Search results for: non-linear coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1966

Search results for: non-linear coefficient

436 Estimation of Subgrade Resilient Modulus from Soil Index Properties

Authors: Magdi M. E. Zumrawi, Mohamed Awad

Abstract:

Determination of Resilient Modulus (MR) is quite important for characterizing materials in pavement design and evaluation. The main focus of this study is to develop a correlation that predict the resilient modulus of subgrade soils from simple and easy measured soil index properties. To achieve this objective, three subgrade soils representing typical Khartoum soils were selected and tested in the laboratory for measuring resilient modulus. Other basic laboratory tests were conducted on the soils to determine their physical properties. Several soil samples were prepared and compacted at different moisture contents and dry densities and then tested using resilient modulus testing machine. Based on experimental results, linear relationship of MR with the consistency factor ‘Fc’ which is a combination of dry density, void ratio and consistency index had been developed. The results revealed that very good linear relationship found between the MR and the consistency factor with a coefficient of linearity (R2) more than 0.9. The consistency factor could be used for the prediction of the MR of compacted subgrade soils with precise and reliable results.

Keywords: Consistency factor, resilient modulus, subgrade soil, properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
435 Determining the Best Method of Stability Landslide by Using of DSS (Case Study: Landslide in Hasan Salaran, Kurdistan Province in Iran)

Authors: S. Kamyabi, M. Salari, H. Shahabi

Abstract:

One of the processes of slope that occurs every year in Iran and some parts of world and cause a lot of criminal and financial harms is called landslide. They are plenty of method to stability landslide in soil and rock slides. The use of the best method with the least cost and in the shortest time is important for researchers. In this research, determining the best method of stability is investigated by using of Decision Support systems. DSS is made for this purpose and was used (for Hasan Salaran area in Kurdistan). Field study data from topography, slope, geology, geometry of landslide and the related features was used. The related data entered decision making managements programs (DSS) (ALES).Analysis of mass stability indicated the instability potential at present. Research results show that surface and sub surface drainage the best method of stabilizing. Analysis of stability shows that acceptable increase in security coefficient is a consequence of drainage.

Keywords: Landslide, Decision Support systems, stability, Hasan Salaran landslide, Kurdistan province, Iran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
434 Barriers to the Use of Factoring Accounts Receivables: The Ghanaian Contractor’s Perception

Authors: E. Kissi, V. K. Acheamfour, J. J. Gyimah, T. Adjei-Kumi

Abstract:

Factoring accounts receivable is widely accepted as an alternative financing source and utilized in almost every industry that sells business-to-business or business-to-government. However, its patronage in the construction industry is very limited as some barriers hinder its application in the construction industry. This study aims at assessing the barriers to the use of factoring accounts receivables in the Ghanaian construction industry. The study adopted the sequential exploratory research method where structured and unstructured questionnaires were conveniently distributed to D1K1 and D2K2 construction firms in Ghana. Using the one-sample t-test and Kendall’s Coefficient of concordance data were analyzed. The most severe challenge concluded is the high cost of factoring patronage. Other critical challenges identified were low knowledge on factoring processes, inadequate access to information on factoring, and high risks involved in factoring. Hence, it is recommended that contractors should be made aware of the prospects of factoring of accounts receivables in the construction industry. This study serves as basis for further rigorous research into factoring of accounts receivables in the industry.

Keywords: Barriers, contractors, factoring accounts receivables, Ghanaian, perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 547
433 Effect of Viscous Dissipation and Axial Conduction in Thermally Developing Region of the Channel Partially Filled with a Porous Material Subjected to Constant Wall Heat Flux

Authors: D Bhargavi, J. Sharath Kumar Reddy

Abstract:

The present investigation has been undertaken to assess the effect of viscous dissipation and axial conduction on forced convection heat transfer in the entrance region of a parallel plate channel with the porous insert attached to both walls of the channel. The flow field is unidirectional. Flow in the porous region corresponds to Darcy-Brinkman model and the clear fluid region to that of plane Poiseuille flow. The effects of the parameters Darcy number, Da, Peclet number, Pe, Brinkman number, Br and a porous fraction γp on the local heat transfer coefficient are analyzed graphically. Effects of viscous dissipation employing the Darcy model and the clear fluid compatible model have been studied.

Keywords: Porous material, channel partially filled with a porous material, axial conduction, viscous dissipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 637
432 A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel

Authors: Liping Yang, Curran Crawford, Jr. Ren, Zhengyi Ren

Abstract:

Considering the cost evaluation and the stress analysis, a fuzzy satisfactory optimization (FSO) method has been developed for a hybrid composite flywheel. To evaluate the cost, the cost coefficients of the flywheel components are obtained through calculating the weighted sum of the scores of the material manufacturability, the structure character, and the material price. To express the satisfactory degree of the energy, the cost, and the mass, the satisfactory functions are proposed by using the decline function and introducing a satisfactory coefficient. To imply the different significance of the objectives, the object weight coefficients are defined. Based on the stress analysis of composite material, the circumferential and radial stresses are considered into the optimization formulation. The simulations of the FSO method with different weight coefficients and storage energy density optimization (SEDO) method of a flywheel are contrasted. The analysis results show that the FSO method can satisfy different requirements of the designer and the FSO method with suitable weight coefficients can replace the SEDO method.

Keywords: Flywheel energy storage, fuzzy, optimization, stress analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
431 Effect of Size of the Step in the Response Surface Methodology using Nonlinear Test Functions

Authors: Jesús Everardo Olguín Tiznado, Rafael García Martínez, Claudia Camargo Wilson, Juan Andrés López Barreras, Everardo Inzunza González, Javier Ordorica Villalvazo

Abstract:

The response surface methodology (RSM) is a collection of mathematical and statistical techniques useful in the modeling and analysis of problems in which the dependent variable receives the influence of several independent variables, in order to determine which are the conditions under which should operate these variables to optimize a production process. The RSM estimated a regression model of first order, and sets the search direction using the method of maximum / minimum slope up / down MMS U/D. However, this method selects the step size intuitively, which can affect the efficiency of the RSM. This paper assesses how the step size affects the efficiency of this methodology. The numerical examples are carried out through Monte Carlo experiments, evaluating three response variables: efficiency gain function, the optimum distance and the number of iterations. The results in the simulation experiments showed that in response variables efficiency and gain function at the optimum distance were not affected by the step size, while the number of iterations is found that the efficiency if it is affected by the size of the step and function type of test used.

Keywords: RSM, dependent variable, independent variables, efficiency, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
430 Degree of Bending in Axially Loaded Tubular KT-Joints of Offshore Structures: Parametric Study and Formulation

Authors: Hamid Ahmadi, Shadi Asoodeh

Abstract:

The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of hot-spot stress (HSS), but is also significantly influenced by the through-thethickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stresslife (S–N) method and particularly for predicting the fatigue crack growth based on the fracture mechanics (FM) approach. In the present paper, data extracted from finite element (FE) analyses of tubular KT-joints, verified against experimental data and parametric equations, was used to investigate the effects of geometrical parameters on DoB values at the crown 0°, saddle, and crown 180° positions along the weld toe of central brace in tubular KT-joints subjected to axial loading. Parametric study was followed by a set of nonlinear regression analyses to derive DoB parametric formulas for the fatigue analysis of KT-joints under axial loads. The tubular KTjoint is a quite common joint type found in steel offshore structures. However, despite the crucial role of the DoB in evaluating the fatigue performance of tubular joints, this paper is the first attempt to study and formulate the DoB values in KT-joints.

Keywords: Tubular KT-joint, fatigue, degree of bending (DoB), axial loading, parametric formula.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
429 State Estimation of a Biotechnological Process Using Extended Kalman Filter and Particle Filter

Authors: R. Simutis, V. Galvanauskas, D. Levisauskas, J. Repsyte, V. Grincas

Abstract:

This paper deals with advanced state estimation algorithms for estimation of biomass concentration and specific growth rate in a typical fed-batch biotechnological process. This biotechnological process was represented by a nonlinear mass-balance based process model. Extended Kalman Filter (EKF) and Particle Filter (PF) was used to estimate the unmeasured state variables from oxygen uptake rate (OUR) and base consumption (BC) measurements. To obtain more general results, a simplified process model was involved in EKF and PF estimation algorithms. This model doesn’t require any special growth kinetic equations and could be applied for state estimation in various bioprocesses. The focus of this investigation was concentrated on the comparison of the estimation quality of the EKF and PF estimators by applying different measurement noises. The simulation results show that Particle Filter algorithm requires significantly more computation time for state estimation but gives lower estimation errors both for biomass concentration and specific growth rate. Also the tuning procedure for Particle Filter is simpler than for EKF. Consequently, Particle Filter should be preferred in real applications, especially for monitoring of industrial bioprocesses where the simplified implementation procedures are always desirable.

Keywords: Biomass concentration, Extended Kalman Filter, Particle Filter, State estimation, Specific growth rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
428 AC Signals Estimation from Irregular Samples

Authors: Predrag B. Petrović

Abstract:

The paper deals with the estimation of amplitude and phase of an analogue multi-harmonic band-limited signal from irregularly spaced sampling values. To this end, assuming the signal fundamental frequency is known in advance (i.e., estimated at an independent stage), a complexity-reduced algorithm for signal reconstruction in time domain is proposed. The reduction in complexity is achieved owing to completely new analytical and summarized expressions that enable a quick estimation at a low numerical error. The proposed algorithm for the calculation of the unknown parameters requires O((2M+1)2) flops, while the straightforward solution of the obtained equations takes O((2M+1)3) flops (M is the number of the harmonic components). It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The proposed method of processing can be used for precise RMS measurements (for power and energy) of a periodic signal based on the presented signal reconstruction. The paper investigates the errors related to the signal parameter estimation, and there is a computer simulation that demonstrates the accuracy of these algorithms.

Keywords: Band-limited signals, Fourier coefficient estimation, analytical solutions, signal reconstruction, time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
427 Simulation of Kinetic Friction in L-Bending of Sheet Metals

Authors: Maziar Ramezani, Thomas Neitzert, Timotius Pasang

Abstract:

This paper aims at experimental and numerical investigation of springback behavior of sheet metals during L-bending process with emphasis on Stribeck-type friction modeling. The coefficient of friction in Stribeck curve depends on sliding velocity and contact pressure. The springback behavior of mild steel and aluminum alloy 6022-T4 sheets was studied experimentally and using numerical simulations with ABAQUS software with two types of friction model: Coulomb friction and Stribeck friction. The influence of forming speed on springback behavior was studied experimentally and numerically. The results showed that Stribeck-type friction model has better results in predicting springback in sheet metal forming. The FE prediction error for mild steel and 6022-T4 AA is 23.8%, 25.5% respectively, using Coulomb friction model and 11%, 13% respectively, using Stribeck friction model. These results show that Stribeck model is suitable for simulation of sheet metal forming especially at higher forming speed.

Keywords: Friction, L-bending, Springback, Stribeck curves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
426 The Effect of Waste Magnesium to Boric Acid Ratio in Hydrothermal Magnesium Borate Synthesis at 70oC

Authors: E. Moroydor Derun, A. S. Kipcak, A. Kaplan, S. Piskin

Abstract:

Magnesium wastes are produced by many industrial activities. This waste problem is becoming a future problem for the world. Magnesium borates have many advantages such as; high corrosion resistance, heat resistance, high coefficient of elasticity and can also be used in the production of material against radiation. Addition, magnesium borates have great potential in sectors including ceramic and detergents industry and superconducting materials. In this study, using the starting materials of waste magnesium and H3BO3 the hydrothermal method was applied at a moderate temperature of 70oC. Several mole ratios of waste magnesium to H3BO3 are selected as; 1:2, 1:4, 1:6, 1:8, 1:10. Reaction time was determined as 1 hour. After the synthesis, X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) techniques are applied to products. As a result the forms of mcallisterite “Mg2(B6O7(OH)6)2.9(H2O)”, admontite “MgO(B2O3)3.7(H2O)” and magnesium boron hydrate (MgO(B2O3)3.6(H2O)” are obtained. 

Keywords: Hydrothermal synthesis, magnesium borates, waste magnesium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
425 Optimal Green Facility Planning - Implementation of Organic Rankine Cycle System for Factory Waste Heat Recovery

Authors: Chun-Wei Lin, Yu-Lin Chen

Abstract:

As global industry developed rapidly, the energy demand also rises simultaneously. In the production process, there’s a lot of energy consumed in the process. Formally, the energy used in generating the heat in the production process. In the total energy consumption, 40% of the heat was used in process heat, mechanical work, chemical energy and electricity. The remaining 50% were released into the environment. It will cause energy waste and environment pollution. There are many ways for recovering the waste heat in factory. Organic Rankine Cycle (ORC) system can produce electricity and reduce energy costs by recovering the waste of low temperature heat in the factory. In addition, ORC is the technology with the highest power generating efficiency in low-temperature heat recycling. However, most of factories executives are still hesitated because of the high implementation cost of the ORC system, even a lot of heat are wasted. Therefore, this study constructs a nonlinear mathematical model of waste heat recovery equipment configuration to maximize profits. A particle swarm optimization algorithm is developed to generate the optimal facility installation plan for the ORC system.

Keywords: Green facility planning, organic rankine cycle, particle swarm optimization, waste heat recovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987
424 Thermal Stability Boundary of FG Panel under Aerodynamic Load

Authors: Sang-Lae Lee, Ji-Hwan Kim

Abstract:

In this study, it is investigated the stability boundary of Functionally Graded (FG) panel under the heats and supersonic airflows. Material properties are assumed to be temperature dependent, and a simple power law distribution is taken. First-order shear deformation theory (FSDT) of plate is applied to model the panel, and the von-Karman strain- displacement relations are adopted to consider the geometric nonlinearity due to large deformation. Further, the first-order piston theory is used to model the supersonic aerodynamic load acting on a panel and Rayleigh damping coefficient is used to present the structural damping. In order to find a critical value of the speed, linear flutter analysis of FG panels is performed. Numerical results are compared with the previous works, and present results for the temperature dependent material are discussed in detail for stability boundary of the panel with various volume fractions, and aerodynamic pressures.

Keywords: Functionally graded panels, Linear flutter analysis, Supersonic airflows, Temperature dependent material property.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
423 Numerical Study of Iterative Methods for the Solution of the Dirichlet-Neumann Map for Linear Elliptic PDEs on Regular Polygon Domains

Authors: A. G. Sifalakis, E. P. Papadopoulou, Y. G. Saridakis

Abstract:

A generalized Dirichlet to Neumann map is one of the main aspects characterizing a recently introduced method for analyzing linear elliptic PDEs, through which it became possible to couple known and unknown components of the solution on the boundary of the domain without solving on its interior. For its numerical solution, a well conditioned quadratically convergent sine-Collocation method was developed, which yielded a linear system of equations with the diagonal blocks of its associated coefficient matrix being point diagonal. This structural property, among others, initiated interest for the employment of iterative methods for its solution. In this work we present a conclusive numerical study for the behavior of classical (Jacobi and Gauss-Seidel) and Krylov subspace (GMRES and Bi-CGSTAB) iterative methods when they are applied for the solution of the Dirichlet to Neumann map associated with the Laplace-s equation on regular polygons with the same boundary conditions on all edges.

Keywords: Elliptic PDEs, Dirichlet to Neumann Map, Global Relation, Collocation, Iterative Methods, Jacobi, Gauss-Seidel, GMRES, Bi-CGSTAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710
422 Estimation of Critical Period for Weed Control in Corn in Iran

Authors: Sohrab Mahmoodi, Ali Rahimi

Abstract:

The critical period for weed control (CPWC) is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. Field studies were conducted in 2005 and 2006 in the University of Birjand at the south east of Iran to determine CPWC of corn using a randomized complete block design with 14 treatments and four replications. The treatments consisted of two different periods of weed interference, a critical weed-free period and a critical time of weed removal, were imposed at V3, V6, V9, V12, V15, and R1 (based on phonological stages of corn development) with a weedy check and a weed-free check. The CPWC was determined with the use of 2.5, 5, 10, 15 and 20% acceptable yield loss levels by non-linear Regression method and fitting Logistic and Gompertz nonlinear equations to relative yield data. The CPWC of corn was from 5- to 15-leaf stage (19-55 DAE) to prevent yield losses of 5%. This period to prevent yield losses of 2.5, 10 and 20% was 4- to 17-leaf stage (14-59 DAE), 6- to 12-leaf stage (25-47 DAE) and 8- to 9-leaf stage (31-36 DAE) respectively. The height and leaf area index of corn were significantly decreased by weed competition in both weed free and weed infested treatments (P<0.01). Results also showed that there was a significant positive correlation between yield and LAI of corn at silk stage when competing with weeds (r= 0.97).

Keywords: Corn, Critical period, Gompertz, Logistic, Weed control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
421 Study on the Variation Effects of Diverging Angleon Characteristics of Flow in Converging and Diverging Ducts by Numerical Method

Authors: Moghiman Mohammad, Amiri Maryam, Amiri Amirhosein

Abstract:

The present paper develops and validates a numerical procedure for the calculation of turbulent combustive flow in converging and diverging ducts and throuh simulation of the heat transfer processes, the amount of production and spread of Nox pollutant has been measured. A marching integration solution procedure employing the TDMA is used to solve the discretized equations. The turbulence model is the Prandtl Mixing Length method. Modeling the combustion process is done by the use of Arrhenius and Eddy Dissipation method. Thermal mechanism has been utilized for modeling the process of forming the nitrogen oxides. Finite difference method and Genmix numerical code are used for numerical solution of equations. Our results indicate the important influence of the limiting diverging angle of diffuser on the coefficient of recovering of pressure. Moreover, due to the intense dependence of Nox pollutant to the maximum temperature in the domain with this feature, the Nox pollutant amount is also in maximum level.

Keywords: Converging and Diverging Duct, Combustion, Diffuser, Diverging Angle, Nox

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
420 The Influence of Physical-Mechanical and Thermal Properties of Hemp Filling Materials by the Addition of Energy Byproducts

Authors: Sarka Keprdova, Jiri Bydzovsky

Abstract:

This article describes to what extent the addition of energy by-products into the structures of the technical hemp filling materials influence their properties. The article focuses on the changes in physical-mechanical and thermal technical properties of materials after the addition of ash or FBC ash or slag in the binding component of material. Technical hemp filling materials are made of technical hemp shives bonded by the mixture of cement and dry hydrate lime. They are applicable as fillers of vertical or horizontal structures or roofs. The research used eight types of energy by-products of power or heating plants in the Czech Republic. Secondary energy products were dispensed in three different percentage ratios as a replacement of cement in the binding component. Density, compressive strength and determination of the coefficient of thermal conductivity after 28, 60 and 90 days of curing in a laboratory environment were determined and subsequently evaluated on the specimens produced.

Keywords: Ash, binder, cement, energy by-product, FBC ash (fluidized bed combustion ash), filling materials, shives, slag, technical hemp.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1894
419 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models

Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo

Abstract:

There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.

Keywords: Chlorodifluoromethane (HCFC-142b), ozone (O3), least squares method, regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 825
418 A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.

Keywords: Streamflow rating curve, chronological data, streamflow sequences, conceptual models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 419
417 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies

Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny

Abstract:

Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleonnucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.

Keywords: Elastic scattering of α-particles, optical model parameters, double folding model, nucleon-nucleon interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
416 A New Solution for Natural Convection of Darcian Fluid about a Vertical Full Cone Embedded in Porous Media Prescribed Wall Temperature by using a Hybrid Neural Network-Particle Swarm Optimization Method

Authors: M.A.Behrang, M. Ghalambaz, E. Assareh, A.R. Noghrehabadi

Abstract:

Fluid flow and heat transfer of vertical full cone embedded in porous media is studied in this paper. Nonlinear differential equation arising from similarity solution of inverted cone (subjected to wall temperature boundary conditions) embedded in porous medium is solved using a hybrid neural network- particle swarm optimization method. To aim this purpose, a trial solution of the differential equation is defined as sum of two parts. The first part satisfies the initial/ boundary conditions and does contain an adjustable parameter and the second part which is constructed so as not to affect the initial/boundary conditions and involves adjustable parameters (the weights and biases) for a multi-layer perceptron neural network. Particle swarm optimization (PSO) is applied to find adjustable parameters of trial solution (in first and second part). The obtained solution in comparison with the numerical ones represents a remarkable accuracy.

Keywords: Porous Media, Ordinary Differential Equations (ODE), Particle Swarm Optimization (PSO), Neural Network (NN).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
415 Analysis of Translational Ship Oscillations in a Realistic Environment

Authors: Chen Zhang, Bernhard Schwarz-Röhr, Alexander Härting

Abstract:

To acquire accurate ship motions at the center of gravity, a single low-cost inertial sensor is utilized and applied on board to measure ship oscillating motions. As observations, the three axes accelerations and three axes rotational rates provided by the sensor are used. The mathematical model of processing the observation data includes determination of the distance vector between the sensor and the center of gravity in x, y, and z directions. After setting up the transfer matrix from sensor’s own coordinate system to the ship’s body frame, an extended Kalman filter is applied to deal with nonlinearities between the ship motion in the body frame and the observation information in the sensor’s frame. As a side effect, the method eliminates sensor noise and other unwanted errors. Results are not only roll and pitch, but also linear motions, in particular heave and surge at the center of gravity. For testing, we resort to measurements recorded on a small vessel in a well-defined sea state. With response amplitude operators computed numerically by a commercial software (Seaway), motion characteristics are estimated. These agree well with the measurements after processing with the suggested method.

Keywords: Extended Kalman filter, nonlinear estimation, sea trial, ship motion estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
414 Correlations between Cleaning Frequency of Reservoir and Water Tower and Parameters of Water Quality

Authors: Chen Bi-Hsiang, Yang Hung-Wen, Lou Jie-Chung, Han Jia-Yun

Abstract:

This study was investigated on sampling and analyzing water quality in water reservoir & water tower installed in two kind of residential buildings and school facilities. Data of water quality was collected for correlation analysis with frequency of sanitization of water reservoir through questioning managers of building about the inspection charts recorded on equipment for water reservoir. Statistical software packages (SPSS) were applied to the data of two groups (cleaning frequency and water quality) for regression analysis to determine the optimal cleaning frequency of sanitization. The correlation coefficient (R) in this paper represented the degree of correlation, with values of R ranging from +1 to -1.After investigating three categories of drinking water users; this study found that the frequency of sanitization of water reservoir significantly influenced the water quality of drinking water. A higher frequency of sanitization (more than four times per 1 year) implied a higher quality of drinking water. Results indicated that sanitizing water reservoir & water tower should at least twice annually for achieving the aim of safety of drinking water.

Keywords: cleaning frequency of sanitization, parameters ofwater quality, regression analysis, water reservoir & water tower

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734
413 From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

Authors: D. Zabala, Y. Cárdenas, G. Núñez

Abstract:

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459
412 Automatic Detection of Syllable Repetition in Read Speech for Objective Assessment of Stuttered Disfluencies

Authors: K. M. Ravikumar, Balakrishna Reddy, R. Rajagopal, H. C. Nagaraj

Abstract:

Automatic detection of syllable repetition is one of the important parameter in assessing the stuttered speech objectively. The existing method which uses artificial neural network (ANN) requires high levels of agreement as prerequisite before attempting to train and test ANNs to separate fluent and nonfluent. We propose automatic detection method for syllable repetition in read speech for objective assessment of stuttered disfluencies which uses a novel approach and has four stages comprising of segmentation, feature extraction, score matching and decision logic. Feature extraction is implemented using well know Mel frequency Cepstra coefficient (MFCC). Score matching is done using Dynamic Time Warping (DTW) between the syllables. The Decision logic is implemented by Perceptron based on the score given by score matching. Although many methods are available for segmentation, in this paper it is done manually. Here the assessment by human judges on the read speech of 10 adults who stutter are described using corresponding method and the result was 83%.

Keywords: Assessment, DTW, MFCC, Objective, Perceptron, Stuttering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
411 Application of Remote Sensing in Development of Green Space

Authors: Mehdi Saati, Mohammad Bagheri, Fatemeh Zamanian

Abstract:

One of the most important parameters to develop and manage urban areas is appropriate selection of land surface to develop green spaces in these areas. In this study, in order to identify the most appropriate sites and areas cultivated for ornamental species in Jiroft, Landsat Enhanced Thematic Mapper Plus (ETM+) images due to extract the most important effective climatic and adaphic parameters for growth ornamental species were used. After geometric and atmospheric corrections applied, to enhance accuracy of multi spectral (XS) bands, the fusion of Landsat XS bands by IRS-1D panchromatic band (PAN) was performed. After field sampling to evaluate the correlation between different factors in surface soil sampling location and different bands digital number (DN) of ETM+ sensor on the same points, correlation tables formed using the best computational model and the map of physical and chemical parameters of soil was produced. Then the accuracy of them was investigated by using kappa coefficient. Finally, according to produced maps, the best areas for cultivation of recommended species were introduced.

Keywords: Locate ornamental species, Remote Sensing, Adaphic parameters, ETM+, Jiroft

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
410 Free Flapping Vibration of Rotating Inclined Euler Beams

Authors: Chih-Ling Huang, Wen-Yi Lin, Kuo-Mo Hsiao

Abstract:

A method based on the power series solution is proposed to solve the natural frequency of flapping vibration for the rotating inclined Euler beam with constant angular velocity. The vibration of the rotating beam is measured from the position of the corresponding steady state axial deformation. In this paper the governing equations for linear vibration of a rotating Euler beam are derived by the d'Alembert principle, the virtual work principle and the consistent linearization of the fully geometrically nonlinear beam theory in a rotating coordinate system. The governing equation for flapping vibration of the rotating inclined Euler beam is linear ordinary differential equation with variable coefficients and is solved by a power series with four independent coefficients. Substituting the power series solution into the corresponding boundary conditions at two end nodes of the rotating beam, a set of homogeneous equations can be obtained. The natural frequencies may be determined by solving the homogeneous equations using the bisection method. Numerical examples are studied to investigate the effect of inclination angle on the natural frequency of flapping vibration for rotating inclined Euler beams with different angular velocity and slenderness ratio.

Keywords: Flapping vibration, Inclination angle, Natural frequency, Rotating beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
409 Risk Assessment of Particulate Matter (PM10) in Makkah, Saudi Arabia

Authors: Turki M. Habeebullah, Atef M. F. Mohammed, Essam A. Morsy

Abstract:

In recent decades, particulate matter (PM10) have received much attention due to its potential adverse health impact and the subsequent need to better control or regulate these pollutants. The aim of this paper is focused on study risk assessment of PM10 in four different districts (Shebikah, Masfalah, Aziziyah, Awali) in Makkah, Saudi Arabia during the period from 1 Ramadan 1434 AH - 27 Safar 1435 AH. Samples were collected by using Low Volume Sampler (LVS Low Volume Sampler) device and filtration method for estimating the total concentration of PM10. The study indicated that the mean PM10 concentrations were 254.6 (186.1 - 343.2) μg/m3 in Shebikah, 184.9 (145.6 - 271.4) μg/m3 in Masfalah, 162.4 (92.4-253.8) μg/m3 in Aziziyah, and 56.0 (44.5 - 119.8) μg/m3 in Awali. These values did not exceed the permissible limits in PME (340 μg/m3 as daily average). Furthermore, health assessment is carried out using AirQ2.2.3 model to estimate the number of hospital admissions due to respiratory diseases. The cumulative number of cases per 100,000 were 1534 (18-3050 case), which lower than that recorded in the United States, Malaysia. The concentration response coefficient was 0.49 (95% CI 0.05 - 0.70) per 10 μg/m3 increase of PM10.

Keywords: Air pollution, Respiratory diseases, AirQ2.2.3, Makkah.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
408 Analysis of Target Location Estimation in High Performance Radar System

Authors: Jin-Hyeok Kim, Won-Chul Choi, Seung-Ri Jin, Dong-Jo Park

Abstract:

In this paper, an analysis of a target location estimation system using the best linear unbiased estimator (BLUE) for high performance radar systems is presented. In synthetic environments, we are here concerned with three key elements of radar system modeling, which makes radar systems operates accurately in strategic situation in virtual ground. Radar Cross Section (RCS) modeling is used to determine the actual amount of electromagnetic waves that are reflected from a tactical object. Pattern Propagation Factor (PPF) is an attenuation coefficient of the radar equation that contains the reflection from the surface of the earth, the diffraction, the refraction and scattering by the atmospheric environment. Clutter is the unwanted echoes of electronic systems. For the data fusion of output results from radar detection in synthetic environment, BLUE is used and compared with the mean values of each simulation results. Simulation results demonstrate the performance of the radar system.

Keywords: Best linear unbiased estimator (BLUE) , data fusion, radar system modeling, target location estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
407 Growth and Characterization of L-Asparagine (LAS) Crystal Admixture of Paranitrophenol (PNP): A NLO Material

Authors: Grace Sahaya Sheba, P. Omegala Priyakumari, M. Gunasekaran

Abstract:

L-asparagine admixture Paranitrophenol (LAPNP) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 12mm×5 mm×3mm have been obtained in 15 days. The grown crystals were Brown color and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV–visible absorption spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz–Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied

Keywords: Characterization, Microhardnes, Non-linear optical materials, Solution growth, Spectroscopy, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996