can readily be fine-tuned and re-tuned, via software, without changing any hardware. Almost all existing semi-active systems have the three elements that passive TMDs have, i.e., inertia, resilient, and dissipative elements with some adjustability built into one or two of these elements. The proposed semi-active air suspended TMD, on the other hand, is made up of only inertia and resilience elements. A notable feature of this TMD is the absence of a physical damping element in its make-up. The required viscous damping is introduced into the TMD using a semi-active control scheme residing in a micro-controller which actuates a high-speed proportional valve regulating the flow of air in and out of the air springs. In addition to introducing damping into the TMD, the semi-active control scheme adjusts the stiffness of the TMD. The focus of this work has been the synthesis and analysis of the control algorithms and strategies to vary the tuning accuracy, introduce damping into air suspended PTMD, and enable the PTMD to self-tune itself. The accelerations of the main structure and PTMD as well as the pressure in the air springs are used as the feedback signals in control strategies. Numerical simulation and experimental evaluation of the proposed tuned damping system are presented in this paper.

Keywords: Tuned mass damper, air spring, semi-active, vibration control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
74 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed. The scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: Computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 589
73 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: Ceramics, Dielectric, High-energy milling, Perovskite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2596
72 CFD Analysis of the Blood Flow in Left Coronary Bifurcation with Variable Angulation

Authors: Midiya Khademi, Ali Nikoo, Shabnam Rahimnezhad Baghche Jooghi

Abstract:

Cardiovascular diseases (CVDs) are the main cause of death globally. Most CVDs can be prevented by avoiding habitual risk factors. Separate from the habitual risk factors, there are some inherent factors in each individual that can increase the risk potential of CVDs. Vessel shapes and geometry are influential factors, having great impact on the blood flow and the hemodynamic behavior of the vessels. In the present study, the influence of bifurcation angle on blood flow characteristics is studied. In order to approach this topic, by simplifying the details of the bifurcation, three models with angles 30°, 45°, and 60° were created, then by using CFD analysis, the response of these models for stable flow and pulsatile flow was studied. In the conducted simulation in order to eliminate the influence of other geometrical factors, only the angle of the bifurcation was changed and other parameters remained constant during the research. Simulations are conducted under dynamic and stable condition. In the stable flow simulation, a steady velocity of 0.17 m/s at the inlet plug was maintained and in dynamic simulations, a typical LAD flow waveform is implemented. The results show that the bifurcation angle has an influence on the maximum speed of the flow. In the stable flow condition, increasing the angle lead to decrease the maximum flow velocity. In the dynamic flow simulations, increasing the bifurcation angle lead to an increase in the maximum velocity. Since blood flow has pulsatile characteristics, using a uniform velocity during the simulations can lead to a discrepancy between the actual results and the calculated results.

Keywords: Coronary artery, cardiovascular disease, bifurcation, atherosclerosis, CFD, artery wall shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 954
71 Effect of Pole Weight on Nordic Walking

Authors: Takeshi Sato, Mizuki Nakajima, Macky Kato, Shoji Igawa

Abstract:

The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (±1.0) years, body mass = 61.4 (±3.6) kg, height = 170.3 (±4.3) cm] and three healthy women [age = 22.7 (±2.9) years, body mass = 53.0 (±1.7) kg, height = 156.7 (±4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p < 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p < 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking.

Keywords: Nordic walking, electromyogram, heart rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
70 Numerical Analysis of Pressure Admission Angle to Vane Angle Ratios on Performance of a Vaned Type Novel Air Turbine

Authors: B.R. Singh, O. Singh

Abstract:

Worldwide conventional resources of fossil fuel are depleting very fast due to large scale increase in use of transport vehicles every year, therefore consumption rate of oil in transport sector alone has gone very high. In view of this, the major thrust has now been laid upon the search of alternative energy source and also for cost effective energy conversion system. The air converted into compressed form by non conventional or conventional methods can be utilized as potential working fluid for producing shaft work in the air turbine and thus offering the capability of being a zero pollution energy source. This paper deals with the mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine. Effect of expansion action and steady flow work in the air turbine at high admission air pressure of 6 bar, for varying injection to vane angles ratios 0.2-1.6, at the interval of 0.2 and at different vane angles such as 30o, 45o, 51.4o, 60o, 72o, 90o, and 120o for 12, 8, 7, 6, 5, 4 and 3 vanes respectively at speed of rotation 2500 rpm, has been quantified and analyzed here. Study shows that the expansion power has major contribution to total power, whereas the contribution of flow work output has been found varying only up to 19.4%. It is also concluded that for variation of injection to vane angle ratios from 0.2 to 1.2, the optimal power output is seen at vane angle 90o (4 vanes) and for 1.4 to 1.6 ratios, the optimal total power is observed at vane angle 72o (5 vanes). Thus in the vaned type novel air turbine the optimum shaft power output is developed when rotor contains 4-5 vanes for almost all situations of injection to vane angle ratios from 0.2 to 1.6.

Keywords: zero pollution, compressed air, air turbine, vaneangle, injection to vane angle ratios

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
69 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast

Abstract:

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
68 Problem Solving in Chilean Higher Education: Figurations Prior in Interpretations of Cartesian Graphs

Authors: Verónica Díaz

Abstract:

A Cartesian graph, as a mathematical object, becomes a tool for configuration of change. Its best comprehension is done through everyday life problem-solving associated with its representation. Despite this, the current educational framework favors general graphs, without consideration of their argumentation. Students are required to find the mathematical function without associating it to the development of graphical language. This research describes the use made by students of configurations made prior to Cartesian graphs with regards to an everyday life problem related to a time and distance variation phenomenon. The theoretical framework describes the function conditions of study and their modeling. This is a qualitative, descriptive study involving six undergraduate case studies that were carried out during the first term in 2016 at University of Los Lagos. The research problem concerned the graphic modeling of a real person’s movement phenomenon, and two levels of analysis were identified. The first level aims to identify local and global graph interpretations; a second level describes the iconicity and referentiality degree of an image. According to the results, students were able to draw no figures before the Cartesian graph, highlighting the need for students to represent the context and the movement of which causes the phenomenon change. From this, they managed Cartesian graphs representing changes in position, therefore, achieved an overall view of the graph. However, the local view only indicates specific events in the problem situation, using graphic and verbal expressions to represent movement. This view does not enable us to identify what happens on the graph when the movement characteristics change based on possible paths in the person’s walking speed.

Keywords: Cartesian graphs, higher education, movement modeling, problem solving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
67 A Study of RSCMAC Enhanced GPS Dynamic Positioning

Authors: Ching-Tsan Chiang, Sheng-Jie Yang, Jing-Kai Huang

Abstract:

The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.

Keywords: Dynamic Error, GPS, Prediction, RSCMAC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
66 Influence of Internal Topologies on Components Produced by Selective Laser Melting: Numerical Analysis

Authors: C. Malça, P. Gonçalves, N. Alves, A. Mateus

Abstract:

Regardless of the manufacturing process used, subtractive or additive, material, purpose and application, produced components are conventionally solid mass with more or less complex shape depending on the production technology selected. Aspects such as reducing the weight of components, associated with the low volume of material required and the almost non-existent material waste, speed and flexibility of production and, primarily, a high mechanical strength combined with high structural performance, are competitive advantages in any industrial sector, from automotive, molds, aviation, aerospace, construction, pharmaceuticals, medicine and more recently in human tissue engineering. Such features, properties and functionalities are attained in metal components produced using the additive technique of Rapid Prototyping from metal powders commonly known as Selective Laser Melting (SLM), with optimized internal topologies and varying densities. In order to produce components with high strength and high structural and functional performance, regardless of the type of application, three different internal topologies were developed and analyzed using numerical computational tools. The developed topologies were numerically submitted to mechanical compression and four point bending testing. Finite Element Analysis results demonstrate how different internal topologies can contribute to improve mechanical properties, even with a high degree of porosity relatively to fully dense components. Results are very promising not only from the point of view of mechanical resistance, but especially through the achievement of considerable variation in density without loss of structural and functional high performance.

Keywords: Additive Manufacturing, Internal topologies, Porosity, Rapid Prototyping, Selective Laser Melting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
65 Effects of Geometry of Disk Openers on Seed Slot Properties

Authors: E. Seidi

Abstract:

Offset Double-Disk Opener (DDO) is a popular furrow opener in conservation tillage. It has some limitations such as negative suction to penetrate in the soil, hair pinning and mixing seed and fertilizer in the slot. Because of importance of separation of seed and fertilizer in the slot, by adding two horizontal mini disks to DDO a modified opener was made (MDO) which placed the fertilizer between and under two rows of seed. To consider performance of novel opener an indoor comparison test between DDO and MDO was performed at soil bin. The experiment was conducted with three working speeds (3, 6 and 8 km h-1), two bulk densities of soil (1.1 and 1.4 Mg m-3) and two levels of residues (1 and 2 ton ha-1). The experimental design consisted in a (3×2×2) complete randomized factorial with three replicates for each test. Moisture of seed furrow, separation of seed and fertilizer, hair pinning and resultant forces acting on the openers were used as assessing indexes. There was no significant difference between soil moisture content in slots created by DDO and MDO at 0-4 cm depth, but at 4-8 cm the in the slot created by MDO moisture content was higher about 9%. Horizontal force for both openers increased with increasing speed and soil bulk density. Vertical force for DDO was negative so it needed additional weight for penetrating in the soil, but vertical force for MDO was positive and, which can solve the challenge of penetration in the soil in DDO. In soft soil with heavy residues some trash was pushed by DDO into seed furrow (hair pinning) but at MDO seed were placed at clean groove. Lateral and vertical separation of seed and fertilizer was performed effectively by MDO (4.5 and 5 cm, respectively) while DDO put seed and fertilizer close to each other. Overall, the Modified Offset Double-disks (MDO) had better performance. So by adapting this opener with no-tillage drillers it would possible to have higher yield in conservation tillage where the most appropriate opener is disk type.

Keywords: Seed Slot, opener's geometry, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
64 Why Are Entrepreneurs Resistant to E-tools?

Authors: D. Ščeulovs, E. Gaile-Sarkane

Abstract:

Latvia is the fourth in the world by means of broadband internet speed. The total number of internet users in Latvia exceeds 70% of its population. The number of active mailboxes of the local internet e-mail service Inbox.lv accounts for 68% of the population and 97.6% of the total number of internet users. The Latvian portal Draugiem.lv is a phenomenon of social media, because 58.4 % of the population and 83.5% of internet users use it. A majority of Latvian company profiles are available on social networks, the most popular being Twitter.com. These and other parameters prove the fact consumers and companies are actively using the Internet. 

However, after the authors in a number of studies analyzed how enterprises are employing the e-environment, namely, e-environment tools, they arrived to the conclusions that are not as flattering as the aforementioned statistics. There is an obvious contradiction between the statistical data and the actual studies. As a result, the authors have posed a question: Why are entrepreneurs resistant to e-tools? In order to answer this question, the authors have addressed the Technology Acceptance Model (TAM). The authors analyzed each phase and determined several factors affecting the use of e-environment, reaching the main conclusion that entrepreneurs do not have a sufficient level of e-literacy (digital literacy). 

The authors employ well-established quantitative and qualitative methods of research: grouping, analysis, statistic method, factor analysis in SPSS 20  environment etc. 

The theoretical and methodological background of the research is formed by, scientific researches and publications, that from the mass media and professional literature, statistical information from legal institutions as well as information collected by the author during the survey.

Keywords: E-environment, e-environment tools, technology acceptance model, factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
63 Experimental and Theoretical Investigation of Rough Rice Drying in Infrared-assisted Hot Air Dryer Using Artificial Neural Network

Authors: D. Zare, H. Naderi, A. A. Jafari

Abstract:

Drying characteristics of rough rice (variety of lenjan) with an initial moisture content of 25% dry basis (db) was studied in a hot air dryer assisted by infrared heating. Three arrival air temperatures (30, 40 and 500C) and four infrared radiation intensities (0, 0.2 , 0.4 and 0.6 W/cm2) and three arrival air speeds (0.1, 0.15 and 0.2 m.s-1) were studied. Bending strength of brown rice kernel, percentage of cracked kernels and time of drying were measured and evaluated. The results showed that increasing the drying arrival air temperature and radiation intensity of infrared resulted decrease in drying time. High bending strength and low percentage of cracked kernel was obtained when paddy was dried by hot air assisted infrared dryer. Between this factors and their interactive effect were a significant difference (p<0.01). An intensity level of 0.2 W/cm2 was found to be optimum for radiation drying. Furthermore, in the present study, the application of Artificial Neural Network (ANN) for predicting the moisture content during drying (output parameter for ANN modeling) was investigated. Infrared Radiation intensity, drying air temperature, arrival air speed and drying time were considered as input parameters for the model. An ANN model with two hidden layers with 8 and 14 neurons were selected for studying the influence of transfer functions and training algorithms. The results revealed that a network with the Tansig (hyperbolic tangent sigmoid) transfer function and trainlm (Levenberg-Marquardt) back propagation algorithm made the most accurate predictions for the paddy drying system. Mean square error (MSE) was calculated and found that the random errors were within and acceptable range of ±5% with coefficient of determination (R2) of 99%.

Keywords: Rough rice, Infrared-hot air, Artificial Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
62 LAYMOD; A Layered and Modular Platform for CAx Collaboration Management and Supporting Product data Integration based on STEP Standard

Authors: Omid F. Valilai, Mahmoud Houshmand

Abstract:

Nowadays companies strive to survive in a competitive global environment. To speed up product development/modifications, it is suggested to adopt a collaborative product development approach. However, despite the advantages of new IT improvements still many CAx systems work separately and locally. Collaborative design and manufacture requires a product information model that supports related CAx product data models. To solve this problem many solutions are proposed, which the most successful one is adopting the STEP standard as a product data model to develop a collaborative CAx platform. However, the improvement of the STEP-s Application Protocols (APs) over the time, huge number of STEP AP-s and cc-s, the high costs of implementation, costly process for conversion of older CAx software files to the STEP neutral file format; and lack of STEP knowledge, that usually slows down the implementation of the STEP standard in collaborative data exchange, management and integration should be considered. In this paper the requirements for a successful collaborative CAx system is discussed. The STEP standard capability for product data integration and its shortcomings as well as the dominant platforms for supporting CAx collaboration management and product data integration are reviewed. Finally a platform named LAYMOD to fulfil the requirements of CAx collaborative environment and integrating the product data is proposed. The platform is a layered platform to enable global collaboration among different CAx software packages/developers. It also adopts the STEP modular architecture and the XML data structures to enable collaboration between CAx software packages as well as overcoming the STEP standard limitations. The architecture and procedures of LAYMOD platform to manage collaboration and avoid contradicts in product data integration are introduced.

Keywords: CAx, Collaboration management, STEP applicationmodules, STEP standard, XML data structures

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
61 Modelling of a Biomechanical Vertebral System for Seat Ejection in Aircrafts Using Lumped Mass Approach

Authors: R. Unnikrishnan, K. Shankar

Abstract:

In the case of high-speed fighter aircrafts, seat ejection is designed mainly for the safety of the pilot in case of an emergency. Strong windblast due to the high velocity of flight is one main difficulty in clearing the tail of the aircraft. Excessive G-forces generated, immobilizes the pilot from escape. In most of the cases, seats are ejected out of the aircrafts by explosives or by rocket motors attached to the bottom of the seat. Ejection forces are primarily in the vertical direction with the objective of attaining the maximum possible velocity in a specified period of time. The safe ejection parameters are studied to estimate the critical time of ejection for various geometries and velocities of flight. An equivalent analytical 2-dimensional biomechanical model of the human spine has been modelled consisting of vertebrae and intervertebral discs with a lumped mass approach. The 24 vertebrae, which consists of the cervical, thoracic and lumbar regions, in addition to the head mass and the pelvis has been designed as 26 rigid structures and the intervertebral discs are assumed as 25 flexible joint structures. The rigid structures are modelled as mass elements and the flexible joints as spring and damper elements. Here, the motions are restricted only in the mid-sagittal plane to form a 26 degree of freedom system. The equations of motions are derived for translational movement of the spinal column. An ejection force with a linearly increasing acceleration profile is applied as vertical base excitation on to the pelvis. The dynamic vibrational response of each vertebra in time-domain is estimated.

Keywords: Biomechanical model, lumped mass, seat ejection, vibrational response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051
60 Minimization of Non-Productive Time during 2.5D Milling

Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna

Abstract:

In the modern manufacturing systems, the use of thermal cutting techniques using oxyfuel, plasma and laser have become indispensable for the shape forming of high quality complex components; however, the conventional chip removal production techniques still have its widespread space in the manufacturing industry. Both these types of machining operations require the positioning of end effector tool at the edge where the cutting process commences. This repositioning of the cutting tool in every machining operation is repeated several times and is termed as non-productive time or airtime motion. Minimization of this non-productive machining time plays an important role in mass production with high speed machining. As, the tool moves from one region to the other by rapid movement and visits a meticulous region once in the whole operation, hence the non-productive time can be minimized by synchronizing the tool movements. In this work, this problem is being formulated as a general travelling salesman problem (TSP) and a genetic algorithm approach has been applied to solve the same. For improving the efficiency of the algorithm, the GA has been hybridized with a noble special heuristic and simulating annealing (SA). In the present work a novel heuristic in the combination of GA has been developed for synchronization of toolpath movements during repositioning of the tool. A comparative analysis of new Meta heuristic techniques with simple genetic algorithm has been performed. The proposed metaheuristic approach shows better performance than simple genetic algorithm for minimization of nonproductive toolpath length. Also, the results obtained with the help of hybrid simulated annealing genetic algorithm (HSAGA) are also found better than the results using simple genetic algorithm only.

Keywords: Non-productive time, Airtime, 2.5 D milling, Laser cutting, Metaheuristic, Genetic Algorithm, Simulated Annealing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2738
59 Novel Hybrid Approaches For Real Coded Genetic Algorithm to Compute the Optimal Control of a Single Stage Hybrid Manufacturing Systems

Authors: M. Senthil Arumugam, M.V.C. Rao

Abstract:

This paper presents a novel two-phase hybrid optimization algorithm with hybrid genetic operators to solve the optimal control problem of a single stage hybrid manufacturing system. The proposed hybrid real coded genetic algorithm (HRCGA) is developed in such a way that a simple real coded GA acts as a base level search, which makes a quick decision to direct the search towards the optimal region, and a local search method is next employed to do fine tuning. The hybrid genetic operators involved in the proposed algorithm improve both the quality of the solution and convergence speed. The phase–1 uses conventional real coded genetic algorithm (RCGA), while optimisation by direct search and systematic reduction of the size of search region is employed in the phase – 2. A typical numerical example of an optimal control problem with the number of jobs varying from 10 to 50 is included to illustrate the efficacy of the proposed algorithm. Several statistical analyses are done to compare the validity of the proposed algorithm with the conventional RCGA and PSO techniques. Hypothesis t – test and analysis of variance (ANOVA) test are also carried out to validate the effectiveness of the proposed algorithm. The results clearly demonstrate that the proposed algorithm not only improves the quality but also is more efficient in converging to the optimal value faster. They can outperform the conventional real coded GA (RCGA) and the efficient particle swarm optimisation (PSO) algorithm in quality of the optimal solution and also in terms of convergence to the actual optimum value.

Keywords: Hybrid systems, optimal control, real coded genetic algorithm (RCGA), Particle swarm optimization (PSO), Hybrid real coded GA (HRCGA), and Hybrid genetic operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
58 Drop Impact Study on Flexible Superhydrophobic Surface Containing Micro-Nano Hierarchical Structures

Authors: Abinash Tripathy, Girish Muralidharan, Amitava Pramanik, Prosenjit Sen

Abstract:

Superhydrophobic surfaces are abundant in nature. Several surfaces such as wings of butterfly, legs of water strider, feet of gecko and the lotus leaf show extreme water repellence behaviour. Self-cleaning, stain-free fabrics, spill-resistant protective wears, drag reduction in micro-fluidic devices etc. are few applications of superhydrophobic surfaces. In order to design robust superhydrophobic surface, it is important to understand the interaction of water with superhydrophobic surface textures. In this work, we report a simple coating method for creating large-scale flexible superhydrophobic paper surface. The surface consists of multiple layers of silanized zirconia microparticles decorated with zirconia nanoparticles. Water contact angle as high as 159±10 and contact angle hysteresis less than 80 was observed. Drop impact studies on superhydrophobic paper surface were carried out by impinging water droplet and capturing its dynamics through high speed imaging. During the drop impact, the Weber number was varied from 20 to 80 by altering the impact velocity of the drop and the parameters such as contact time, normalized spread diameter were obtained. In contrast to earlier literature reports, we observed contact time to be dependent on impact velocity on superhydrophobic surface. Total contact time was split into two components as spread time and recoil time. The recoil time was found to be dependent on the impact velocity while the spread time on the surface did not show much variation with the impact velocity. Further, normalized spreading parameter was found to increase with increase in impact velocity.

Keywords: Contact angle, contact angle hysteresis, contact time, superhydrophobic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406
57 A Modern Review of the Spintronic Technology: Fundamentals, Materials, Devices, Circuits, Challenges, and Current Research Trends

Authors: Muhibul Haque Bhuyan

Abstract:

Spintronic, also termed spin electronics or spin transport electronics, is a kind of new technology, which exploits the two fundamental degrees of freedom- spin-state and charge-state of electrons to enhance the operational speed for the data storage and transfer efficiency of the device. Thus, it seems an encouraging technology to combat most of the prevailing complications in orthodox electron-based devices. This novel technology possesses the capacity to mix the semiconductor microelectronics and magnetic devices’ functionalities into one integrated circuit. Traditional semiconductor microelectronic devices use only the electronic charge to process the information based on binary numbers, 0 and 1. Due to the incessant shrinking of the transistor size, we are reaching the final limit of 1 nm or so. At this stage, the fabrication and other device operational processes will become challenging as the quantum effect comes into play. In this situation, we should find an alternative future technology, and spintronic may be such technology to transfer and store information. This review article provides a detailed discussion of the spintronic technology: fundamentals, materials, devices, circuits, challenges, and current research trends. At first, the fundamentals of spintronics technology are discussed. Then types, properties, and other issues of the spintronic materials are presented. After that, fabrication and working principles, as well as application areas and advantages/disadvantages of spintronic devices and circuits, are explained. Finally, the current challenges, current research areas, and prospects of spintronic technology are highlighted. This is a new paradigm of electronic cum magnetic devices built on the charge and spin of the electrons. Modern engineering and technological advances in search of new materials for this technology give us hope that this would be a very optimistic technology in the upcoming days.

Keywords: Spintronic technology, spin, charge, magnetic devices, spintronic devices, spintronic materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
56 Validity of Universe Structure Conception as Nested Vortexes

Authors: Khaled M. Nabil

Abstract:

This paper introduces the Nested Vortexes conception of the universe structure and interprets all the physical phenomena according this conception. The paper first reviews recent physics theories, either in microscopic scale or macroscopic scale, to collect evidence that the space is not empty. But, these theories describe the property of the space medium without determining its structure. Determining the structure of space medium is essential to understand the mechanism that leads to its properties. Without determining the space medium structure, many phenomena; such as electric and magnetic fields, gravity, or wave-particle duality remain uninterpreted. Thus, this paper introduces a conception about the structure of the universe. It assumes that the universe is a medium of ultra-tiny homogeneous particles which are still undiscovered. Like any medium with certain movements, possibly because of a great asymmetric explosion, vortexes have occurred. A vortex condenses the ultra-tiny particles in its center forming a bigger particle, the bigger particles, in turn, could be trapped in a bigger vortex and condense in its center forming a much bigger particle and so on. This conception describes galaxies, stars, protons as particles at different levels. Existing of the particle’s vortexes make the consistency of the speed of light postulate is not true. This conception shows that the vortex motion dynamic agrees with the motion of all the universe particles at any level. An experiment has been carried out to detect the orbiting effect of aggregated vortexes of aligned atoms of a permanent magnet. Based on the described particle’s structure, the gravity force of a particle and attraction between particles as well as charge, electric and magnetic fields and quantum mechanics characteristics are interpreted. All augmented physics phenomena are solved.

Keywords: Astrophysics, cosmology, particles’ structure model, particles’ forces, vortex dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850