Search results for: Semantic data integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8171

Search results for: Semantic data integration

6521 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
6520 Application of Exact String Matching Algorithms towards SMILES Representation of Chemical Structure

Authors: Ahmad Fadel Klaib, Zurinahni Zainol, Nurul Hashimah Ahamed, Rosma Ahmad, Wahidah Hussin

Abstract:

Bioinformatics and Cheminformatics use computer as disciplines providing tools for acquisition, storage, processing, analysis, integrate data and for the development of potential applications of biological and chemical data. A chemical database is one of the databases that exclusively designed to store chemical information. NMRShiftDB is one of the main databases that used to represent the chemical structures in 2D or 3D structures. SMILES format is one of many ways to write a chemical structure in a linear format. In this study we extracted Antimicrobial Structures in SMILES format from NMRShiftDB and stored it in our Local Data Warehouse with its corresponding information. Additionally, we developed a searching tool that would response to user-s query using the JME Editor tool that allows user to draw or edit molecules and converts the drawn structure into SMILES format. We applied Quick Search algorithm to search for Antimicrobial Structures in our Local Data Ware House.

Keywords: Exact String-matching Algorithms, NMRShiftDB, SMILES Format, Antimicrobial Structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2224
6519 Intrusion Detection based on Distance Combination

Authors: Joffroy Beauquier, Yongjie Hu

Abstract:

The intrusion detection problem has been frequently studied, but intrusion detection methods are often based on a single point of view, which always limits the results. In this paper, we introduce a new intrusion detection model based on the combination of different current methods. First we use a notion of distance to unify the different methods. Second we combine these methods using the Pearson correlation coefficients, which measure the relationship between two methods, and we obtain a combined distance. If the combined distance is greater than a predetermined threshold, an intrusion is detected. We have implemented and tested the combination model with two different public data sets: the data set of masquerade detection collected by Schonlau & al., and the data set of program behaviors from the University of New Mexico. The results of the experiments prove that the combination model has better performances.

Keywords: Intrusion detection, combination, distance, Pearson correlation coefficients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
6518 Fault Tolerance in Distributed Database Systems

Authors: M. A. Adeboyejo, O. O. Adeosun

Abstract:

Pioneer networked systems assume that connections are reliable, and a faulty operation will be considered in case of losing a connection. Transient connections are typical of mobile devices. Areas of application of data sharing system such as these, lead to the conclusion that network connections may not always be reliable, and that the conventional approaches can be improved. Nigerian commercial banking industry is a critical system whose operation is increasingly becoming dependent on information technology (IT) driven information system. The proposed solution to this problem makes use of a hierarchically clustered network structure which we selected to reflect (as much as possible) the typical organizational structure of the Nigerian commercial banks. Representative transactions such as data updates and replication of the results of such updates were used to simulate the proposed model to show its applicability.

Keywords: Dependability, reliability, data redundancy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3357
6517 Normalization Discriminant Independent Component Analysis

Authors: Liew Yee Ping, Pang Ying Han, Lau Siong Hoe, Ooi Shih Yin, Housam Khalifa Bashier Babiker

Abstract:

In face recognition, feature extraction techniques attempts to search for appropriate representation of the data. However, when the feature dimension is larger than the samples size, it brings performance degradation. Hence, we propose a method called Normalization Discriminant Independent Component Analysis (NDICA). The input data will be regularized to obtain the most reliable features from the data and processed using Independent Component Analysis (ICA). The proposed method is evaluated on three face databases, Olivetti Research Ltd (ORL), Face Recognition Technology (FERET) and Face Recognition Grand Challenge (FRGC). NDICA showed it effectiveness compared with other unsupervised and supervised techniques.

Keywords: Face recognition, small sample size, regularization, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
6516 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks

Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat

Abstract:

Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.

Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2983
6515 The Effect of CPU Location in Total Immersion of Microelectronics

Authors: A. Almaneea, N. Kapur, J. L. Summers, H. M. Thompson

Abstract:

Meeting the growth in demand for digital services such as social media, telecommunications, and business and cloud services requires large scale data centres, which has led to an increase in their end use energy demand. Generally, over 30% of data centre power is consumed by the necessary cooling overhead. Thus energy can be reduced by improving the cooling efficiency. Air and liquid can both be used as cooling media for the data centre. Traditional data centre cooling systems use air, however liquid is recognised as a promising method that can handle the more densely packed data centres. Liquid cooling can be classified into three methods; rack heat exchanger, on-chip heat exchanger and full immersion of the microelectronics. This study quantifies the improvements of heat transfer specifically for the case of immersed microelectronics by varying the CPU and heat sink location. Immersion of the server is achieved by filling the gap between the microelectronics and a water jacket with a dielectric liquid which convects the heat from the CPU to the water jacket on the opposite side. Heat transfer is governed by two physical mechanisms, which is natural convection for the fixed enclosure filled with dielectric liquid and forced convection for the water that is pumped through the water jacket. The model in this study is validated with published numerical and experimental work and shows good agreement with previous work. The results show that the heat transfer performance and Nusselt number (Nu) is improved by 89% by placing the CPU and heat sink on the bottom of the microelectronics enclosure.

Keywords: CPU location, data centre cooling, heat sink in enclosures, Immersed microelectronics, turbulent natural convection in enclosures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
6514 A Study on the Cloud Simulation with a Network Topology Generator

Authors: Jun-Kwon Jung, Sung-Min Jung, Tae-Kyung Kim, Tai-Myoung Chung

Abstract:

CloudSim is a useful tool to simulate the cloud environment. It shows the service availability, the power consumption, and the network traffic of services on the cloud environment. Moreover, it supports to calculate a network communication delay through a network topology data easily. CloudSim allows inputting a file of topology data, but it does not provide any generating process. Thus, it needs the file of topology data generated from some other tools. The BRITE is typical network topology generator. Also, it supports various type of topology generating algorithms. If CloudSim can include the BRITE, network simulation for clouds is easier than existing version. This paper shows the potential of connection between BRITE and CloudSim. Also, it proposes the direction to link between them.

Keywords: Cloud, simulation, topology, BRITE, network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3778
6513 Low Power Circuit Architecture of AES Crypto Module for Wireless Sensor Network

Authors: MooSeop Kim, Juhan Kim, Yongje Choi

Abstract:

Recently, much research has been conducted for security for wireless sensor networks and ubiquitous computing. Security issues such as authentication and data integrity are major requirements to construct sensor network systems. Advanced Encryption Standard (AES) is considered as one of candidate algorithms for data encryption in wireless sensor networks. In this paper, we will present the hardware architecture to implement low power AES crypto module. Our low power AES crypto module has optimized architecture of data encryption unit and key schedule unit which could be applicable to wireless sensor networks. We also details low power design methods used to design our low power AES crypto module.

Keywords: Algorithm, Low Power Crypto Circuit, AES, Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
6512 Role of Credit on Production Efficiency of Farming Sector in Pakistan(A Data Envelopment Analysis)

Authors: Saima Ayaz, Zakir Hussain, Maqbool Hussain Sial

Abstract:

The study identified the sources of production inefficiency of the farming sector in district Faisalabad in the Punjab province of Pakistan. Data Envelopment Analysis (DEA) technique was utilized at farm level survey data of 300 farmers for the year 2009. The overall mean efficiency score was 0.78 indicating 22 percent inefficiency of the sample farmers. Computed efficiency scores were then regressed on farm specific variables using Tobit regression analysis. Farming experience, education, access to farming credit, herd size and number of cultivation practices showed constructive and significant effect on the farmer-s technical efficiency.

Keywords: Agricultural credit, DEA, Technical efficiency, Tobit analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2351
6511 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker

Abstract:

Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: Metagenomics, phenotype prediction, deep learning, embeddings, multiple instance learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
6510 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
6509 Establishing a Probabilistic Model of Extrapolated Wind Speed Data for Wind Energy Prediction

Authors: Mussa I. Mgwatu, Reuben R. M. Kainkwa

Abstract:

Wind is among the potential energy resources which can be harnessed to generate wind energy for conversion into electrical power. Due to the variability of wind speed with time and height, it becomes difficult to predict the generated wind energy more optimally. In this paper, an attempt is made to establish a probabilistic model fitting the wind speed data recorded at Makambako site in Tanzania. Wind speeds and direction were respectively measured using anemometer (type AN1) and wind Vane (type WD1) both supplied by Delta-T-Devices at a measurement height of 2 m. Wind speeds were then extrapolated for the height of 10 m using power law equation with an exponent of 0.47. Data were analysed using MINITAB statistical software to show the variability of wind speeds with time and height, and to determine the underlying probability model of the extrapolated wind speed data. The results show that wind speeds at Makambako site vary cyclically over time; and they conform to the Weibull probability distribution. From these results, Weibull probability density function can be used to predict the wind energy.

Keywords: Probabilistic models, wind speed, wind energy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2347
6508 Demographic Factors Influencing Employees’ Salary Expectations and Labor Turnover

Authors: M. Osipova

Abstract:

Thanks to informational technologies development every sphere of economics is becoming more and more datacentralized as people are generating huge datasets containing information on any aspect of their life. Applying research of such data to human resources management allows getting scarce statistics on labor market state including salary expectations and potential employees’ typical career behavior, and this information can become a reliable basis for management decisions. The following article presents results of career behavior research based on freely accessible resume data. Information used for study is much wider than one usually uses in human resources surveys. That is why there is enough data for statistically significant results even for subgroups analysis.

Keywords: Human resources management, labor market, salary expectations, statistics, turnover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846
6507 Mathematical Modeling to Predict Surface Roughness in CNC Milling

Authors: Ab. Rashid M.F.F., Gan S.Y., Muhammad N.Y.

Abstract:

Surface roughness (Ra) is one of the most important requirements in machining process. In order to obtain better surface roughness, the proper setting of cutting parameters is crucial before the process take place. This research presents the development of mathematical model for surface roughness prediction before milling process in order to evaluate the fitness of machining parameters; spindle speed, feed rate and depth of cut. 84 samples were run in this study by using FANUC CNC Milling α-Τ14ιE. Those samples were randomly divided into two data sets- the training sets (m=60) and testing sets(m=24). ANOVA analysis showed that at least one of the population regression coefficients was not zero. Multiple Regression Method was used to determine the correlation between a criterion variable and a combination of predictor variables. It was established that the surface roughness is most influenced by the feed rate. By using Multiple Regression Method equation, the average percentage deviation of the testing set was 9.8% and 9.7% for training data set. This showed that the statistical model could predict the surface roughness with about 90.2% accuracy of the testing data set and 90.3% accuracy of the training data set.

Keywords: Surface roughness, regression analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2132
6506 Research on Rail Safety Security System

Authors: Cai Guoqiang, Jia Limin, Zhou Liming, Liang yu, Li xi

Abstract:

This paper analysis the integrated use of safety monitoring with the domestic and international latest research on rail safety protection system, and focus on the implementation of an organic whole system, with the monitoring and early warning, risk assessment, predictive control and emergency rescue system. The system framework, contents and system structure of Security system is proposed completely. It-s pointed out that the Security system is a negative feedback system composed of by safety monitoring and warning system, risk assessment and emergency rescue system. Safety monitoring and warning system focus on the monitoring target monitoring, early warning, tracking, integration of decision-making, for objective and subjective risks factors. Risk assessment system analysis the occurrence of a major Security risk mechanism, determines the standard of the future short, medium and long term safety conditions, and give prop for development of safety indicators, accident analysis and safety standards. Emergency rescue system is with the goal of rapid and effective rescue work for accident, to minimize casualties and property losses.

Keywords: rail safety protection, monitoring and early warning, risk assessment, emergency rescue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148
6505 Automatic Translation of Ada-ECATNet Using Rewriting Logic

Authors: N. Boudiaf

Abstract:

One major difficulty that faces developers of concurrent and distributed software is analysis for concurrency based faults like deadlocks. Petri nets are used extensively in the verification of correctness of concurrent programs. ECATNets are a category of algebraic Petri nets based on a sound combination of algebraic abstract types and high-level Petri nets. ECATNets have 'sound' and 'complete' semantics because of their integration in rewriting logic and its programming language Maude. Rewriting logic is considered as one of very powerful logics in terms of description, verification and programming of concurrent systems We proposed previously a method for translating Ada-95 tasking programs to ECATNets formalism (Ada-ECATNet) and we showed that ECATNets formalism provides a more compact translation for Ada programs compared to the other approaches based on simple Petri nets or Colored Petri nets. We showed also previously how the ECATNet formalism offers to Ada many validation and verification tools like simulation, Model Checking, accessibility analysis and static analysis. In this paper, we describe the implementation of our translation of the Ada programs into ECATNets.

Keywords: Ada tasking, Analysis, Automatic Translation, ECATNets, Maude, Rewriting Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1584
6504 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.

Keywords: Maximum Likelihood, nonlinear, parameters, stall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
6503 Network Anomaly Detection using Soft Computing

Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee

Abstract:

One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.

Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
6502 Statistical Optimization of Medium Components for Biomass Production of Chlorella pyrenoidosa under Autotrophic Conditions and Evaluation of Its Biochemical Composition under Stress Conditions

Authors: N. P. Dhull, K. Gupta, R. Soni, D. K. Rahi, S. K. Soni

Abstract:

The aim of the present work was to statistically design an autotrophic medium for maximum biomass production by Chlorella pyrenoidosa using response surface methodology. After evaluating one factor at a time approach, K2HPO4, KNO3, MgSO4.7H2O and NaHCO3 were preferred over the other components of the fog’s medium as most critical autotrophic medium components. The study showed that the maximum biomass yield was achieved while the concentrations of MgSO4.7H2O, K2HPO4, KNO3 and NaHCO3 were 0.409 g/L, 0.24 g/L, 1.033 g/L, and 3.265 g/L, respectively. The study reported that the biomass productivity of C. pyrenoidosa improved from 0.14 g/L in defined fog’s medium to 1.40 g/L in modified fog’s medium resulting 10 fold increase. The biochemical composition biosynthesis of C. pyrenoidosa was altered using nitrogen limiting stress bringing about 5.23 fold increase in lipid content than control (cell without stress), as analyzed by FTIR integration method.

Keywords: Autotrophic condition, Chlorella pyrenoidosa, FTIR, Response Surface Methodology, Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2440
6501 The Design and Development of Multimedia Pronunciation Learning Management System

Authors: Fei Ping Por, Soon Fook Fong

Abstract:

The proposed Multimedia Pronunciation Learning Management System (MPLMS) in this study is a technology with profound potential for inducing improvement in pronunciation learning. The MPLMS optimizes the digitised phonetic symbols with the integration of text, sound and mouth movement video. The components are designed and developed in an online management system which turns the web to a dynamic user-centric collection of consistent and timely information for quality sustainable learning. The aim of this study is to design and develop the MPLMS which serves as an innovative tool to improve English pronunciation. This paper discusses the iterative methodology and the three-phase Alessi and Trollip model in the development of MPLMS. To align with the flexibility of the development of educational software, the iterative approach comprises plan, design, develop, evaluate and implement is followed. To ensure the instructional appropriateness of MPLMS, the instructional system design (ISD) model of Alessi and Trollip serves as a platform to guide the important instructional factors and process. It is expected that the results of future empirical research will support the efficacy of MPLMS and its place as the premier pronunciation learning system.

Keywords: Design, development, multimedia, pronunciation, learning management system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2444
6500 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract:

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Keywords: Building system, time series, diagnosis, outliers, delay, data gap.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903
6499 Daily and Seasonal Changes of Air Pollution in Kuwait

Authors: H. Ettouney, A. AL-Haddad, S. Saqer

Abstract:

This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.

Keywords: Air pollution, Emission inventory, ISCST3 model, Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421
6498 Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment

Authors: John T. Tsiligaridis

Abstract:

The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.

Keywords: Broadcast, broadcast plan, mobile computing, wireless networks, scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453
6497 Survival Model for Partly Interval-Censored Data with Application to Anti D in Rhesus D Negative Studies

Authors: F. A. M. Elfaki, Amar Abobakar, M. Azram, M. Usman

Abstract:

This paper discusses regression analysis of partly interval-censored failure time data, which is occur in many fields including demographical, epidemiological, financial, medical and sociological studies. For the problem, we focus on the situation where the survival time of interest can be described by the additive hazards model in the present of partly interval-censored. A major advantage of the approach is its simplicity and it can be easily implemented by using R software. Simulation studies are conducted which indicate that the approach performs well for practical situations and comparable to the existing methods. The methodology is applied to a set of partly interval-censored failure time data arising from anti D in Rhesus D negative studies.

Keywords: Anti D in Rhesus D negative, Cox’s model, EM algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
6496 Metabolic Predictive Model for PMV Control Based on Deep Learning

Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon

Abstract:

In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.

Keywords: Deep learning, indoor quality, metabolism, predictive model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1194
6495 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.

Keywords: Pattern recognition, partitional clustering, K-means clustering, Manhattan distance, terrorism data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1359
6494 HelpMeBreathe: A Web-Based System for Asthma Management

Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer

Abstract:

We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.

Keywords: Asthma, environmental triggers, map interface, peak flow, web-based system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
6493 CEO Duality and Firm Performance: An Integration of Institutional Perceptive with Agency Theory

Authors: A. Ujunwa, P. O. Salami, A. H. Umar

Abstract:

The recommendation of the committee on corporate governance for public companies in Nigeria, that the position of the CEO be separated from board chair has generated serious debate among scholars and practitioners. They have questioned the appropriateness of implementing corporate governance model that is based on Anglo-Saxon agency problem characterized by dispersed ownership structure; where markets for corporate control, legal regulation, and contractual incentives are the key governance mechanisms. This paper strives to resolve the argument by adopting an institutional perspective in testing the agency theory on board duality. The study developed a theoretical and empirical model to better understand how ownership structure influences agency conflict and how such affects firm performance. Hence, the study examines the relationship between CEO duality and firm performance using two institutional ownership structures – dispersed ownership and concentrated ownership structures. The empirical results show that CEO duality is negatively correlated with firm performance in Nigeria irrespective of the firm-s ownership structure. The findings give credence to the recommendation of the Peterside Commission on the need to separate the position of CEO from board chair.

Keywords: Corporate Governance, CEO-Duality, Firm Performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3980
6492 Current-Mode Resistorless SIMO Universal Filter and Four-Phase Quadrature Oscillator

Authors: Jie Jin

Abstract:

In this paper, a new CMOS current-mode single input and multi-outputs (SIMO) universal filter and quadrature oscillator with a similar circuit are proposed. The circuits only consist of three Current differencing transconductance amplifiers (CDTA) and two grounded capacitors, which are resistorless, and they are suitable for monolithic integration. The universal filter uses minimum CDTAs and passive elements to realize SIMO type low-pass (LP), high-pass (HP), band-pass (BP) band-stop (BS) and all-pass (AP) filter functions simultaneously without any component matching conditions. The angular frequency (ω0) and the quality factor (Q) of the proposed filter can be electronically controlled and tuned orthogonal. By some modifications of the filter, a new current-mode four-phase quadrature oscillator (QO) can be obtained easily. The condition of oscillation (CO) and frequency of oscillation (FO) of the QO can be controlled electronically and independently through the bias current of the CDTAs, and it is suitable for variable frequency oscillator. Moreover, all the passive and active sensitivities of the circuits are low. SPICE simulation results are included to confirm the theory.

Keywords: Universal Filter, Quadrature Oscillator, Current mode, Current differencing transconductance amplifiers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951