Search results for: binary data matrix model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13548

Search results for: binary data matrix model

12048 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1795
12047 An Enhanced Artificial Neural Network for Air Temperature Prediction

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Keywords: Time-series forecasting, weather modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
12046 A Consistency Protocol Multi-Layer for Replicas Management in Large Scale Systems

Authors: Ghalem Belalem, Yahya Slimani

Abstract:

Large scale systems such as computational Grid is a distributed computing infrastructure that can provide globally available network resources. The evolution of information processing systems in Data Grid is characterized by a strong decentralization of data in several fields whose objective is to ensure the availability and the reliability of the data in the reason to provide a fault tolerance and scalability, which cannot be possible only with the use of the techniques of replication. Unfortunately the use of these techniques has a height cost, because it is necessary to maintain consistency between the distributed data. Nevertheless, to agree to live with certain imperfections can improve the performance of the system by improving competition. In this paper, we propose a multi-layer protocol combining the pessimistic and optimistic approaches conceived for the data consistency maintenance in large scale systems. Our approach is based on a hierarchical representation model with tree layers, whose objective is with double vocation, because it initially makes it possible to reduce response times compared to completely pessimistic approach and it the second time to improve the quality of service compared to an optimistic approach.

Keywords: Data Grid, replication, consistency, optimistic approach, pessimistic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
12045 Unsupervised Texture Classification and Segmentation

Authors: V.P.Subramanyam Rallabandi, S.K.Sett

Abstract:

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models. When applied to textures, the algorithm can learn basis functions for images that capture the statistically significant structure intrinsic in the images. We apply this technique to the problem of unsupervised texture classification and segmentation.

Keywords: Gaussian Mixture Model, Independent Component Analysis, Segmentation, Unsupervised Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
12044 Imputation Technique for Feature Selection in Microarray Data Set

Authors: Younies Mahmoud, Mai Mabrouk, Elsayed Sallam

Abstract:

Analyzing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.

Keywords: DNA microarray, feature selection, missing data, bioinformatics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2792
12043 Journals Subheadlines Text Extraction Using Wavelet Thresholding and New Projection Profile

Authors: Davod Zaravi, Habib Rostami, Alireza Malahzaheh, S. S. Mortazavi

Abstract:

In this paper a new robust and efficient algorithm to automatic text extraction from colored book and journal cover sheets is proposed. First, we perform wavelet transform. Next for edge detecting from detail wavelet coefficient, we use dynamic threshold. By blurring approximate coefficients with alternative heuristic thresholding, achieve effective edge,. Afterward, with ROI technique get binary image. Finally text boxes would be extracted with new projection profile.

Keywords: Text extraction, colored cover sheet, wavelet threshold, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
12042 Passenger Seat Vibration Control of Quarter Car System with MR Shock Absorber

Authors: Devdutt, M. L. Aggarwal

Abstract:

Semi-active Fuzzy control of quarter car system having three degrees of freedom and assembled with magneto-rheological (MR) shock absorber is studied in present paper. First, experimental work was performed on an MR shock absorber under different excitation conditions to obtain force-displacement and force-velocity curves. Then, for the application of experimental data in semi-active quarter car system, a polynomial model was selected. Finally, Fuzzy logic controller was designed having the combination of Forward fuzzy controller and Inverse fuzzy controller for integration in secondary suspension system of concerned model. The proposed controlled quarter car model was compared with uncontrolled system using simulation work under bump type of road excitation. Results obtained by simulation work shows the effectiveness of fuzzy controlled suspension system in improving the ride comfort and safety of travelling passengers compared to uncontrolled suspension system.

Keywords: MR shock absorber, three degrees of freedom, quarter car model, fuzzy controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296
12041 Effect of Sand Particle Transportation in Oil and Gas Pipeline Erosion

Authors: Christopher Deekia Nwimae, Nigel Simms, Liyun Lao

Abstract:

Erosion in a pipe bends caused by particles is a major concern in the oil and gas fields and might cause breakdown to production equipment. This work investigates the effect of sand particle transport in an elbow using computational fluid dynamics (CFD) approach. Two-way coupled Euler-Lagrange and discrete phase model is employed to calculate the air/solid particle flow in the elbow. Generic erosion model in Ansys fluent and three particle rebound models are used to predict the erosion rate on the 90° elbows. The model result is compared with experimental data from the open literature validating the CFD-based predictions which reveals that due to the sand particles impinging on the wall of the elbow at high velocity, a point on the pipe elbow were observed to have started turning red due to velocity increase and the maximum erosion locations occur at 48°.

Keywords: Erosion, prediction, elbow, computational fluid dynamics, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 500
12040 Transcritical CO2 Heat Pump Simulation Model and Validation for Simultaneous Cooling and Heating

Authors: Jahar Sarkar

Abstract:

In the present study, a steady-state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump system for simultaneous water cooling and heating. Both the evaporator (including both two-phase and superheated zone) and gas cooler models consider the highly variable heat transfer characteristics of CO2 and pressure drop. The numerical simulation model of transcritical CO2 heat pump has been validated by test data obtained from experiments on the heat pump prototype. Comparison between the test results and the model prediction for system COP variation with compressor discharge pressure shows a modest agreement with a maximum deviation of 15% and the trends are fairly similar. Comparison for other operating parameters also shows fairly similar deviation between the test results and the model prediction. Finally, the simulation results are presented to study the effects of operating parameters such as, temperature of heat exchanger fluid at the inlet, discharge pressure, compressor speed on system performance of CO2 heat pump, suitable in a dairy plant where simultaneous cooling at 4oC and heating at 73oC are required. Results show that good heat transfer properties of CO2 for both two-phase and supercritical region and efficient compression process contribute a lot for high system COPs.

Keywords: CO2 heat pump, dairy system, experiment, simulation model, validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
12039 Discovering the Dimension of Abstractness: Structure-Based Model that Learns New Categories and Categorizes on Different Levels of Abstraction

Authors: Georgi I. Petkov, Ivan I. Vankov, Yolina A. Petrova

Abstract:

A structure-based model of category learning and categorization at different levels of abstraction is presented. The model compares different structures and expresses their similarity implicitly in the forms of mappings. Based on this similarity, the model can categorize different targets either as members of categories that it already has or creates new categories. The model is novel using two threshold parameters to evaluate the structural correspondence. If the similarity between two structures exceeds the higher threshold, a new sub-ordinate category is created. Vice versa, if the similarity does not exceed the higher threshold but does the lower one, the model creates a new category on higher level of abstraction.

Keywords: Analogy-making, categorization, learning of categories, abstraction, hierarchical structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 780
12038 Brain MRI Segmentation and Lesions Detection by EM Algorithm

Authors: Mounira Rouaïnia, Mohamed Salah Medjram, Noureddine Doghmane

Abstract:

In Multiple Sclerosis, pathological changes in the brain results in deviations in signal intensity on Magnetic Resonance Images (MRI). Quantitative analysis of these changes and their correlation with clinical finding provides important information for diagnosis. This constitutes the objective of our work. A new approach is developed. After the enhancement of images contrast and the brain extraction by mathematical morphology algorithm, we proceed to the brain segmentation. Our approach is based on building statistical model from data itself, for normal brain MRI and including clustering tissue type. Then we detect signal abnormalities (MS lesions) as a rejection class containing voxels that are not explained by the built model. We validate the method on MR images of Multiple Sclerosis patients by comparing its results with those of human expert segmentation.

Keywords: EM algorithm, Magnetic Resonance Imaging, Mathematical morphology, Markov random model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2166
12037 Finding a Solution, all Solutions, or the Most Probable Solution to a Temporal Interval Algebra Network

Authors: André Trudel, Haiyi Zhang

Abstract:

Over the years, many implementations have been proposed for solving IA networks. These implementations are concerned with finding a solution efficiently. The primary goal of our implementation is simplicity and ease of use. We present an IA network implementation based on finite domain non-binary CSPs, and constraint logic programming. The implementation has a GUI which permits the drawing of arbitrary IA networks. We then show how the implementation can be extended to find all the solutions to an IA network. One application of finding all the solutions, is solving probabilistic IA networks.

Keywords: Constraint logic programming, CSP, logic, temporalreasoning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1399
12036 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417
12035 Model of High-Speed Train Energy Consumption

Authors: Romain Bosquet, Pierre-Olivier Vandanjon, Alex Coiret, Tristan Lorino

Abstract:

In the hardening energy context, the transport sector which constitutes a large worldwide energy demand has to be improving for decrease energy demand and global warming impacts. In a controversial situation where subsists an increasing demand for long-distance and high-speed travels, high-speed trains offer many advantages, as consuming significantly less energy than road or air transports. At the project phase of new rail infrastructures, it is nowadays important to characterize accurately the energy that will be induced by its operation phase, in addition to other more classical criteria as construction costs and travel time. Current literature consumption models used to estimate railways operation phase are obsolete or not enough accurate for taking into account the newest train or railways technologies. In this paper, an updated model of consumption for high-speed is proposed, based on experimental data obtained from full-scale tests performed on a new high-speed line. The assessment of the model is achieved by identifying train parameters and measured power consumptions for more than one hundred train routes. Perspectives are then discussed to use this updated model for accurately assess the energy impact of future railway infrastructures.

Keywords: High-speed train, energy, model, track profile, infrastructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5209
12034 A Hybrid Multi-Criteria Hotel Recommender System Using Explicit and Implicit Feedbacks

Authors: Ashkan Ebadi, Adam Krzyzak

Abstract:

Recommender systems, also known as recommender engines, have become an important research area and are now being applied in various fields. In addition, the techniques behind the recommender systems have been improved over the time. In general, such systems help users to find their required products or services (e.g. books, music) through analyzing and aggregating other users’ activities and behavior, mainly in form of reviews, and making the best recommendations. The recommendations can facilitate user’s decision making process. Despite the wide literature on the topic, using multiple data sources of different types as the input has not been widely studied. Recommender systems can benefit from the high availability of digital data to collect the input data of different types which implicitly or explicitly help the system to improve its accuracy. Moreover, most of the existing research in this area is based on single rating measures in which a single rating is used to link users to items. This paper proposes a highly accurate hotel recommender system, implemented in various layers. Using multi-aspect rating system and benefitting from large-scale data of different types, the recommender system suggests hotels that are personalized and tailored for the given user. The system employs natural language processing and topic modelling techniques to assess the sentiment of the users’ reviews and extract implicit features. The entire recommender engine contains multiple sub-systems, namely users clustering, matrix factorization module, and hybrid recommender system. Each sub-system contributes to the final composite set of recommendations through covering a specific aspect of the problem. The accuracy of the proposed recommender system has been tested intensively where the results confirm the high performance of the system.

Keywords: Tourism, hotel recommender system, hybrid, implicit features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
12033 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: Building archetypes, data analysis, energy benchmarks, GHG emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1024
12032 Passive Neutralization of Acid Mine Drainage Using Locally Produced Limestone

Authors: Reneiloe Seodigeng, Malwandla Hanabe, Haleden Chiririwa, Hilary Rutto, Tumisang Seodigeng

Abstract:

Neutralisation of acid-mine drainage (AMD) using limestone is cost effective, and good results can be obtained. However, this process has its limitations; it cannot be used for highly acidic water which consists of Fe(III). When Fe(III) reacts with CaCO3, it results in armoring. Armoring slows the reaction, and additional alkalinity can no longer be generated. Limestone is easily accessible, so this problem can be easily dealt with. Experiments were carried out to evaluate the effect of PVC pipe length on ferric and ferrous ions. It was found that the shorter the pipe length the more these dissolved metals precipitate. The effect of the pipe length on the hydrogen ions was also studied, and it was found that these two have an inverse relationship. Experimental data were further compared with the model prediction data to see if they behave in a similar fashion. The model was able to predict the behaviour of 1.5m and 2 m pipes in ferric and ferrous ion precipitation.

Keywords: Acid mine drainage, neutralization, limestone, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
12031 Self-Supervised Pretraining on Paired Sequences of fMRI Data for Transfer Learning to Brain Decoding Tasks

Authors: Sean Paulsen, Michael Casey

Abstract:

In this work, we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.

Keywords: Transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 151
12030 Automatic Real-Patient Medical Data De-Identification for Research Purposes

Authors: Petr Vcelak, Jana Kleckova

Abstract:

Our Medicine-oriented research is based on a medical data set of real patients. It is a security problem to share patient private data with peoples other than clinician or hospital staff. We have to remove person identification information from medical data. The medical data without private data are available after a de-identification process for any research purposes. In this paper, we introduce an universal automatic rule-based de-identification application to do all this stuff on an heterogeneous medical data. A patient private identification is replaced by an unique identification number, even in burnedin annotation in pixel data. The identical identification is used for all patient medical data, so it keeps relationships in a data. Hospital can take an advantage of a research feedback based on results.

Keywords: DASTA, De-identification, DICOM, Health Level Seven, Medical data, OCR, Personal data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
12029 Modeling of Reinforcement in Concrete Beams Using Machine Learning Tools

Authors: Yogesh Aggarwal

Abstract:

The paper discusses the results obtained to predict reinforcement in singly reinforced beam using Neural Net (NN), Support Vector Machines (SVM-s) and Tree Based Models. Major advantage of SVM-s over NN is of minimizing a bound on the generalization error of model rather than minimizing a bound on mean square error over the data set as done in NN. Tree Based approach divides the problem into a small number of sub problems to reach at a conclusion. Number of data was created for different parameters of beam to calculate the reinforcement using limit state method for creation of models and validation. The results from this study suggest a remarkably good performance of tree based and SVM-s models. Further, this study found that these two techniques work well and even better than Neural Network methods. A comparison of predicted values with actual values suggests a very good correlation coefficient with all four techniques.

Keywords: Linear Regression, M5 Model Tree, Neural Network, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2035
12028 Comparison of Router Intelligent and Cooperative Host Intelligent Algorithms in a Continuous Model of Fixed Telecommunication Networks

Authors: Dávid Csercsik, Sándor Imre

Abstract:

The performance of state of the art worldwide telecommunication networks strongly depends on the efficiency of the applied routing mechanism. Game theoretical approaches to this problem offer new solutions. In this paper a new continuous network routing model is defined to describe data transfer in fixed telecommunication networks of multiple hosts. The nodes of the network correspond to routers whose latency is assumed to be traffic dependent. We propose that the whole traffic of the network can be decomposed to a finite number of tasks, which belong to various hosts. To describe the different latency-sensitivity, utility functions are defined for each task. The model is used to compare router and host intelligent types of routing methods, corresponding to various data transfer protocols. We analyze host intelligent routing as a transferable utility cooperative game with externalities. The main aim of the paper is to provide a framework in which the efficiency of various routing algorithms can be compared and the transferable utility game arising in the cooperative case can be analyzed.

Keywords: Routing, Telecommunication networks, Performance evaluation, Cooperative game theory, Partition function form games

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
12027 The Optimization of an Intelligent Traffic Congestion Level Classification from Motorists- Judgments on Vehicle's Moving Patterns

Authors: Thammasak Thianniwet, Satidchoke Phosaard, Wasan Pattara-Atikom

Abstract:

We proposed a technique to identify road traffic congestion levels from velocity of mobile sensors with high accuracy and consistent with motorists- judgments. The data collection utilized a GPS device, a webcam, and an opinion survey. Human perceptions were used to rate the traffic congestion levels into three levels: light, heavy, and jam. Then the ratings and velocity were fed into a decision tree learning model (J48). We successfully extracted vehicle movement patterns to feed into the learning model using a sliding windows technique. The parameters capturing the vehicle moving patterns and the windows size were heuristically optimized. The model achieved accuracy as high as 99.68%. By implementing the model on the existing traffic report systems, the reports will cover comprehensive areas. The proposed method can be applied to any parts of the world.

Keywords: intelligent transportation system (ITS), traffic congestion level, human judgment, decision tree (J48), geographic positioning system (GPS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
12026 Variable Rough Set Model and Its Knowledge Reduction for Incomplete and Fuzzy Decision Information Systems

Authors: Da-kuan Wei, Xian-zhong Zhou, Dong-jun Xin, Zhi-wei Chen

Abstract:

The information systems with incomplete attribute values and fuzzy decisions commonly exist in practical problems. On the base of the notion of variable precision rough set model for incomplete information system and the rough set model for incomplete and fuzzy decision information system, the variable rough set model for incomplete and fuzzy decision information system is constructed, which is the generalization of the variable precision rough set model for incomplete information system and that of rough set model for incomplete and fuzzy decision information system. The knowledge reduction and heuristic algorithm, built on the method and theory of precision reduction, are proposed.

Keywords: Rough set, Incomplete and fuzzy decision information system, Limited valued tolerance relation, Knowledge reduction, Variable rough set model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
12025 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: Structural health monitoring, bridge health monitoring, sensor-based methods, machine-learning algorithms, model-based techniques, sensor placement, data acquisition, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 303
12024 Probability-Based Damage Detection of Structures Using Kriging Surrogates and Enhanced Ideal Gas Molecular Movement Algorithm

Authors: M. R. Ghasemi, R. Ghiasi, H. Varaee

Abstract:

Surrogate model has received increasing attention for use in detecting damage of structures based on vibration modal parameters. However, uncertainties existing in the measured vibration data may lead to false or unreliable output result from such model. In this study, an efficient approach based on Monte Carlo simulation is proposed to take into account the effect of uncertainties in developing a surrogate model. The probability of damage existence (PDE) is calculated based on the probability density function of the existence of undamaged and damaged states. The kriging technique allows one to genuinely quantify the surrogate error, therefore it is chosen as metamodeling technique. Enhanced version of ideal gas molecular movement (EIGMM) algorithm is used as main algorithm for model updating. The developed approach is applied to detect simulated damage in numerical models of 72-bar space truss and 120-bar dome truss. The simulation results show the proposed method can perform well in probability-based damage detection of structures with less computational effort compared to direct finite element model.

Keywords: Enhanced ideal gas molecular movement, Kriging, probability-based damage detection, probability of damage existence, surrogate modeling, uncertainty quantification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
12023 Statistical Analysis of the Impact of Maritime Transport Gross Domestic Product on Nigeria’s Economy

Authors: K. P. Oyeduntan, K. Oshinubi

Abstract:

Nigeria is referred as the ‘Giant of Africa’ due to high population, land mass and large economy. However, it still trails far behind many smaller economies in the continent in terms of maritime operations. As we have seen that the maritime industry is the sparkplug for national growth, because it houses the most crucial infrastructure that generates wealth for a nation, it is worrisome that a nation with six seaports lag in maritime activities. In this research, we have studied how the Gross Domestic Product (GDP) of the maritime transport influences the Nigerian economy. To do this, we applied Simple Linear Regression (SLR), Support Vector Machine (SVM), Polynomial Regression Model (PRM), Generalized Additive Model (GAM) and Generalized Linear Mixed Model (GLMM) to model the relationship between the nation’s Total GDP (TGDP) and the Maritime Transport GDP (MGDP) using a time series data of 20 years. The result showed that the MGDP is statistically significant to the Nigerian economy. Amongst the statistical tool applied, the PRM of order 4 describes the relationship better when compared to other methods. The recommendations presented in this study will guide policy makers and help improve the economy of Nigeria.

Keywords: Economy, GDP, maritime transport, port, regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142
12022 Recommender Systems Using Ensemble Techniques

Authors: Yeonjeong Lee, Kyoung-jae Kim, Youngtae Kim

Abstract:

This study proposes a novel recommender system that uses data mining and multi-model ensemble techniques to enhance the recommendation performance through reflecting the precise user’s preference. The proposed model consists of two steps. In the first step, this study uses logistic regression, decision trees, and artificial neural networks to predict customers who have high likelihood to purchase products in each product group. Then, this study combines the results of each predictor using the multi-model ensemble techniques such as bagging and bumping. In the second step, this study uses the market basket analysis to extract association rules for co-purchased products. Finally, the system selects customers who have high likelihood to purchase products in each product group and recommends proper products from same or different product groups to them through above two steps. We test the usability of the proposed system by using prototype and real-world transaction and profile data. In addition, we survey about user satisfaction for the recommended product list from the proposed system and the randomly selected product lists. The results also show that the proposed system may be useful in real-world online shopping store.

Keywords: Product recommender system, Ensemble technique, Association rules, Decision tree, Artificial neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4222
12021 A Bayesian Kernel for the Prediction of Protein- Protein Interactions

Authors: Hany Alashwal, Safaai Deris, Razib M. Othman

Abstract:

Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.

Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
12020 Blockchain for IoT Security and Privacy in Healthcare Sector

Authors: Umair Shafique, Hafiz Usman Zia, Fiaz Majeed, Samina Naz, Javeria Ahmed, Maleeha Zainab

Abstract:

The Internet of Things (IoT) has become a hot topic for the last couple of years. This innovative technology has shown promising progress in various areas and the world has witnessed exponential growth in multiple application domains. Researchers are working to investigate its aptitudes to get the best from it by harnessing its true potential. But at the same time, IoT networks open up a new aspect of vulnerability and physical threats to data integrity, privacy, and confidentiality. It is due to centralized control, data silos approach for handling information, and a lack of standardization in the IoT networks. As we know, blockchain is a new technology that involves creating secure distributed ledgers to store and communicate data. Some of the benefits include resiliency, integrity, anonymity, decentralization, and autonomous control. The potential for blockchain technology to provide the key to managing and controlling IoT has created a new wave of excitement around the idea of putting that data back into the hands of the end-users. In this manuscript, we have proposed a model that combines blockchain and IoT networks to address potential security and privacy issues in the healthcare domain and how various stakeholders will interact with the system.

Keywords: Internet of Things, IoT, blockchain, data integrity, authentication, data privacy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 413
12019 Model-Based Software Regression Test Suite Reduction

Authors: Shiwei Deng, Yang Bao

Abstract:

In this paper, we present a model-based regression test suite reducing approach that uses EFSM model dependence analysis and probability-driven greedy algorithm to reduce software regression test suites. The approach automatically identifies the difference between the original model and the modified model as a set of elementary model modifications. The EFSM dependence analysis is performed for each elementary modification to reduce the regression test suite, and then the probability-driven greedy algorithm is adopted to select the minimum set of test cases from the reduced regression test suite that cover all interaction patterns. Our initial experience shows that the approach may significantly reduce the size of regression test suites.

Keywords: Dependence analysis, EFSM model, greedy algorithm, regression test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921