Search results for: Representation Learning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2554

Search results for: Representation Learning.

1084 Estimation of Attenuation and Phase Delay in Driving Voltage Waveform of an Ultra-High-Speed Image Sensor by Dimensional Analysis

Authors: V. T. S. Dao, T. G. Etoh, C. Vo Le, H. D. Nguyen, K. Takehara, T. Akino, K. Nishi

Abstract:

We present an explicit expression to estimate driving voltage attenuation through RC networks representation of an ultrahigh- speed image sensor. Elmore delay metric for a fundamental RC chain is employed as the first-order approximation. By application of dimensional analysis to SPICE simulation data, we found a simple expression that significantly improves the accuracy of the approximation. Estimation error of the resultant expression for uniform RC networks is less than 2%. Similarly, another simple closed-form model to estimate 50 % delay through fundamental RC networks is also derived with sufficient accuracy. The framework of this analysis can be extended to address delay or attenuation issues of other VLSI structures.

Keywords: Dimensional Analysis, Elmore model, RC network, Signal Attenuation, Ultra-High-Speed Image Sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1083 SEM Image Classification Using CNN Architectures

Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran

Abstract:

A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.

Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 197
1082 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher

Authors: M. F. Haroun, T. A. Gulliver

Abstract:

In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.

Keywords: Chaotic systems, image encryption, 3D Lorenz attractor, non-autonomous modulation, FPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1216
1081 The Status Info Processing and Keeping System for Production Equipment

Authors: So Jeong Nam, Seung Woo Lee, Jai-Kyung Lee

Abstract:

With the globalized production and logistics environment, the need for reducing the product development interval and lead time, having a faster response to orders, conforming to quality standards, fair tracking, and boosting information exchanging activities with customers and partners, and coping with changes in the management environment, manufacturers are in dire need of an information management system in their manufacturing environments. There are lots of information systems that have been designed to manage the condition or operation of equipment in the field but existing systems have a decentralized architecture, which is not unified. Also, these systems cannot effectively handle the status data extraction process upon encountering a problem related to protocols or changes in the equipment or the setting. In this regard, this paper will introduce a system for processing and saving the status info of production equipment, which uses standard representation formats, to enable flexible responses to and support for variables in the field equipment. This system can be used for a variety of manufacturing and equipment settings and is capable of interacting with higher-tier systems such as MES.

Keywords: DAS, Equipment Status, Regular Expression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
1080 Feature-Based Summarizing and Ranking from Customer Reviews

Authors: Dim En Nyaung, Thin Lai Lai Thein

Abstract:

Due to the rapid increase of Internet, web opinion sources dynamically emerge which is useful for both potential customers and product manufacturers for prediction and decision purposes. These are the user generated contents written in natural languages and are unstructured-free-texts scheme. Therefore, opinion mining techniques become popular to automatically process customer reviews for extracting product features and user opinions expressed over them. Since customer reviews may contain both opinionated and factual sentences, a supervised machine learning technique applies for subjectivity classification to improve the mining performance. In this paper, we dedicate our work is the task of opinion summarization. Therefore, product feature and opinion extraction is critical to opinion summarization, because its effectiveness significantly affects the identification of semantic relationships. The polarity and numeric score of all the features are determined by Senti-WordNet Lexicon. The problem of opinion summarization refers how to relate the opinion words with respect to a certain feature. Probabilistic based model of supervised learning will improve the result that is more flexible and effective.

Keywords: Opinion Mining, Opinion Summarization, Sentiment Analysis, Text Mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
1079 Adaptive Naïve Bayesian Anti-Spam Engine

Authors: Wojciech P. Gajewski

Abstract:

The problem of spam has been seriously troubling the Internet community during the last few years and currently reached an alarming scale. Observations made at CERN (European Organization for Nuclear Research located in Geneva, Switzerland) show that spam mails can constitute up to 75% of daily SMTP traffic. A naïve Bayesian classifier based on a Bag Of Words representation of an email is widely used to stop this unwanted flood as it combines good performance with simplicity of the training and classification processes. However, facing the constantly changing patterns of spam, it is necessary to assure online adaptability of the classifier. This work proposes combining such a classifier with another NBC (naïve Bayesian classifier) based on pairs of adjacent words. Only the latter will be retrained with examples of spam reported by users. Tests are performed on considerable sets of mails both from public spam archives and CERN mailboxes. They suggest that this architecture can increase spam recall without affecting the classifier precision as it happens when only the NBC based on single words is retrained.

Keywords: Text classification, naïve Bayesian classification, spam, email.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4414
1078 A Second Look at Gesture-Based Passwords: Usability and Vulnerability to Shoulder-Surfing Attacks

Authors: Lakshmidevi Sreeramareddy, Komalpreet Kaur, Nane Pothier

Abstract:

For security purposes, it is important to detect passwords entered by unauthorized users. With traditional alphanumeric passwords, if the content of a password is acquired and correctly entered by an intruder, it is impossible to differentiate the password entered by the intruder from those entered by the authorized user because the password entries contain precisely the same character set. However, no two entries for the gesture-based passwords, even those entered by the person who created the password, will be identical. There are always variations between entries, such as the shape and length of each stroke, the location of each stroke, and the speed of drawing. It is possible that passwords entered by the unauthorized user contain higher levels of variations when compared with those entered by the authorized user (the creator). The difference in the levels of variations may provide cues to detect unauthorized entries. To test this hypothesis, we designed an empirical study, collected and analyzed the data with the help of machine-learning algorithms. The results of the study are significant.

Keywords: Authentication, gesture-based passwords, machine learning algorithms, shoulder-surfing attacks, usability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 613
1077 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment

Authors: Zhao Jing, Bai Yongqing, Shi Qiaofang, Zang Yang, Zhang Huaihao

Abstract:

Advances in software technology enable the computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.

Keywords: Upper-division undergraduate, computer-based learning, laboratory instruction, amides, molecular modeling, spectroscopy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 366
1076 Volterra Filter for Color Image Segmentation

Authors: M. B. Meenavathi, K. Rajesh

Abstract:

Color image segmentation plays an important role in computer vision and image processing areas. In this paper, the features of Volterra filter are utilized for color image segmentation. The discrete Volterra filter exhibits both linear and nonlinear characteristics. The linear part smoothes the image features in uniform gray zones and is used for getting a gross representation of objects of interest. The nonlinear term compensates for the blurring due to the linear term and preserves the edges which are mainly used to distinguish the various objects. The truncated quadratic Volterra filters are mainly used for edge preserving along with Gaussian noise cancellation. In our approach, the segmentation is based on K-means clustering algorithm in HSI space. Both the hue and the intensity components are fully utilized. For hue clustering, the special cyclic property of the hue component is taken into consideration. The experimental results show that the proposed technique segments the color image while preserving significant features and removing noise effects.

Keywords: Color image segmentation, HSI space, K–means clustering, Volterra filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855
1075 Finite-Horizon Tracking Control for Repetitive Systems with Uncertain Initial Conditions

Authors: Sung Wook Yun, Yun Jong Choi, Kyong-min Lee, Poogyeon Park*

Abstract:

Repetitive systems stand for a kind of systems that perform a simple task on a fixed pattern repetitively, which are widely spread in industrial fields. Hence, many researchers have been interested in those systems, especially in the field of iterative learning control (ILC). In this paper, we propose a finite-horizon tracking control scheme for linear time-varying repetitive systems with uncertain initial conditions. The scheme is derived both analytically and numerically for state-feedback systems and only numerically for output-feedback systems. Then, it is extended to stable systems with input constraints. All numerical schemes are developed in the forms of linear matrix inequalities (LMIs). A distinguished feature of the proposed scheme from the existing iterative learning control is that the scheme guarantees the tracking performance exactly even under uncertain initial conditions. The simulation results demonstrate the good performance of the proposed scheme.

Keywords: Finite time horizon, linear matrix inequality (LMI), repetitive system, uncertain initial condition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892
1074 Determinants of Knowledge-Based Improving Workflow and Communication within Surgical Team

Authors: J. Bartnicka

Abstract:

Surgical team consists of variety types of medical specialists possessing different kind of knowledge, motivations, personalities or abilities. This together with poor knowledge transfer, lack of information and communication technologies (ICT) implementations in hospitals can cause protraction of patient care processes and even jeopardize patient safety. There is presented in the article the outcomes of studies on communication and workflow in surgical team in the background of different collaboration levels in healthcare system. As a result the five determinants of improving workflow and communication within surgical team were indicated as well as knowledge-based tools and supporting information technology were proposed.

Keywords: Knowledge transfer, absorption abilities, knowledge representation, information and communication technologies, cooperation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
1073 A Cheating Model for Cellular Automata-Based Secret Sharing Schemes

Authors: Borna Jafarpour, Azadeh Nematzadeh, Vahid Kazempour, Babak Sadeghian

Abstract:

Cellular automata have been used for design of cryptosystems. Recently some secret sharing schemes based on linear memory cellular automata have been introduced which are used for both text and image. In this paper, we illustrate that these secret sharing schemes are vulnerable to dishonest participants- collusion. We propose a cheating model for the secret sharing schemes based on linear memory cellular automata. For this purpose we present a novel uniform model for representation of all secret sharing schemes based on cellular automata. Participants can cheat by means of sending bogus shares or bogus transition rules. Cheaters can cooperate to corrupt a shared secret and compute a cheating value added to it. Honest participants are not aware of cheating and suppose the incorrect secret as the valid one. We prove that cheaters can recover valid secret by removing the cheating value form the corrupted secret. We provide methods of calculating the cheating value.

Keywords: Cellular automata, cheating model, secret sharing, threshold scheme.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
1072 Stable Delta-Sigma Modulator with Signal Dependent Forward Path Gain for Industrial Applications

Authors: K. Diwakar, K. Aanandha Saravanan, C. Senthilpari

Abstract:

Higher order ΔΣ Modulator (DSM) is basically an unstable system. The approximate conditions for stability cannot be used for the design of a DSM for industrial applications where risk is involved. The existing second order, single stage, single bit, unity feedback gain , discrete DSM cannot be used for the normalized full range (-1 to +1) of an input signal since the DSM becomes unstable when the input signal is above ±0.55. The stability is also not guaranteed for input signals of amplitude less than ±0.55. In the present paper, the above mentioned second order DSM is modified with input signal dependent forward path gain. The proposed DSM is suitable for industrial applications where one needs the digital representation of the analog input signal, during each sampling period. The proposed DSM can operate almost for the full range of input signals (-0.95 to +0.95) without causing instability, assuming that the second integrator output should not exceed the circuit supply voltage, ±15 Volts.

Keywords: DSM, stability, SNR, state variables.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
1071 Understanding Work Integrated Learning in ICT: A Systems Perspective

Authors: Anneke Harmse, Roelien Goede

Abstract:

Information and communication technology (ICT) is essential to the operation of business, and create many employment opportunities. High volumes of students graduate in ICT however students struggle to find job placement. A discrepancy exists between graduate skills and industry skill requirements. To address the need for ICT skills required, universities must create programs to meet the demands of a changing ICT industry. This requires a partnership between industry, universities and other stakeholders. This situation may be viewed as a critical systems thinking problem situation as there are various role players each with their own needs and requirements. Jackson states a typical critical systems methods has a pluralistic nature. This paper explores the applicability and suitability of Maslow and Dooyeweerd to guide understanding and make recommendations for change in ICT WIL, to foster an all-inclusive understanding of the situation by stakeholders. The above methods provide tools for understanding softer issues beyond the skills required. The study findings suggest that besides skills requirements, a deeper understanding and empowering students from being a student to a professional need to be understood and addressed.

Keywords: Dooyeweerd, Maslow, Work Integrated Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
1070 Visualization of Code Clone Detection Results and the Implementation with Structured Data

Authors: Kazuaki Maeda

Abstract:

This paper describes a code clone visualization method, called FC graph, and the implementation issues. Code clone detection tools usually show the results in a textual representation. If the results are large, it makes a problem to software maintainers with understanding them. One of the approaches to overcome the situation is visualization of code clone detection results. A scatter plot is a popular approach to the visualization. However, it represents only one-to-one correspondence and it is difficult to find correspondence of code clones over multiple files. FC graph represents correspondence among files, code clones and packages in Java. All nodes in FC graph are positioned using force-directed graph layout, which is dynami- cally calculated to adjust the distances of nodes until stabilizing them. We applied FC graph to some open source programs and visualized the results. In the author’s experience, FC graph is helpful to grasp correspondence of code clones over multiple files and also code clones with in a file.

Keywords: code clone detection, program comprehension, software maintenance, visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
1069 The Forensic Swing of Things: The Current Legal and Technical Challenges of IoT Forensics

Authors: Pantaleon Lutta, Mohamed Sedky, Mohamed Hassan

Abstract:

The inability of organizations to put in place management control measures for Internet of Things (IoT) complexities persists to be a risk concern. Policy makers have been left to scamper in finding measures to combat these security and privacy concerns. IoT forensics is a cumbersome process as there is no standardization of the IoT products, no or limited historical data are stored on the devices. This paper highlights why IoT forensics is a unique adventure and brought out the legal challenges encountered in the investigation process. A quadrant model is presented to study the conflicting aspects in IoT forensics. The model analyses the effectiveness of forensic investigation process versus the admissibility of the evidence integrity; taking into account the user privacy and the providers’ compliance with the laws and regulations. Our analysis concludes that a semi-automated forensic process using machine learning, could eliminate the human factor from the profiling and surveillance processes, and hence resolves the issues of data protection (privacy and confidentiality).

Keywords: Cloud forensics, data protection laws, GDPR, IoT forensics, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096
1068 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running

Authors: Elnaz Lashgari, Emel Demircan

Abstract:

Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.

Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1117
1067 Students’ Level of Participation, Critical Thinking, Types of Action and Influencing Factors in Online Forum Environment

Authors: N. I. Bazid, I. N. Umar

Abstract:

Due to the advancement of Internet technology, online learning is widely used in higher education institutions. Online learning offers several means of communication, including online forum. Through online forum, students and instructors are able to discuss and share their knowledge and expertise without having a need to attend the face-to-face, ordinary classroom session. The purposes of this study are to analyze the students’ levels of participation and critical thinking, types of action and factors influencing their participation in online forum. A total of 41 postgraduate students undertaking a course in educational technology from a public university in Malaysia were involved in this study. In this course, the students participated in a weekly online forum as part of the course requirement. Based on the log data file extracted from the online forum, the students’ type of actions (view, add, update, delete posts) and their levels of participation (passive, moderate or active) were identified. In addition, the messages posted in the forum were analyzed to gauge their level of critical thinking. Meanwhile, the factors that might influence their online forum participation were measured using a 24-items questionnaire. Based on the log data, a total of 105 posts were sent by the participants. In addition, the findings show that (i) majority of the students are moderate participants, with an average of two to three posts per person, (ii) viewing posts are the most frequent type of action (85.1%), and followed by adding post (9.7%). Furthermore, based on the posts they made, the most frequent type of critical thinking observed was justification (50 input or 19.0%), followed by linking ideas and interpretation (47 input or 18%), and novelty (38 input or 14.4%). The findings indicate that online forum allows for social interaction and can be used to measure the students’ critical thinking skills. In order to achieve this, monitoring students’ activities in the online forum is recommended.

Keywords: Critical thinking, learning management system, level of online participation, online forum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
1066 Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

Authors: Fanqiang Kong, Chending Bian

Abstract:

In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

Keywords: Hyperspectral unmixing, joint-sparse, low-rank representation, abundance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
1065 A Norm-based Approach for Profiling Business Knowledge

Authors: Nazmona Mat Ali, Kecheng Liu

Abstract:

Knowledge is a key asset for any organisation to sustain competitive advantages, but it is difficult to identify and represent knowledge which is needed to perform activities in business processes. The effective knowledge management and support for relevant business activities definitely gives a huge impact to the performance of the organisation as a whole. This is because that knowledge have the functions of directing, coordinating and controlling actions within business processes. The study has introduced organisational morphology, a norm-based approach by applying semiotic theories which emphasise on the representation of knowledge in norms. This approach is concerned with the identification of activities into three categories: substantive, communication and control activities. All activities are directed by norms; hence three types of norms exist; each is associated to a category of activities. The paper describes the approach briefly and illustrates the application of this approach through a case study of academic activities in higher education institutions. The result of the study shows that the approach provides an effective way to profile business knowledge and the profile enables the understanding and specification of business requirements of an organisation.

Keywords: Business knowledge, Business process, Norms, Semiotics, Organisational morphology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1568
1064 The Academic Achievement of Writing via Project-Based Learning

Authors: Duangkamol Thitivesa

Abstract:

This paper focuses on the use of project work as a pretext for applying the conventions of writing, or the correctness of mechanics, usage, and sentence formation, in a content-based class in a Rajabhat University. Its aim was to explore to what extent the student teachers’ academic achievement of the basic writing features against the 70% attainment target after the use of project is. The organization of work around an agreed theme in which the students reproduce language provided by texts and instructors is expected to enhance students’ correct writing conventions. The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of achievement test and student writing works. The scores in the summative achievement test were analyzed by mean score, standard deviation, and percentage. It was found that the student teachers do more achieve of practicing mechanics and usage, and less in sentence formation. The students benefited from the exposure to texts during conducting the project; however, their automaticity of how and when to form phrases and clauses into simple/complex sentences had room for improvement.

Keywords: Project-Based Learning, Project Work, Writing Conventions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3038
1063 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective

Authors: Hoa Pham

Abstract:

The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.

Keywords: Code switching, L1 use, L2 teaching, Learners’ perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2501
1062 Face Texture Reconstruction for Illumination Variant Face Recognition

Authors: Pengfei Xiong, Lei Huang, Changping Liu

Abstract:

In illumination variant face recognition, existing methods extracting face albedo as light normalized image may lead to loss of extensive facial details, with light template discarded. To improve that, a novel approach for realistic facial texture reconstruction by combining original image and albedo image is proposed. First, light subspaces of different identities are established from the given reference face images; then by projecting the original and albedo image into each light subspace respectively, texture reference images with corresponding lighting are reconstructed and two texture subspaces are formed. According to the projections in texture subspaces, facial texture with normal light can be synthesized. Due to the combination of original image, facial details can be preserved with face albedo. In addition, image partition is applied to improve the synthesization performance. Experiments on Yale B and CMUPIE databases demonstrate that this algorithm outperforms the others both in image representation and in face recognition.

Keywords: texture reconstruction, illumination, face recognition, subspaces

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1480
1061 The Optimization of an Intelligent Traffic Congestion Level Classification from Motorists- Judgments on Vehicle's Moving Patterns

Authors: Thammasak Thianniwet, Satidchoke Phosaard, Wasan Pattara-Atikom

Abstract:

We proposed a technique to identify road traffic congestion levels from velocity of mobile sensors with high accuracy and consistent with motorists- judgments. The data collection utilized a GPS device, a webcam, and an opinion survey. Human perceptions were used to rate the traffic congestion levels into three levels: light, heavy, and jam. Then the ratings and velocity were fed into a decision tree learning model (J48). We successfully extracted vehicle movement patterns to feed into the learning model using a sliding windows technique. The parameters capturing the vehicle moving patterns and the windows size were heuristically optimized. The model achieved accuracy as high as 99.68%. By implementing the model on the existing traffic report systems, the reports will cover comprehensive areas. The proposed method can be applied to any parts of the world.

Keywords: intelligent transportation system (ITS), traffic congestion level, human judgment, decision tree (J48), geographic positioning system (GPS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819
1060 Effects of Computer–Based Instructional Designs among Pupils of Different Music Intelligence Levels

Authors: Aldalalah, M. Osamah, Soon Fook Fong

Abstract:

The purpose of this study was to investigate the effects of computer–based instructional designs, namely modality and redundancy principles on the attitude and learning of music theory among primary pupils of different Music Intelligence levels. The lesson of music theory was developed in three different modes, audio and image (AI), text with image (TI) and audio with image and text (AIT). The independent variables were the three modes of courseware. The moderator variable was music intelligence. The dependent variables were the post test score. ANOVA was used to determine the significant differences of the pretest scores among the three groups. Analyses of covariance (ANCOVA) and Post hoc were carried out to examine the main effects as well as the interaction effects of the independent variables on the dependent variables. High music intelligence pupils performed significantly better than low music intelligence pupils in all the three treatment modes. The AI mode was found to help pupils with low music intelligence significantly more than the TI and AIT modes.

Keywords: Modality, Redundancy, Music theory, Cognitivetheory of multimedia learning, Cognitive load theory, Musicintelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
1059 School Architecture of the Future Supported by Evidence-Based Design and Design Patterns

Authors: Pedro Padilha Gonçalves, Doris C. C. K. Kowaltowski, Benjamin Cleveland

Abstract:

Trends in education affect schooling, needing incorporation into design concepts to support desired learning processes with appropriate and stimulating environments. A design process for school architecture demands research, debates, reflections, and efficient decision-making methods. This paper presents research on evidence-based design, related to middle schools, based on a systematic literature review and the elaboration of a set of architectural design patterns, through a graphic translation of new concepts for classroom configurations, to support programming debates and the synthesis phase of design. The investigation resulted in nine patterns that configure the concepts of boundaries, flexibility, levels of openness, mindsets, neighborhoods, movement and interaction, territories, opportunities for learning, and sightlines for classrooms. The research is part of a continuous investigation of design methods, on contemporary school architecture to produce an architectural pattern matrix based on scientific information translated into an insightful graphic design language.

Keywords: School architecture, design process, design patterns, evidence-based design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 928
1058 Key Competences in Economics and Business Field: The Employers’ Side of the Story

Authors: Bruno Škrinjarić

Abstract:

Rapid technological developments and increase in organizations’ interdependence on international scale are changing the traditional workplace paradigm. A key feature of knowledge based economy is that employers are looking for individuals that possess both specific academic skills and knowledge, and also capability to be proactive and respond to problems creatively and autonomously. The focus of this paper is workers with Economics and Business background and its goals are threefold: (1) to explore wide range of competences and identify which are the most important to employers; (2) to investigate the existence and magnitude of gap between required and possessed level of a certain competency; and (3) to inquire how this gap is connected with performance of a company. A study was conducted on a representative sample of Croatian enterprises during the spring of 2016. Results show that generic, rather than specific, competences are more important to employers and the gap between the relative importance of certain competence and its current representation in existing workforce is greater for generic competences than for specific. Finally, results do not support the hypothesis that this gap is correlated with firms’ performance.

Keywords: Competency gap, competency matching, key competences, firm performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
1057 An Intensional Conceptualization Model for Ontology-Based Semantic Integration

Authors: Fateh Adhnouss, Husam El-Asfour, Kenneth McIsaac, Abdul Mutalib Wahaishi, Idris El-Feghia

Abstract:

Conceptualization is an essential component of semantic ontology-based approaches. There have been several approaches that rely on extensional structure and extensional reduction structure in order to construct conceptualization. In this paper, several limitations are highlighted relating to their applicability to the construction of conceptualizations in dynamic and open environments. These limitations arise from a number of strong assumptions that do not apply to such environments. An intensional structure is strongly argued to be a natural and adequate modeling approach. This paper presents a conceptualization structure based on property, relations, and propositions theory (PRP) to the model ontology that is suitable for open environments. The model extends the First-Order Logic (FOL) notation and defines the formal representation that enables interoperability between software systems and supports semantic integration for software systems in open, dynamic environments.

Keywords: Conceptualization, ontology, extensional structure, intensional structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
1056 A Materialized Approach to the Integration of XML Documents: the OSIX System

Authors: H. Ahmad, S. Kermanshahani, A. Simonet, M. Simonet

Abstract:

The data exchanged on the Web are of different nature from those treated by the classical database management systems; these data are called semi-structured data since they do not have a regular and static structure like data found in a relational database; their schema is dynamic and may contain missing data or types. Therefore, the needs for developing further techniques and algorithms to exploit and integrate such data, and extract relevant information for the user have been raised. In this paper we present the system OSIX (Osiris based System for Integration of XML Sources). This system has a Data Warehouse model designed for the integration of semi-structured data and more precisely for the integration of XML documents. The architecture of OSIX relies on the Osiris system, a DL-based model designed for the representation and management of databases and knowledge bases. Osiris is a viewbased data model whose indexing system supports semantic query optimization. We show that the problem of query processing on a XML source is optimized by the indexing approach proposed by Osiris.

Keywords: Data integration, semi-structured data, views, XML.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1589
1055 Language Policy as an Instrument for Nation Building and Minority Representation: Supporting Cases from South Asia

Authors: Kevin You

Abstract:

Nation-building has been a key consideration in ethno-linguistically diverse post-colonial ‘artificial states’, where ethnic tensions, religious differences and the risk of persecution of minorities are common. Language policy can help with nation-building, but it can also hinder the process. An important challenge is in recognising which language policy to adopt. This article proposes that the designation of a widely used lingua franca as a national language (in an official capacity or otherwise) - in a culturally, ethnically and linguistically diverse post-colonial state - assists its nation-building efforts in the long run. To demonstrate, this paper looks at the cases of Sri Lanka, Indonesia and India: three young nations which together emerged out of the Second World War with comparable colonial experiences, but subsequently adopted different language policies to different effects. Insights presented underscore the significance of inclusive language policy in sustainable nation-building in states with comparable post-colonial experiences.

Keywords: Language policy, South Asia, nation building, Artificial states.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844