Search results for: fuzzy multi-criteria decision making
1119 Human Factors Considerations in New Generation Fighter Planes to Enhance Combat Effectiveness
Authors: Chitra Rajagopal, Indra Deo Kumar, Ruchi Joshi, Binoy Bhargavan
Abstract:
Role of fighter planes in modern network centric military warfare scenarios has changed significantly in the recent past. New generation fighter planes have multirole capability of engaging both air and ground targets with high precision. Multirole aircraft undertakes missions such as Air to Air combat, Air defense, Air to Surface role (including Air interdiction, Close air support, Maritime attack, Suppression and Destruction of enemy air defense), Reconnaissance, Electronic warfare missions, etc. Designers have primarily focused on development of technologies to enhance the combat performance of the fighter planes and very little attention is given to human factor aspects of technologies. Unique physical and psychological challenges are imposed on the pilots to meet operational requirements during these missions. Newly evolved technologies have enhanced aircraft performance in terms of its speed, firepower, stealth, electronic warfare, situational awareness, and vulnerability reduction capabilities. This paper highlights the impact of emerging technologies on human factors for various military operations and missions. Technologies such as ‘cooperative knowledge-based systems’ to aid pilot’s decision making in military conflict scenarios as well as simulation technologies to enhance human performance is also studied as a part of research work. Current and emerging pilot protection technologies and systems which form part of the integrated life support systems in new generation fighter planes is discussed. System safety analysis application to quantify the human reliability in military operations is also studied.
Keywords: Combat effectiveness, emerging technologies, human factors, systems safety analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191118 Surface Roughness Analysis, Modelling and Prediction in Fused Deposition Modelling Additive Manufacturing Technology
Authors: Yusuf S. Dambatta, Ahmed A. D. Sarhan
Abstract:
Fused deposition modelling (FDM) is one of the most prominent rapid prototyping (RP) technologies which is being used to efficiently fabricate CAD 3D geometric models. However, the process is coupled with many drawbacks, of which the surface quality of the manufactured RP parts is among. Hence, studies relating to improving the surface roughness have been a key issue in the field of RP research. In this work, a technique of modelling the surface roughness in FDM is presented. Using experimentally measured surface roughness response of the FDM parts, an ANFIS prediction model was developed to obtain the surface roughness in the FDM parts using the main critical process parameters that affects the surface quality. The ANFIS model was validated and compared with experimental test results.Keywords: Surface roughness, fused deposition modelling, adaptive neuro fuzzy inference system, ANFIS, orientation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19001117 Urban Roads of Bhopal City
Authors: Anshu Gupta
Abstract:
Quality evaluation of urban environment is an integral part of efficient urban environment planning and management. The development of fuzzy set theory (FST) and the introduction of FST to the urban study field attempts to incorporate the gradual variation and avoid loss of information. Urban environmental quality assessment pertain to interpretation and forecast of the urban environmental quality according to the national regulation about the permitted content of contamination for the sake of protecting human health and subsistence environment . A strategic motor vehicle control strategy has to be proposed to mitigate the air pollution in the city. There is no well defined guideline for the assessment of urban air pollution and no systematic study has been reported so far for Indian cities. The methodology adopted may be useful in similar cities of India. Remote sensing & GIS can play significant role in mapping air pollution.Keywords: GIS, Pollution, Remote Sensing, Urban.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26411116 Study of Unsteady Swirling Flow in a Hydrodynamic Vortex Chamber
Authors: Sergey I. Shtork, Aleksey P. Vinokurov, Sergey V. Alekseenko
Abstract:
The paper reports on the results of experimental and numerical study of nonstationary swirling flow in an isothermal model of vortex burner. It has been identified that main source of the instability is related to a precessing vortex core (PVC) phenomenon. The PVC induced flow pulsation characteristics such as precession frequency and its variation as a function of flowrate and swirl number have been explored making use of acoustic probes. Additionally pressure transducers were used to measure the pressure drops on the working chamber and across the vortex flow. The experiments have been included also the mean velocity measurements making use of a laser-Doppler anemometry. The features of instantaneous flowfield generated by the PVC were analyzed employing a commercial CFD code (Star-CCM+) based on Detached Eddy Simulation (DES) approach. Validity of the numerical code has been checked by comparison calculated flowfield data with the obtained experimental results. It has been confirmed particularly that the CFD code applied correctly reproduces the flow features.Keywords: Acoustic probes, detached eddy simulation (DES), laser-Doppler anemometry (LDA), precessing vortex core (PVC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22711115 A Methodology for Creating a Conceptual Model Under Uncertainty
Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes
Abstract:
This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.
Keywords: Conceptual model, conceptual modeling, database, methodology, uncertainty, information system, entity, attribute, relationship, conceptual domain model, fuzzy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15841114 Entrepreneurial Characteristics and Attitude of Pineapple Growers
Authors: Kaushal Kumar Jha
Abstract:
Nagaland, the 16th state of India in order of statehood, is situated between 25° 6' and 27° 4' latitude north and between 93º 20' E and 95º 15' E longitude of equator in the North Eastern part of the India. Endowed with varied topography, soil and agro climatic conditions it is known for its potentiality to grow all most all kinds of horticultural crops. Pineapple being grown since long organically by default is one of the most promising crops of the state with emphasis being laid for commercialization by the government of Nagaland. In light of commercialization, globalization and scope of setting small-scale industries, a research study was undertaken to examine the socio-economic and personal characteristics, entrepreneurial characteristics and attitude of the pineapple growers towards improved package of practices of pineapple cultivation. The study was conducted in Medziphema block of Dimapur district of the Nagaland state of India following ex post facto research design. Ninety pineapple growers were selected from four different villages of Medziphema block based on proportionate random selection procedure. Findings of the study revealed that majority of the respondents had medium level of entrepreneurial characteristics in terms of knowledge level, risk orientation, self confidence, management orientation, farm decision making ability and leadership ability and most of them had favourable attitude towards improved package of practices of pineapple cultivation. The variables age, education, farm size, risk orientation, management orientation and sources of information utilized were found important to influence the attitude of the respondents. The study revealed that favourable attitude and entrepreneurial characteristics of the pineapple cultivators might be harnessed for increased production of pineapple in the state thereby bringing socio economic upliftment of the marginal and small-scale farmers.Keywords: Attitude, Entrepreneurial characteristics, Pineapple, Socio economic upliftment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23141113 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.
Keywords: Computational modelling, evolutionary algorithms, genetic programming, hydrological modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33291112 Role-Governed Categorization and Category Learning as a Result from Structural Alignment: The RoleMap Model
Authors: Yolina A. Petrova, Georgi I. Petkov
Abstract:
The paper presents a symbolic model for category learning and categorization (called RoleMap). Unlike the other models which implement learning in a separate working mode, role-governed category learning and categorization emerge in RoleMap while it does its usual reasoning. The model is based on several basic mechanisms known as reflecting the sub-processes of analogy-making. It steps on the assumption that in their everyday life people constantly compare what they experience and what they know. Various commonalities between the incoming information (current experience) and the stored one (long-term memory) emerge from those comparisons. Some of those commonalities are considered to be highly important, and they are transformed into concepts for further use. This process denotes the category learning. When there is missing knowledge in the incoming information (i.e. the perceived object is still not recognized), the model makes anticipations about what is missing, based on the similar episodes from its long-term memory. Various such anticipations may emerge for different reasons. However, with time only one of them wins and is transformed into a category member. This process denotes the act of categorization.
Keywords: Categorization, category learning, role-governed category, analogy-making, cognitive modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6611111 Intraoperative ICG-NIR Fluorescence Angiography Visualization of Intestinal Perfusion in Primary Pull-Through for Hirschsprung Disease
Authors: Mohammad Emran, Colton Wayne, Shannon M Koehler, P. Stephen Almond, Haroon Patel
Abstract:
Purpose: Assessment of anastomotic perfusion in Hirschsprung disease using Indocyanine Green (ICG)-near-infrared (NIR) fluorescence angiography. Introduction: Anastomotic stricture and leak are well-known complications of Hirschsprung pull-through procedures. Complications are due to tension, infection, and/or poor perfusion. While a surgeon can visually determine and control the amount of tension and contamination, assessment of perfusion is subject to surgeon determination. Intraoperative use of ICG-NIR enhances this decision-making process by illustrating perfusion intensity and adequacy in the pulled-through bowel segment. This technique, proven to reduce anastomotic stricture and leak in adults, has not been studied in children to our knowledge. ICG, an FDA approved, nontoxic, non-immunogenic, intravascular (IV) dye, has been used in adults and children for over 60 years, with few side effects. ICG-NIR was used in this report to demonstrate the adequacy of perfusion during transanal pullthrough for Hirschsprung’s disease. Method: 8 patients with Hirschsprung disease were evaluated with ICG-NIR technology. Levels of affected area ranged from sigmoid to total colonic Hirschsprung disease. After leveling, but prior to anastomosis, ICG was administered at 1.25 mg (< 2 mg/kg) and perfusion visualized using an NIR camera, before and during anastomosis. Video and photo imaging was performed and perfusion of the bowel was compared to surrounding tissues. This showed the degree of perfusion and demarcation of perfused and non-perfused bowel. The anastomosis was completed uneventfully and the patients all did well. Results: There were no complications of stricture or leak. 5 of 8 patients (62.5%) had modification of the plan based on ICG-NIR imaging. Conclusion: Technologies that enhance surgeons’ ability to visualize bowel perfusion prior to anastomosis in Hirschsprung’s patients may help reduce post-operative complications. Further studies are needed to assess the potential benefits.
Keywords: Colonic anastomosis, fluorescence angiography, Hirschsprung disease, pediatric surgery, SPY, ICG, NIR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6801110 De-noising Infrared Image Using OWA Based Filter
Authors: Ruchika, Munish Vashisht, S. Qamar
Abstract:
Detection of small ship is crucial task in many automatic surveillance systems which are employed for security of maritime boundaries of a country. To address this problem, image de-noising is technique to identify the target ship in between many other ships in the sea. Image de-noising technique needs to extract the ship’s image from sea background for the analysis as the ship’s image may submerge in the background and flooding waves. In this paper, a noise filter is presented that is based on fuzzy linguistic ‘most’ quantifier. Ordered weighted averaging (OWA) function is used to remove salt-pepper noise of ship’s image. Results obtained are in line with the results available by other well-known median filters and OWA based approach shows better performance.
Keywords: Linguistic quantifier, impulse noise, OWA filter, median filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9331109 Risk in the South African Sectional Title Industry: An Assurance Perspective
Authors: Leandi Steenkamp
Abstract:
The sectional title industry has been a part of the property landscape in South Africa for almost half a century, and plays a significant role in addressing the housing problem in the country. Stakeholders such as owners and investors in sectional title property are in most cases not directly involved in the management thereof, and place reliance on the audited annual financial statements of bodies corporate for decision-making purposes. Although the industry seems to be highly regulated, the legislation regarding accounting and auditing of sectional title is vague and ambiguous. Furthermore, there are no industry-specific auditing and accounting standards to guide accounting and auditing practitioners in performing their work and industry financial benchmarks are not readily available. In addition, financial pressure on sectional title schemes is often very high due to the fact that some owners exercise unrealistic pressure to keep monthly levies as low as possible. All these factors have an impact on the business risk as well as audit risk of bodies corporate. Very little academic research has been undertaken on the sectional title industry in South Africa from an accounting and auditing perspective. The aim of this paper is threefold: Firstly, to discuss the findings of a literature review on uncertainties, ambiguity and confusing aspects in current legislation regarding the audit of a sectional title property that may cause or increase audit and business risk. Secondly, empirical findings of risk-related aspects from the results of interviews with three groups of body corporate role-players will be discussed. The role-players were body corporate trustee chairpersons, body corporate managing agents and accounting and auditing practitioners of bodies corporate. Specific reference will be made to business risk and audit risk. Thirdly, practical recommendations will be made on possibilities of closing the audit expectation gap, and further research opportunities in this regard will be discussed.Keywords: Assurance, audit, audit risk, body corporate, corporate governance, sectional title.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12821108 Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux
Authors: Hassan Baghgar Bostan Abad, Ali Yazdian Varjani, Taheri Asghar
Abstract:
Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.
Keywords: Artificial intelligent, electrical motor, intelligent drive and control,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24841107 Effects of Initial State on Opinion Formation in Complex Social Networks with Noises
Authors: Yi Yu, Vu Xuan Nguyen, Gaoxi Xiao
Abstract:
Opinion formation in complex social networks may exhibit complex system dynamics even when based on some simplest system evolution models. An interesting and important issue is the effects of the initial state on the final steady-state opinion distribution. By carrying out extensive simulations and providing necessary discussions, we show that, while different initial opinion distributions certainly make differences to opinion evolution in social systems without noises, in systems with noises, given enough time, different initial states basically do not contribute to making any significant differences in the final steady state. Instead, it is the basal distribution of the preferred opinions that contributes to deciding the final state of the systems. We briefly explain the reasons leading to the observed conclusions. Such an observation contradicts with a long-term belief on the roles of system initial state in opinion formation, demonstrating the dominating role that opinion mutation can play in opinion formation given enough time. The observation may help to better understand certain observations of opinion evolution dynamics in real-life social networks.
Keywords: Opinion formation, Deffuant model, opinion mutation, consensus making.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6731106 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions
Authors: Saad Roustom, Hajo Ribberink
Abstract:
In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.
Keywords: Connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1051105 Portfolio Management for Construction Company during Covid-19 Using AHP Technique
Authors: Sareh Rajabi, Salwa Bheiry
Abstract:
In general, Covid-19 created many financial and non-financial damages to the economy and community. Level and severity of covid-19 as pandemic case varies over the region and due to different types of the projects. Covid-19 virus emerged as one of the most imperative risk management factors word-wide recently. Therefore, as part of portfolio management assessment, it is essential to evaluate severity of such risk on the project and program in portfolio management level to avoid any risky portfolio. Covid-19 appeared very effectively in South America, part of Europe and Middle East. Such pandemic infection affected the whole universe, due to lock down, interruption in supply chain management, health and safety requirements, transportations and commercial impacts. Therefore, this research proposes Analytical Hierarchy Process (AHP) to analyze and assess such pandemic case like Covid-19 and its impacts on the construction projects. The AHP technique uses four sub-criteria: Health and safety, commercial risk, completion risk and contractual risk to evaluate the project and program. The result will provide the decision makers with information which project has higher or lower risk in case of Covid-19 and pandemic scenario. Therefore, the decision makers can have most feasible solution based on effective weighted criteria for project selection within their portfolio to match with the organization’s strategies.
Keywords: Portfolio management, risk management, COVID-19, analytical hierarchy process technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8321104 Sustainable Geographic Information System-Based Map for Suitable Landfill Sites in Aley and Chouf, Lebanon
Authors: Allaw Kamel, Bazzi Hasan
Abstract:
Municipal solid waste (MSW) generation is among the most significant sources which threaten the global environmental health. Solid Waste Management has been an important environmental problem in developing countries because of the difficulties in finding sustainable solutions for solid wastes. Therefore, more efforts are needed to be implemented to overcome this problem. Lebanon has suffered a severe solid waste management problem in 2015, and a new landfill site was proposed to solve the existing problem. The study aims to identify and locate the most suitable area to construct a landfill taking into consideration the sustainable development to overcome the present situation and protect the future demands. Throughout the article, a landfill site selection methodology was discussed using Geographic Information System (GIS) and Multi Criteria Decision Analysis (MCDA). Several environmental, economic and social factors were taken as criterion for selection of a landfill. Soil, geology, and LUC (Land Use and Land Cover) indices with the Sustainable Development Index were main inputs to create the final map of Environmentally Sensitive Area (ESA) for landfill site. Different factors were determined to define each index. Input data of each factor was managed, visualized and analyzed using GIS. GIS was used as an important tool to identify suitable areas for landfill. Spatial Analysis (SA), Analysis and Management GIS tools were implemented to produce input maps capable of identifying suitable areas related to each index. Weight has been assigned to each factor in the same index, and the main weights were assigned to each index used. The combination of the different indices map generates the final output map of ESA. The output map was reclassified into three suitability classes of low, moderate, and high suitability. Results showed different locations suitable for the construction of a landfill. Results also reflected the importance of GIS and MCDA in helping decision makers finding a solution of solid wastes by a sanitary landfill.
Keywords: Sustainable development, landfill, municipal solid waste, geographic information system, GIS, multi criteria decision analysis, environmentally sensitive area.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8791103 Optimizing Organizational Performance: The Critical Role of Headcount Budgeting in Strategic Alignment and Financial Stability
Authors: Shobhit Mittal
Abstract:
Headcount budgeting stands as a pivotal element in organizational financial management, extending beyond traditional budgeting to encompass strategic resource allocation for workforce-related expenses. This process is integral to maintaining financial stability and fostering a productive workforce, requiring a comprehensive analysis of factors such as market trends, business growth projections, and evolving workforce skill requirements. It demands a collaborative approach, primarily involving Human Resources (HR) and finance departments, to align workforce planning with an organization's financial capabilities and strategic objectives. The dynamic nature of headcount budgeting necessitates continuous monitoring and adjustment in response to economic fluctuations, business strategy shifts, technological advancements, and market dynamics. Its significance in talent management is also highlighted, aligning financial planning with talent acquisition and retention strategies to ensure a competitive edge in the market. The consequences of incorrect headcount budgeting are explored, showing how it can lead to financial strain, operational inefficiencies, and hindered strategic objectives. Examining case studies like IBM's strategic workforce rebalancing and Microsoft's shift for long-term success, the importance of aligning headcount budgeting with organizational goals is underscored. These examples illustrate that effective headcount budgeting transcends its role as a financial tool, emerging as a strategic element crucial for an organization's success. This necessitates continuous refinement and adaptation to align with evolving business goals and market conditions, highlighting its role as a key driver in organizational success and sustainability.
Keywords: Strategic planning, fiscal budget, headcount planning, resource allocation, financial management, decision-making, operational efficiency, risk management, headcount budget.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581102 Spatial Clustering Model of Vessel Trajectory to Extract Sailing Routes Based on AIS Data
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
The automatic extraction of shipping routes is advantageous for intelligent traffic management systems to identify events and support decision-making in maritime surveillance. At present, there is a high demand for the extraction of maritime traffic networks that resemble the real traffic of vessels accurately, which is valuable for further analytical processing tasks for vessels trajectories (e.g., naval routing and voyage planning, anomaly detection, destination prediction, time of arrival estimation). With the help of big data and processing huge amounts of vessels’ trajectory data, it is possible to learn these shipping routes from the navigation history of past behaviour of other, similar ships that were travelling in a given area. In this paper, we propose a spatial clustering model of vessels’ trajectories (SPTCLUST) to extract spatial representations of sailing routes from historical Automatic Identification System (AIS) data. The whole model consists of three main parts: data preprocessing, path finding, and route extraction, which consists of clustering and representative trajectory extraction. The proposed clustering method provides techniques to overcome the problems of: (i) optimal input parameters selection; (ii) the high complexity of processing a huge volume of multidimensional data; (iii) and the spatial representation of complete representative trajectory detection in the context of trajectory clustering algorithms. The experimental evaluation showed the effectiveness of the proposed model by using a real-world AIS dataset from the Port of Halifax. The results contribute to further understanding of shipping route patterns. This could aid surveillance authorities in stable and sustainable vessel traffic management.
Keywords: Vessel trajectory clustering, trajectory mining, Spatial Clustering, marine intelligent navigation, maritime traffic network extraction, sdailing routes extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4551101 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16711100 Biomass Gasification and Microcogeneration Unit – EZOB Technology
Authors: Martin Lisý, Marek Baláš, Michal Špiláček, Zdeněk Skála
Abstract:
This paper deals with the issue of biomass and sorted municipal waste gasification and cogeneration using hot-air turbo-set. It brings description of designed pilot plant with electrical output 80 kWe. The generated gas is burned in secondary combustion chamber located beyond the gas generator. Flue gas flows through the heat exchanger where the compressed air is heated and consequently brought to a micro turbine. Except description, this paper brings our basic experiences from operating of pilot plant (operating parameters, contributions, problems during operating, etc.). The principal advantage of the given cycle is the fact that there is no contact between the generated gas and the turbine. So there is no need for costly and complicated gas cleaning which is the main source of operating problems in direct use in combustion engines because the content of impurities in the gas causes operation problems to the units due to clogging and tarring of working surfaces of engines and turbines, which may lead as far as serious damage to the equipment under operation. Another merit is the compact container package making installation of the facility easier or making it relatively more mobile. We imagine, this solution of cogeneration from biomass or waste can be suitable for small industrial or communal applications, for low output cogeneration.
Keywords: Biomass, combustion, gasification, microcogeneration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18861099 New Robust Approach of Direct Field Oriented Control of Induction Motor
Authors: T. Benmiloud, A. Omari
Abstract:
This paper presents a new technique of compensation of the effect of variation parameters in the direct field oriented control of induction motor. The proposed method uses an adaptive tuning of the value of synchronous speed to obtain the robustness for the field oriented control. We show that this adaptive tuning allows having robustness for direct field oriented control to changes in rotor resistance, load torque and rotational speed. The effectiveness of the proposed control scheme is verified by numerical simulations. The numerical validation results of the proposed scheme have presented good performances compared to the usual direct-field oriented control.Keywords: Induction motor, direct field-oriented control, compensation of variation parameters, fuzzy logic controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18621098 ANFIS Modeling of the Surface Roughness in Grinding Process
Authors: H. Baseri, G. Alinejad
Abstract:
The objective of this study is to design an adaptive neuro-fuzzy inference system (ANFIS) for estimation of surface roughness in grinding process. The Used data have been generated from experimental observations when the wheel has been dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experimental procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the ANFIS model has a better performance with respect to back-propagation neural network (BPNN) model which has been presented by the authors in previous work for estimation of the surface roughness.Keywords: Grinding, ANFIS, Neural network, Disc dressing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24151097 Technology Roadmapping in Defense Industry
Authors: Sevgi Özlem Bulu, Arif Furkan Mendi, Tolga Erol, İzzet Gökhan Özbilgin
Abstract:
The rapid progress of technology in today's competitive conditions has also accelerated companies' technology development activities. As a result, companies are paying more attention to R&D studies and are beginning to allocate a larger share to R&D projects. A more systematic, comprehensive, target-oriented implementation of R&D studies is crucial for the company to achieve successful results. As a consequence, Technology Roadmap (TRM) is gaining importance as a management tool. It has critical prospects for achieving medium and long term success as it contains decisions about past business, future plans, technological infrastructure. When studies on TRM are examined, projects to be placed on the roadmap are selected by many different methods. Generally preferred methods are based on multi-criteria decision making methods. Management of selected projects becomes an important point after the selection phase of the projects. At this stage, TRM are used. TRM can be created in many different ways so that each institution can prepare its own Technology Roadmap according to their strategic plan. Depending on the intended use, there can be TRM with different layers at different sizes. In the evaluation phase of the R&D projects and in the creation of the TRM, HAVELSAN, Turkey's largest defense company in the software field, carries out this process with great care and diligence. At the beginning, suggested R&D projects are evaluated by the Technology Management Board (TMB) of HAVELSAN in accordance with the company's resources, objectives, and targets. These projects are presented to the TMB periodically for evaluation within the framework of certain criteria by board members. After the necessary steps have been passed, the approved projects are added to the time-based TRM, which is composed of four layers as market, product, project and technology. The use of a four-layered roadmap provides a clearer understanding and visualization of company strategy and objectives. This study demonstrates the benefits of using TRM, four-layered Technology Roadmapping and the possibilities for the institutions in the defense industry.
Keywords: Project selection, R&D in defense industry, R&D project selection, technology roadmapping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10001096 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems
Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas
Abstract:
This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.Keywords: Transportation networks, freight delivery, data flow, monitoring, e-services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6071095 The Women Entrepreneur Support Fund in Bangladesh: Challenges and Prospects
Authors: Chowdhury Dilruba Shoma
Abstract:
Gender is about equal rights that both males and females having access to responsibilities and opportunities in decision making is a fundamental human right. It is also a precondition for, and a mark of, sustainable people-oriented development. In Bangladesh, women have fewer opportunities than men do to access credit from banks and financial institutions. Entrenched patriarchal attitudes, unequal inheritance rights, and male-dominated hierarchies in the financial system, plus high interest rates and a lack of security/collateral, make it harder for women to obtain bank loans. Limited access to institutional credit is a serious restraint on the productivity and income of women entrepreneurs, (and the wider economy). These gender-biased and structural barriers inhibit women’s access to fundamental economic rights. Using a liberal feminist theoretical lens, this study provides some useful insights into the relationship between gender inequality and entrepreneurship, leading to a better understanding of women’s entrepreneurship development in Bangladesh. Recently, the Bangladesh Government, the United Nations Capital Development Fund, and Bangladesh Bank opened up the Women Entrepreneur Support Fund (WESF) ‒ Credit Guarantee Scheme (CGS) pilot project to cover collateral shortfalls for women entrepreneurs in the small and medium enterprise sector. The aim is to improve gender equality and advance women’s rights in relation to receiving credit. This article examines the challenges and prospects of the WESF-CGS, and suggests that implementation of measures in WESF-CGS policymaking, coupled with a combination of legislatory and regulatory reforms that implement the fundamental tenets of liberal feminism, can lead to a comprehensive and effective credit policy to boost women’s agency and economic empowerment. This may ultimately lead to more sustainable development in Bangladesh.
Keywords: Bangladesh, CGS, liberal feminist theory, women entrepreneur support fund.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7331094 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique
Authors: C. Manjula, Lilly Florence
Abstract:
Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.
Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14651093 Computing Entropy for Ortholog Detection
Authors: Hsing-Kuo Pao, John Case
Abstract:
Biological sequences from different species are called or-thologs if they evolved from a sequence of a common ancestor species and they have the same biological function. Approximations of Kolmogorov complexity or entropy of biological sequences are already well known to be useful in extracting similarity information between such sequences -in the interest, for example, of ortholog detection. As is well known, the exact Kolmogorov complexity is not algorithmically computable. In prac-tice one can approximate it by computable compression methods. How-ever, such compression methods do not provide a good approximation to Kolmogorov complexity for short sequences. Herein is suggested a new ap-proach to overcome the problem that compression approximations may notwork well on short sequences. This approach is inspired by new, conditional computations of Kolmogorov entropy. A main contribution of the empir-ical work described shows the new set of entropy-based machine learning attributes provides good separation between positive (ortholog) and nega-tive (non-ortholog) data - better than with good, previously known alter-natives (which do not employ some means to handle short sequences well).Also empirically compared are the new entropy based attribute set and a number of other, more standard similarity attributes sets commonly used in genomic analysis. The various similarity attributes are evaluated by cross validation, through boosted decision tree induction C5.0, and by Receiver Operating Characteristic (ROC) analysis. The results point to the conclu-sion: the new, entropy based attribute set by itself is not the one giving the best prediction; however, it is the best attribute set for use in improving the other, standard attribute sets when conjoined with them.
Keywords: compression, decision tree, entropy, ortholog, ROC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18271092 Feasibility Study of a Solar Farm Project with an Executive Approach
Authors: Amir Reza Talaghat
Abstract:
Since 2015, a new approach and policy regarding energy resources protection and using renewable energies has been started in Iran which was developing new projects. Investigating about the feasibility study of these new projects helped to figure out five steps to prepare an executive feasibility study of the concerned projects, which are proper site selections, authorizations, design and simulation, economic study and programming, respectively. The results were interesting and essential for decision makers and investors to start implementing of these projects in reliable condition. The research is obtained through collection and study of the project's documents as well as recalculation to review conformity of the results with GIS data and the technical information of the bidders. In this paper, it is attempted to describe the result of the performed research by describing the five steps as an executive methodology, for preparing a feasible study of installing a 10 MW – solar farm project. The corresponding results of the research also help decision makers to start similar projects is explained in this paper as follows: selecting the best location for the concerned PV plant, reliable and safe conditions for investment and the required authorizations to start implementing the solar farm project in the concerned region, selecting suitable component to achieve the best possible performance for the plant, economic profit of the investment, proper programming to implement the project on time.
Keywords: Solar farm, solar energy, execution of PV power plant, PV power plant, feasibility study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17411091 Model Discovery and Validation for the Qsar Problem using Association Rule Mining
Authors: Luminita Dumitriu, Cristina Segal, Marian Craciun, Adina Cocu, Lucian P. Georgescu
Abstract:
There are several approaches in trying to solve the Quantitative 1Structure-Activity Relationship (QSAR) problem. These approaches are based either on statistical methods or on predictive data mining. Among the statistical methods, one should consider regression analysis, pattern recognition (such as cluster analysis, factor analysis and principal components analysis) or partial least squares. Predictive data mining techniques use either neural networks, or genetic programming, or neuro-fuzzy knowledge. These approaches have a low explanatory capability or non at all. This paper attempts to establish a new approach in solving QSAR problems using descriptive data mining. This way, the relationship between the chemical properties and the activity of a substance would be comprehensibly modeled.Keywords: association rules, classification, data mining, Quantitative Structure - Activity Relationship.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17881090 A CBR System to New Product Development: An Application for Hearing Devices Design
Authors: J.L. Castro, K. Benghazi, M.V. Hurtado, M. Navarro, J.M. Zurita
Abstract:
Nowadays, quick technological changes force companies to develop innovative products in an increasingly competitive environment. Therefore, how to enhance the time of new product development is very important. This design problem often lacks the exact formula for getting it, and highly depends upon human designers- past experiences. For these reasons, in this work, a Casebased reasoning (CBR) system to assist in new product development is proposed. When a case is recovered from the case base, the system will take into account not only the attribute-s specific value and how important it is. It will also take into account if the attribute has a positive influence over the product development. Hence the manufacturing time will be improved. This information will be introduced as a new concept called “adaptability". An application to this method for hearing instrument new design illustrates the proposed approach.Keywords: Case based reasoning, Fuzzy logic, New product development, Retrieval stage, Similarity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1478