Search results for: image sensor application
3547 Simulation of Snow Covers Area by a Physical based Model
Authors: Hossein Zeinivand, Florimond De Smedt
Abstract:
Snow cover is an important phenomenon in hydrology, hence modeling the snow accumulation and melting is an important issue in places where snowmelt significantly contributes to runoff and has significant effect on water balance. The physics-based models are invariably distributed, with the basin disaggregated into zones or grid cells. Satellites images provide valuable data to verify the accuracy of spatially distributed model outputs. In this study a spatially distributed physically based model (WetSpa) was applied to predict snow cover and melting in the Latyan dam watershed in Iran. Snowmelt is simulated based on an energy balance approach. The model is applied and calibrated with one year of observed daily precipitation, air temperature, windspeed, and daily potential evaporation. The predicted snow-covered area is compared with remotely sensed images (MODIS). The results show that simulated snow cover area SCA has a good agreement with satellite image snow cover area SCA from MODIS images. The model performance is also tested by statistical and graphical comparison of simulated and measured discharges entering the Latyan dam reservoir.Keywords: Physical based model, Satellite image, Snow covers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18683546 Gas Sensing Properties of SnO2 Thin Films Modified by Ag Nanoclusters Synthesized by SILD Method
Authors: G. Korotcenkov, B. K. Cho, L. B. Gulina, V. P. Tolstoy
Abstract:
The effect of SnO2 surface modification by Ag nanoclusters, synthesized by SILD method, on the operating characteristics of thin film gas sensors was studied and models for the promotional role of Ag additives were discussed. It was found that mentioned above approach can be used for improvement both the sensitivity and the rate of response of the SnO2-based gas sensors to CO and H2. At the same time, the presence of the Ag clusters on the surface of SnO2 depressed the sensor response to ozone.
Keywords: Ag nanoparticles, deposition, characterization, gas sensors, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23933545 Laser Transmission through Vegetative Material
Authors: Juliana A. Fracarolli, Adilson M. Enes, Inácio M. Dal Fabbro, Silvestre Rodrigues
Abstract:
The dynamic speckle or biospeckle is an interference phenomenon generated at the reflection of a coherent light by an active surface or even by a particulate or living body surface. The above mentioned phenomenon gave scientific support to a method named biospeckle which has been employed to study seed viability, biological activity, tissue senescence, tissue water content, fruit bruising, etc. Since the above mentioned method is not invasive and yields numerical values, it can be considered for possible automation associated to several processes, including selection and sorting. Based on these preliminary considerations, this research work proposed to study the interaction of a laser beam with vegetative samples by measuring the incident light intensity and the transmitted light beam intensity at several vegetative slabs of varying thickness. Tests were carried on fifteen slices of apple tissue divided into three thickness groups, i.e., 4 mm, 5 mm, 18 mm and 22 mm. A diode laser beam of 10mW and 632 nm wavelength and a Samsung digital camera were employed to carry the tests. Outgoing images were analyzed by comparing the gray gradient of a fixed image column of each image to obtain a laser penetration scale into the tissue, according to the slice thickness.Keywords: Fruit, laser, laser transmission, vegetative tissue.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15773544 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls
Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu
Abstract:
Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.Keywords: Android, permissions combination, API calls, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19213543 Intelligent Video-Based Monitoring of Freeway Traffic
Authors: Saad M. Al-Garni, Adel A. Abdennour
Abstract:
Freeways are originally designed to provide high mobility to road users. However, the increase in population and vehicle numbers has led to increasing congestions around the world. Daily recurrent congestion substantially reduces the freeway capacity when it is most needed. Building new highways and expanding the existing ones is an expensive solution and impractical in many situations. Intelligent and vision-based techniques can, however, be efficient tools in monitoring highways and increasing the capacity of the existing infrastructures. The crucial step for highway monitoring is vehicle detection. In this paper, we propose one of such techniques. The approach is based on artificial neural networks (ANN) for vehicles detection and counting. The detection process uses the freeway video images and starts by automatically extracting the image background from the successive video frames. Once the background is identified, subsequent frames are used to detect moving objects through image subtraction. The result is segmented using Sobel operator for edge detection. The ANN is, then, used in the detection and counting phase. Applying this technique to the busiest freeway in Riyadh (King Fahd Road) achieved higher than 98% detection accuracy despite the light intensity changes, the occlusion situations, and shadows.Keywords: Background Extraction, Neural Networks, VehicleDetection, Freeway Traffic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19193542 High-Accuracy Satellite Image Analysis and Rapid DSM Extraction for Urban Environment Evaluations (Tripoli-Libya)
Authors: Abdunaser Abduelmula, Maria Luisa M. Bastos, José A. Gonçalves
Abstract:
Modelling of the earth's surface and evaluation of urban environment, with 3D models, is an important research topic. New stereo capabilities of high resolution optical satellites images, such as the tri-stereo mode of Pleiades, combined with new image matching algorithms, are now available and can be applied in urban area analysis. In addition, photogrammetry software packages gained new, more efficient matching algorithms, such as SGM, as well as improved filters to deal with shadow areas, can achieve more dense and more precise results. This paper describes a comparison between 3D data extracted from tri-stereo and dual stereo satellite images, combined with pixel based matching and Wallis filter. The aim was to improve the accuracy of 3D models especially in urban areas, in order to assess if satellite images are appropriate for a rapid evaluation of urban environments. The results showed that 3D models achieved by Pleiades tri-stereo outperformed, both in terms of accuracy and detail, the result obtained from a Geo-eye pair. The assessment was made with reference digital surface models derived from high resolution aerial photography. This could mean that tri-stereo images can be successfully used for the proposed urban change analyses.
Keywords: 3D Models, Environment, Matching, Pleiades.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26893541 A Review on Application of Waste Tire in Concrete
Authors: M. A. Yazdi, J. Yang, L. Yihui, H. Su
Abstract:
The application of recycle waste tires into civil engineering practices, namely asphalt paving mixtures and cementbased materials has been gaining ground across the world. This review summarizes and compares the recent achievements in the area of plain rubberized concrete (PRC), in details. Different treatment methods have been discussed to improve the performance of rubberized Portland cement concrete. The review also includes the effects of size and amount of tire rubbers on mechanical and durability properties of PRC. The microstructure behaviour of the rubberized concrete was detailed.Keywords: Waste rubber aggregates, Microstructure, Treatment methods, Size and content effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46693540 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 593539 The Effects of Physical Activity and Serotonin on Depression, Anxiety, Body Image and Mental Health
Authors: Sh. Khoshemehry, M. E. Bahram, M. J. Pourvaghar
Abstract:
Sport has found a special place as an effective phenomenon in all societies of the contemporary world. The relationship between physical activity and exercise with different sciences has provided new fields for human study. The range of issues related to exercise and physical education is such that it requires specialized sciences and special studies. In this article, the psychological and social sections of exercise have been investigated for children and adults. It can be used for anyone in different age groups. Exercise and regular physical movements have a great impact on the mental and social health of the individual in addition to body health. It affects the individual's adaptability in society and his/her personality. Exercise affects the treatment of diseases such as depression, anxiety, stress, body image, and memory. Exercise is a safe haven for young people to achieve the optimum human development in its shelter. The effects of sensorimotor skills on mental actions and mental development are such a way that many psychologists and sports science experts believe these activities should be included in training programs in the first place. Familiarity of students and scholars with different programs and methods of sensorimotor activities not only causes their mental actions; but also increases mental health and vitality, enhances self-confidence and, therefore, mental health.
Keywords: Anxiety, mental health, physical activity, serotonin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18183538 Effect of Plant Nutrients on Anthocyanin Content and Yield Component of Black Glutinous Rice Plants
Authors: Chonlada Bennett, Phumon Sookwong, Sakul Moolkam, Sivapong Naruebal Sugunya Mahatheeranont
Abstract:
The cultivation of black glutinous rice rich in anthocyanins can provide great benefits to both farmers and consumers. Total anthocyanins content and yield component data of black glutinous rice cultivar (KHHK) grown with the addition of mineral elements (Ca, Mg, Cu, Cr, Fe and Se) under soilless conditions were studied. Ca application increased seed anthocyanins content by three-folds compared to controls. Cu application to rice plants obtained the highest number of grains panicle, panicle length and subsequently high panicle weight. Se application had the largest effect on leaf anthocyanins content, the number of tillers, number of panicles and 100-grain weight. These findings showed that the addition of mineral elements had a positive effect on increasing anthocyanins content in black rice plants and seeds as well as the heightened development of black glutinous rice plant growth.Keywords: Anthocyanins, black glutinous rice, mineral elements, soilless culture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8523537 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-Time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method as a Web-App is developed for auto-generated data replication to provide a twin of the targeted data structure. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi", has been developed. A special login form has been developed with a special instance of the data validation; this verification process secures the web application from its early stages. The system has been tested and validated, and up to 99% of SQLi attacks have been prevented.
Keywords: SQL injection, attacks, web application, accuracy, database, WebAppShield.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4503536 Texture Feature-Based Language Identification Using Wavelet-Domain BDIP and BVLC Features and FFT Feature
Authors: Ick Hoon Jang, Hoon Jae Lee, Dae Hoon Kwon, Ui Young Pak
Abstract:
In this paper, we propose a texture feature-based language identification using wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features and FFT (fast Fourier transform) feature. In the proposed method, wavelet subbands are first obtained by wavelet transform from a test image and denoised by Donoho-s soft-thresholding. BDIP and BVLC operators are next applied to the wavelet subbands. FFT blocks are also obtained by 2D (twodimensional) FFT from the blocks into which the test image is partitioned. Some significant FFT coefficients in each block are selected and magnitude operator is applied to them. Moments for each subband of BDIP and BVLC and for each magnitude of significant FFT coefficients are then computed and fused into a feature vector. In classification, a stabilized Bayesian classifier, which adopts variance thresholding, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method with the three operations yields excellent language identification even with rather low feature dimension.Keywords: BDIP, BVLC, FFT, language identification, texture feature, wavelet transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21513535 Sigma-Delta ADCs Converter a Study Case
Authors: Thiago Brito Bezerra, Mauro Lopes de Freitas, Waldir Sabino da Silva Júnior
Abstract:
The Sigma-Delta A/D converters have been proposed as a practical application for A/D conversion at high rates because of its simplicity and robustness to imperfections in the circuit, also because the traditional converters are more difficult to implement in VLSI technology. These difficulties with conventional conversion methods need precise analog components in their filters and conversion circuits, and are more vulnerable to noise and interference. This paper aims to analyze the architecture, function and application of Analog-Digital converters (A/D) Sigma-Delta to overcome these difficulties, showing some simulations using the Simulink software and Multisim.
Keywords: Analysis, Oversampling Modulator, A/D converters, Sigma-Delta.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26923534 Application of Differential Transformation Method for Solving Dynamical Transmission of Lassa Fever Model
Authors: M. A. Omoloye, M. I. Yusuff, O. K. S. Emiola
Abstract:
The use of mathematical models for solving biological problems varies from simple to complex analyses, depending on the nature of the research problems and applicability of the models. The method is more common nowadays. Many complex models become impractical when transmitted analytically. However, alternative approach such as numerical method can be employed. It appropriateness in solving linear and non-linear model equation in Differential Transformation Method (DTM) which depends on Taylor series make it applicable. Hence this study investigates the application of DTM to solve dynamic transmission of Lassa fever model in a population. The mathematical model was formulated using first order differential equation. Firstly, existence and uniqueness of the solution was determined to establish that the model is mathematically well posed for the application of DTM. Numerically, simulations were conducted to compare the results obtained by DTM and that of fourth-order Runge-Kutta method. As shown, DTM is very effective in predicting the solution of epidemics of Lassa fever model.
Keywords: Differential Transform Method, Existence and uniqueness, Lassa fever, Runge-Kutta Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4953533 Application of Company Financial Crisis Early Warning Model- Use of “Financial Reference Database“
Authors: Chiung-ying Lee, Chia-hua Chang
Abstract:
In July 1, 2007, Taiwan Stock Exchange (TWSE) on market observation post system (MOPS) adds a new "Financial reference database" for investors to do investment reference. This database as a warning to public offering companies listed on the public financial information and it original within eight targets. In this paper, this database provided by the indicators for the application of company financial crisis early warning model verify that the database provided by the indicator forecast for the financial crisis, whether or not companies have a high accuracy rate as opposed to domestic and foreign scholars have positive results. There is use of Logistic Regression Model application of the financial early warning model, in which no joined back-conditions is the first model, joined it in is the second model, has been taken occurred in the financial crisis of companies to research samples and then business took place before the financial crisis point with T-1 and T-2 sample data to do positive analysis. The results show that this database provided the debt ratio and net per share for the best forecast variables.Keywords: Financial reference database, Financial early warning model, Logistic Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14323532 A Comparative Analysis of Activity-Based Costing and Traditional Costing
Authors: Derya Eren Akyol, Gonca Tuncel, G. Mirac Bayhan
Abstract:
Activity-Based Costing (ABC) which has become an important aspect of manufacturing/service organizations can be defined as a methodology that measures the cost and performance of activities, resources and cost objects. It can be considered as an alternative paradigm to traditional cost-based accounting systems. The objective of this paper is to illustrate an application of ABC method and to compare the results of ABC with traditional costing methods. The results of the application highlight the weak points of traditional costing methods and an S-Curve obtained is used to identify the undercosted and overcosted products of the firm.
Keywords: Activity-based costing, cost drivers, overheads, traditional costing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126553531 Vehicle Aerodynamics: Drag Reduction by Surface Dimples
Authors: C. K. Chear, S. S. Dol
Abstract:
For a bluff body, dimples behave like roughness elements in stimulating a turbulent boundary layer, leading to delayed flow separation, a smaller wake and lower form drag. This is very different in principle from the application of dimples to streamlined body, where any reduction in drag would be predominantly due to a reduction in skin friction. In the present work, a car model with different dimple geometry is simulated using k-ε turbulence modeling to determine its effect to the aerodynamics performance. Overall, the results show that the application of dimples manages to reduce the drag coefficient of the car model.
Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63383530 Improvement of Salt Tolerance in Saudi Arabian Wheat by Seed Priming or Foliar Spray with Salicylic Acid
Authors: Saad M. Howladar, Mike Dennett
Abstract:
The effect of exogenous application; seed priming or foliar spraying of salicylic acid (SA) on Yecora Rojo and Paragon wheat cv. under NaCl-salinity. Gas exchange parameters, growth parameters, yield and yield components were reduced in both cultivars under salinity stress with foliar spray and soaking seeds. Exogenous application of SA through foliar spraying or seed soaking showed a slight increases or decreases with the application method or between cultivars. SA foliar spraying exhibited a slight improvement over SA seed soaking in most parameters, particularly in Paragon. Although, seed soaking was less effective than foliar spraying, it was a slightly better with Yecora Rojo in some parameters. However, the low SA concentration; 0.5mM tended to improve most parameters in both cultivars. From data of the experiment, it has been concluded that the effect of SA depends on cultivar genotype and SA concentration.
Keywords: Salinity, Salicylic acid, Growth parameters, yield components, Wheat cultivars.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30223529 Automatic Segmentation of Lung Areas in Magnetic Resonance Images
Authors: Alireza Osareh, Bita Shadgar
Abstract:
Segmenting the lungs in medical images is a challenging and important task for many applications. In particular, automatic segmentation of lung cavities from multiple magnetic resonance (MR) images is very useful for oncological applications such as radiotherapy treatment planning. However, distinguishing of the lung areas is not trivial due to largely changing lung shapes, low contrast and poorly defined boundaries. In this paper, we address lung segmentation problem from pulmonary magnetic resonance images and propose an automated method based on a robust regionaided geometric snake with a modified diffused region force into the standard geometric model definition. The extra region force gives the snake a global complementary view of the lung boundary information within the image which along with the local gradient flow, helps detect fuzzy boundaries. The proposed method has been successful in segmenting the lungs in every slice of 30 magnetic resonance images with 80 consecutive slices in each image. We present results by comparing our automatic method to manually segmented lung cavities provided by an expert radiologist and with those of previous works, showing encouraging results and high robustness of our approach.Keywords: Active contours, breast cancer, fuzzy c-means segmentation, treatment planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20623528 View-Point Insensitive Human Pose Recognition using Neural Network
Authors: Sanghyeok Oh, Yunli Lee, Kwangjin Hong, Kirak Kim, Keechul Jung
Abstract:
This paper proposes view-point insensitive human pose recognition system using neural network. Recognition system consists of silhouette image capturing module, data driven database, and neural network. The advantages of our system are first, it is possible to capture multiple view-point silhouette images of 3D human model automatically. This automatic capture module is helpful to reduce time consuming task of database construction. Second, we develop huge feature database to offer view-point insensitivity at pose recognition. Third, we use neural network to recognize human pose from multiple-view because every pose from each model have similar feature patterns, even though each model has different appearance and view-point. To construct database, we need to create 3D human model using 3D manipulate tools. Contour shape is used to convert silhouette image to feature vector of 12 degree. This extraction task is processed semi-automatically, which benefits in that capturing images and converting to silhouette images from the real capturing environment is needless. We demonstrate the effectiveness of our approach with experiments on virtual environment.Keywords: Computer vision, neural network, pose recognition, view-point insensitive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13353527 Demystifying Full-Stack Observability: Mastering Visibility, Insight, and Action in the Modern Digital Landscape
Authors: Ashly Joseph
Abstract:
In the era of digital transformation, full-stack observability has emerged as a crucial aspect of administering modern application stacks. This research paper presents the concept of full-stack observability, its significance in the context of contemporary application stacks, and the challenges posed by swiftly evolving digital environments. In addition, it describes how full-stack observability intends to provide complete visibility and actionable insights by correlating telemetry across multiple domains.
Keywords: Actionable insights, digital transformation, full-stack observability, performance metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2383526 Diagnosis of the Abdominal Aorta Aneurysm in Magnetic Resonance Imaging Images
Authors: W. Kultangwattana, K. Somkantha, P. Phuangsuwan
Abstract:
This paper presents a technique for diagnosis of the abdominal aorta aneurysm in magnetic resonance imaging (MRI) images. First, our technique is designed to segment the aorta image in MRI images. This is a required step to determine the volume of aorta image which is the important step for diagnosis of the abdominal aorta aneurysm. Our proposed technique can detect the volume of aorta in MRI images using a new external energy for snakes model. The new external energy for snakes model is calculated from Law-s texture. The new external energy can increase the capture range of snakes model efficiently more than the old external energy of snakes models. Second, our technique is designed to diagnose the abdominal aorta aneurysm by Bayesian classifier which is classification models based on statistical theory. The feature for data classification of abdominal aorta aneurysm was derived from the contour of aorta images which was a result from segmenting of our snakes model, i.e., area, perimeter and compactness. We also compare the proposed technique with the traditional snakes model. In our experiment results, 30 images are trained, 20 images are tested and compared with expert opinion. The experimental results show that our technique is able to provide more accurate results than 95%.
Keywords: Adbominal Aorta Aneurysm, Bayesian Classifier, Snakes Model, Texture Feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15963525 Dynamic Anonymity
Authors: Emin Islam Tatlı, Dirk Stegemann, Stefan Lucks
Abstract:
Encryption protects communication partners from disclosure of their secret messages but cannot prevent traffic analysis and the leakage of information about “who communicates with whom". In the presence of collaborating adversaries, this linkability of actions can danger anonymity. However, reliably providing anonymity is crucial in many applications. Especially in contextaware mobile business, where mobile users equipped with PDAs request and receive services from service providers, providing anonymous communication is mission-critical and challenging at the same time. Firstly, the limited performance of mobile devices does not allow for heavy use of expensive public-key operations which are commonly used in anonymity protocols. Moreover, the demands for security depend on the application (e.g., mobile dating vs. pizza delivery service), but different users (e.g., a celebrity vs. a normal person) may even require different security levels for the same application. Considering both hardware limitations of mobile devices and different sensitivity of users, we propose an anonymity framework that is dynamically configurable according to user and application preferences. Our framework is based on Chaum-s mixnet. We explain the proposed framework, its configuration parameters for the dynamic behavior and the algorithm to enforce dynamic anonymity.Keywords: Anonymity, context-awareness, mix-net, mobile business, policy management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17123524 An Off-the-Shelf Scheme for Dependable Grid Systems Using Virtualization
Authors: Toshinori Takabatake
Abstract:
Recently, grid computing has been widely focused on the science, industry, and business fields, which are required a vast amount of computing. Grid computing is to provide the environment that many nodes (i.e., many computers) are connected with each other through a local/global network and it is available for many users. In the environment, to achieve data processing among nodes for any applications, each node executes mutual authentication by using certificates which published from the Certificate Authority (for short, CA). However, if a failure or fault has occurred in the CA, any new certificates cannot be published from the CA. As a result, a new node cannot participate in the gird environment. In this paper, an off-the-shelf scheme for dependable grid systems using virtualization techniques is proposed and its implementation is verified. The proposed approach using the virtualization techniques is to restart an application, e.g., the CA, if it has failed. The system can tolerate a failure or fault if it has occurred in the CA. Since the proposed scheme is implemented at the application level easily, the cost of its implementation by the system builder hardly takes compared it with other methods. Simulation results show that the CA in the system can recover from its failure or fault.Keywords: grid computing, restarting application, certificate authority, virtualization, dependability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13823523 Simple and Advanced Models for Calculating Single-Phase Diode Rectifier Line-Side Harmonics
Authors: Hussein A. Kazem, Abdulhakeem Abdullah Albaloshi, Ali Said Ali Al-Jabri, Khamis Humaid AlSaidi
Abstract:
This paper proposes different methods for estimation of the harmonic currents of the single-phase diode bridge rectifier. Both simple and advanced methods are compared and the models are put into a context of practical use for calculating the harmonic distortion in a typical application. Finally, the different models are compared to measurements of a real application and convincing results are achieved.Keywords: Single-phase rectifier, line side Harmonics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46433522 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40353521 An Experimental Multi-Agent Robot System for Operating in Hazardous Environments
Authors: Y. J. Huang, J. D. Yu, B. W. Hong, C. H. Tai, T. C. Kuo
Abstract:
In this paper, a multi-agent robot system is presented. The system consists of four robots. The developed robots are able to automatically enter and patrol a harmful environment, such as the building infected with virus or the factory with leaking hazardous gas. Further, every robot is able to perform obstacle avoidance and search for the victims. Several operation modes are designed: remote control, obstacle avoidance, automatic searching, and so on.
Keywords: autonomous robot, field programmable gate array, obstacle avoidance, ultrasonic sensor, wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17803520 The Quality Maintenance and Extending Storage Life of Mango Fruit after Postharvest Treatments
Authors: Orathai Wongmetha, Lih-Shang Ke
Abstract:
The quality attributes and storage life of 'Jinhwang' mango fruit can be effectively maintained with 1-methylcyclopropene (1-MCP) application and/or chitosan coating. 'Jinhwang' mango fruit was treated with 5 μl l-1 1-MCP for 12 h, dipped with 0.5 % chitosan, 5 μl l-1 1-MCP combine with 0.5 % chitosan and untreated (control) then stored at 10oC. Mango treated with 1-MCP maintained firmness, sucrose and starch content. Chitosan coating delayed firmness loss, sucrose content and the fruit decay when compare with control. Application of 1-MCP combine with chitosan also delayed firmness loss, sucrose content and starch content during storage. Furthermore, chitosan coating and combine treatment prolonged storage life of mango up to 29 days after storage while 1-MCP extended to 28 days after storage. Therefore, using all application of chitosan coating or 1-MCP combine with chitosan or 1-MCP in mango at 10oC is a feasible technology for maintains quality and prolongs storage life in order to expand marketability and export options.
Keywords: 1-Methylcyclopropene (1-MCP), chitosan, quality, storage life
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39453519 Biosensor Measurement of Urea Coonncentration in Human Blood Serum
Authors: O. L. Kukla, S. V. Marchenko, O. A. Zinchenko, O. S. Pavluchenko, O. M. KKuukla, S. V. Dzyadevych, O. P. Soldatkin
Abstract:
An application of the highly biosensor based on pH-sensitive field immobilized urease for urea analysis was demo The main analytical characteristics of the bios determined; the conditions of urea measureme blood were optimized. A conceptual possibility biosensor for detection of urea concentratio patients suffering from renal insufficiency was sensitive and selective effect transistor and monstrated in this work. iosensor developed were ment in real samples of ility of application of the tion in blood serum of as shown.
Keywords: Biosensor, blood serum, pH transistor, urea, urease, field-effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19473518 The Use of S Curves in Technology Forecasting and its Application On 3D TV Technology
Authors: Gizem Intepe, Tufan Koc
Abstract:
S-Curves are commonly used in technology forecasting. They show the paths of product performance in relation to time or investment in R&D. It is a useful tool to describe the inflection points and the limit of improvement of a technology. Companies use this information to base their innovation strategies. However inadequate use and some limitations of this technique lead to problems in decision making. In this paper first technology forecasting and its importance for company level strategies will be discussed. Secondly the S-Curve and its place among other forecasting techniques will be introduced. Thirdly its use in technology forecasting will be discussed based on its advantages, disadvantages and limitations. Finally an application of S-curve on 3D TV technology using patent data will also be presented and the results will be discussed.Keywords: Patent analysis, Technological forecasting. S curves, 3D TV
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7790