Search results for: Generative Adversarial Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2786

Search results for: Generative Adversarial Network

1316 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
1315 Performances Comparison of Neural Architectures for On-Line Speed Estimation in Sensorless IM Drives

Authors: K.Sedhuraman, S.Himavathi, A.Muthuramalingam

Abstract:

The performance of sensor-less controlled induction motor drive depends on the accuracy of the estimated speed. Conventional estimation techniques being mathematically complex require more execution time resulting in poor dynamic response. The nonlinear mapping capability and powerful learning algorithms of neural network provides a promising alternative for on-line speed estimation. The on-line speed estimator requires the NN model to be accurate, simpler in design, structurally compact and computationally less complex to ensure faster execution and effective control in real time implementation. This in turn to a large extent depends on the type of Neural Architecture. This paper investigates three types of neural architectures for on-line speed estimation and their performance is compared in terms of accuracy, structural compactness, computational complexity and execution time. The suitable neural architecture for on-line speed estimation is identified and the promising results obtained are presented.

Keywords: Sensorless IM drives, rotor speed estimators, artificial neural network, feed- forward architecture, single neuron cascaded architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458
1314 MIMO-OFDM Channel Tracking Using a Dynamic ANN Topology

Authors: Manasjyoti Bhuyan, Kandarpa Kumar Sarma

Abstract:

All the available algorithms for blind estimation namely constant modulus algorithm (CMA), Decision-Directed Algorithm (DDA/DFE) suffer from the problem of convergence to local minima. Also, if the channel drifts considerably, any DDA looses track of the channel. So, their usage is limited in varying channel conditions. The primary limitation in such cases is the requirement of certain overhead bits in the transmit framework which leads to wasteful use of the bandwidth. Also such arrangements fail to use channel state information (CSI) which is an important aid in improving the quality of reception. In this work, the main objective is to reduce the overhead imposed by the pilot symbols, which in effect reduces the system throughput. Also we formulate an arrangement based on certain dynamic Artificial Neural Network (ANN) topologies which not only contributes towards the lowering of the overhead but also facilitates the use of the CSI. A 2×2 Multiple Input Multiple Output (MIMO) system is simulated and the performance variation with different channel estimation schemes are evaluated. A new semi blind approach based on dynamic ANN is proposed for channel tracking in varying channel conditions and the performance is compared with perfectly known CSI and least square (LS) based estimation.

Keywords: MIMO, Artificial Neural Network (ANN), CMA, LS, CSI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
1313 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria

Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi

Abstract:

In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.

Keywords: ater management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
1312 Improving Cryptographically Generated Address Algorithm in IPv6 Secure Neighbor Discovery Protocol through Trust Management

Authors: M. Moslehpour, S. Khorsandi

Abstract:

As transition to widespread use of IPv6 addresses has gained momentum, it has been shown to be vulnerable to certain security attacks such as those targeting Neighbor Discovery Protocol (NDP) which provides the address resolution functionality in IPv6. To protect this protocol, Secure Neighbor Discovery (SEND) is introduced. This protocol uses Cryptographically Generated Address (CGA) and asymmetric cryptography as a defense against threats on integrity and identity of NDP. Although SEND protects NDP against attacks, it is computationally intensive due to Hash2 condition in CGA. To improve the CGA computation speed, we parallelized CGA generation process and used the available resources in a trusted network. Furthermore, we focused on the influence of the existence of malicious nodes on the overall load of un-malicious ones in the network. According to the evaluation results, malicious nodes have adverse impacts on the average CGA generation time and on the average number of tries. We utilized a Trust Management that is capable of detecting and isolating the malicious node to remove possible incentives for malicious behavior. We have demonstrated the effectiveness of the Trust Management System in detecting the malicious nodes and hence improving the overall system performance.

Keywords: NDP, SEND, CGA, modifier, malicious node.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
1311 A Materialized View Approach to Support Aggregation Operations over Long Periods in Sensor Networks

Authors: Minsoo Lee, Julee Choi, Sookyung Song

Abstract:

The increasing interest on processing data created by sensor networks has evolved into approaches to implement sensor networks as databases. The aggregation operator, which calculates a value from a large group of data such as computing averages or sums, etc. is an essential function that needs to be provided when implementing such sensor network databases. This work proposes to add the DURING clause into TinySQL to calculate values during a specific long period and suggests a way to implement the aggregation service in sensor networks by applying materialized view and incremental view maintenance techniques that is used in data warehouses. In sensor networks, data values are passed from child nodes to parent nodes and an aggregation value is computed at the root node. As such root nodes need to be memory efficient and low powered, it becomes a problem to recompute aggregate values from all past and current data. Therefore, applying incremental view maintenance techniques can reduce the memory consumption and support fast computation of aggregate values.

Keywords: Aggregation, Incremental View Maintenance, Materialized view, Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
1310 SMaTTS: Standard Malay Text to Speech System

Authors: Othman O. Khalifa, Zakiah Hanim Ahmad, Teddy Surya Gunawan

Abstract:

This paper presents a rule-based text- to- speech (TTS) Synthesis System for Standard Malay, namely SMaTTS. The proposed system using sinusoidal method and some pre- recorded wave files in generating speech for the system. The use of phone database significantly decreases the amount of computer memory space used, thus making the system very light and embeddable. The overall system was comprised of two phases the Natural Language Processing (NLP) that consisted of the high-level processing of text analysis, phonetic analysis, text normalization and morphophonemic module. The module was designed specially for SM to overcome few problems in defining the rules for SM orthography system before it can be passed to the DSP module. The second phase is the Digital Signal Processing (DSP) which operated on the low-level process of the speech waveform generation. A developed an intelligible and adequately natural sounding formant-based speech synthesis system with a light and user-friendly Graphical User Interface (GUI) is introduced. A Standard Malay Language (SM) phoneme set and an inclusive set of phone database have been constructed carefully for this phone-based speech synthesizer. By applying the generative phonology, a comprehensive letter-to-sound (LTS) rules and a pronunciation lexicon have been invented for SMaTTS. As for the evaluation tests, a set of Diagnostic Rhyme Test (DRT) word list was compiled and several experiments have been performed to evaluate the quality of the synthesized speech by analyzing the Mean Opinion Score (MOS) obtained. The overall performance of the system as well as the room for improvements was thoroughly discussed.

Keywords: Natural Language Processing, Text-To-Speech (TTS), Diphone, source filter, low-/ high- level synthesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973
1309 Advanced Geolocation of IP Addresses

Authors: Robert Koch, Mario Golling, Gabi Dreo Rodosek

Abstract:

Tracing and locating the geographical location of users (Geolocation) is used extensively in todays Internet. Whenever we, e.g., request a page from google we are - unless there was a specific configuration made - automatically forwarded to the page with the relevant language and amongst others, dependent on our location identified, specific commercials are presented. Especially within the area of Network Security, Geolocation has a significant impact. Because of the way the Internet works, attacks can be executed from almost everywhere. Therefore, for an attribution, knowledge of the origination of an attack - and thus Geolocation - is mandatory in order to be able to trace back an attacker. In addition, Geolocation can also be used very successfully to increase the security of a network during operation (i.e. before an intrusion actually has taken place). Similar to greylisting in emails, Geolocation allows to (i) correlate attacks detected with new connections and (ii) as a consequence to classify traffic a priori as more suspicious (thus particularly allowing to inspect this traffic in more detail). Although numerous techniques for Geolocation are existing, each strategy is subject to certain restrictions. Following the ideas of Endo et al., this publication tries to overcome these shortcomings with a combined solution of different methods to allow improved and optimized Geolocation. Thus, we present our architecture for improved Geolocation, by designing a new algorithm, which combines several Geolocation techniques to increase the accuracy.

Keywords: IP geolocation, prosecution of computer fraud, attack attribution, target-analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4727
1308 Distributed Estimation Using an Improved Incremental Distributed LMS Algorithm

Authors: Amir Rastegarnia, Mohammad Ali Tinati, Azam Khalili

Abstract:

In this paper we consider the problem of distributed adaptive estimation in wireless sensor networks for two different observation noise conditions. In the first case, we assume that there are some sensors with high observation noise variance (noisy sensors) in the network. In the second case, different variance for observation noise is assumed among the sensors which is more close to real scenario. In both cases, an initial estimate of each sensor-s observation noise is obtained. For the first case, we show that when there are such sensors in the network, the performance of conventional distributed adaptive estimation algorithms such as incremental distributed least mean square (IDLMS) algorithm drastically decreases. In addition, detecting and ignoring these sensors leads to a better performance in a sense of estimation. In the next step, we propose a simple algorithm to detect theses noisy sensors and modify the IDLMS algorithm to deal with noisy sensors. For the second case, we propose a new algorithm in which the step-size parameter is adjusted for each sensor according to its observation noise variance. As the simulation results show, the proposed methods outperforms the IDLMS algorithm in the same condition.

Keywords: Distributes estimation, sensor networks, adaptive filter, IDLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
1307 Secure Power Systems Against Malicious Cyber-Physical Data Attacks: Protection and Identification

Authors: Morteza Talebi, Jianan Wang, Zhihua Qu

Abstract:

The security of power systems against malicious cyberphysical data attacks becomes an important issue. The adversary always attempts to manipulate the information structure of the power system and inject malicious data to deviate state variables while evading the existing detection techniques based on residual test. The solutions proposed in the literature are capable of immunizing the power system against false data injection but they might be too costly and physically not practical in the expansive distribution network. To this end, we define an algebraic condition for trustworthy power system to evade malicious data injection. The proposed protection scheme secures the power system by deterministically reconfiguring the information structure and corresponding residual test. More importantly, it does not require any physical effort in either microgrid or network level. The identification scheme of finding meters being attacked is proposed as well. Eventually, a well-known IEEE 30-bus system is adopted to demonstrate the effectiveness of the proposed schemes.

Keywords: Algebraic Criterion, Malicious Cyber-Physical Data Injection, Protection and Identification, Trustworthy Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1993
1306 Order Optimization of a Telecommunication Distribution Center through Service Lead Time

Authors: Tamás Hartványi, Ferenc Tóth

Abstract:

European telecommunication distribution center performance is measured by service lead time and quality. Operation model is CTO (customized to order) namely, a high mix customization of telecommunication network equipment and parts. CTO operation contains material receiving, warehousing, network and server assembly to order and configure based on customer specifications. Variety of the product and orders does not support mass production structure. One of the success factors to satisfy customer is to have a proper aggregated planning method for the operation in order to have optimized human resources and highly efficient asset utilization. Research will investigate several methods and find proper way to have an order book simulation where practical optimization problem may contain thousands of variables and the simulation running times of developed algorithms were taken into account with high importance. There are two operation research models that were developed, customer demand is given in orders, no change over time, customer demands are given for product types, and changeover time is constant.

Keywords: CTO, aggregated planning, demand simulation, changeover time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
1305 A Neuro Adaptive Control Strategy for Movable Power Source of Proton Exchange Membrane Fuel Cell Using Wavelets

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (Multi Layer Perceptron) method.

Keywords: Adaptive Control, Morlet Wavelets, PEMFC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1304 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
1303 A Survey on Requirements and Challenges of Internet Protocol Television Service over Software Defined Networking

Authors: Esmeralda Hysenbelliu

Abstract:

Over the last years, the demand for high bandwidth services, such as live (IPTV Service) and on-demand video streaming, steadily and rapidly increased. It has been predicted that video traffic (IPTV, VoD, and WEB TV) will account more than 90% of global Internet Protocol traffic that will cross the globe in 2016. Consequently, the importance and consideration on requirements and challenges of service providers faced today in supporting user’s requests for entertainment video across the various IPTV services through virtualization over Software Defined Networks (SDN), is tremendous in the highest stage of attention. What is necessarily required, is to deliver optimized live and on-demand services like Internet Protocol Service (IPTV Service) with low cost and good quality by strictly fulfill the essential requirements of Clients and ISP’s (Internet Service Provider’s) in the same time. The aim of this study is to present an overview of the important requirements and challenges of IPTV service with two network trends on solving challenges through virtualization (SDN and Network Function Virtualization). This paper provides an overview of researches published in the last five years.

Keywords: Challenges, IPTV Service, Requirements, Software Defined Networking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
1302 RF Permeability Test in SOC Structure for Establishing USN(Ubiquitous Sensor Network)

Authors: Byung – wan Jo, Jung – hoon Park, Jang - wook Kim

Abstract:

Recently, as information industry and mobile communication technology are developing, this study is conducted on the new concept of intelligent structures and maintenance techniques that applied wireless sensor network, USN (Ubiquitous Sensor Network), to social infrastructures such as civil and architectural structures on the basis of the concept of Ubiquitous Computing that invisibly provides human life with computing, along with mutually cooperating, compromising and connecting networks each other by having computers within all objects around us. Therefore, the purpose of this study is to investigate the capability of wireless communication of sensor node embedded in reinforced concrete structure with a basic experiment on an electric wave permeability of sensor node by fabricating molding with variables of concrete thickness and steel bars that are mostly used in constructing structures to determine the feasibility of application to constructing structures with USN. At this time, with putting the pitches of steel bars, the thickness of concrete placed, and the intensity of RF signal of a transmitter-receiver as variables and when wireless communication module was installed inside, the possible communication distance of plain concrete and the possible communication distance by the pitches of steel bars was measured in the horizontal and vertical direction respectively. Besides, for the precise measurement of diminution of an electric wave, the magnitude of an electric wave in the range of used frequencies was measured by using Spectrum Analyzer. The phenomenon of diminution of an electric wave was numerically analyzed and the effect of the length of wavelength of frequencies was analyzed by the properties of a frequency band area. As a result of studying the feasibility of an application to constructing structures with wireless sensor, in case of plain concrete, it shows 45cm for the depth of permeability and in case of reinforced concrete with the pitches of 5cm, it shows 37cm and 45cm for the pitches of 15cm.

Keywords: Ubiquitous, Concrete, Permeability, Wireless, Sensor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
1301 The Socio-Economic Impact of the English Leather Glove Industry from the 17th Century to Its Recent Decline

Authors: Frances Turner

Abstract:

Gloves are significant physical objects, being one of the oldest forms of dress. Glove culture is part of every facet of life; its extraordinary history encompasses practicality, and symbolism reflecting a wide range of social practices. The survival of not only the gloves but associated articles enables the possibility to analyse real lives, however so far this area has been largely neglected. Limited information is available to students, researchers, or those involved with the design and making of gloves. There are several museums and independent collectors in England that hold collections of gloves (some from as early as 16th century), machinery, tools, designs and patterns, marketing materials and significant archives which demonstrate the rich heritage of English glove design and manufacturing, being of national significance and worthy of international interest. Through a research glove network which now exists thanks to research grant funding, there is potential for the holders of glove collections to make connections and explore links between these resources to promote a stronger understanding of the significance, breadth and heritage of the English glove industry. The network takes an interdisciplinary approach to bring together interested parties from academia, museums and manufacturing, with expert knowledge of the production, collections, conservation and display of English leather gloves. Academics from diverse arts and humanities disciplines benefit from the opportunities to share research and discuss ideas with network members from non-academic contexts including museums and heritage organisations, industry, and contemporary designers. The fragmented collections when considered in entirety provide an overview of English glove making since earliest times and those who wore them. This paper makes connections and explores links between these resources to promote a stronger understanding of the significance, breadth and heritage of the English Glove industry. The following areas are explored: current content and status of the individual museum collections, potential links, sharing of information histories, social and cultural and relationship to history of fashion design, manufacturing and materials, approaches to maintenance and conservation, access to the collections and strategies for future understanding of their national significance. The facilitation of knowledge exchange and exploration of the collections through the network informs organisations’ future strategies for the maintenance, access and conservation of their collections. By involving industry in the network, it is possible to ensure a contemporary perspective on glove-making in addition to the input from heritage partners. The slow fashion movement and awareness of artisan craft and how these can be preserved and adopted for glove and accessory design is addressed. Artisan leather glove making was a skilled and significant industry in England that has now declined to the point where there is little production remaining utilising the specialist skills that have hardly changed since earliest times. This heritage will be identified and preserved for future generations of the rich cultural history of gloves may be lost.

Keywords: Artisan glove making skills, English leather gloves, glove culture, glove network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 620
1300 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
1299 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua

Abstract:

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may damage ToM by affecting on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks, (1) each patient group performed worse than HC; (2) there were no significant differences between LTLE and RTLE groups; and (3) the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Keywords: Cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
1298 Artificial Intelligence Techniques Applications for Power Disturbances Classification

Authors: K.Manimala, Dr.K.Selvi, R.Ahila

Abstract:

Artificial Intelligence (AI) methods are increasingly being used for problem solving. This paper concerns using AI-type learning machines for power quality problem, which is a problem of general interest to power system to provide quality power to all appliances. Electrical power of good quality is essential for proper operation of electronic equipments such as computers and PLCs. Malfunction of such equipment may lead to loss of production or disruption of critical services resulting in huge financial and other losses. It is therefore necessary that critical loads be supplied with electricity of acceptable quality. Recognition of the presence of any disturbance and classifying any existing disturbance into a particular type is the first step in combating the problem. In this work two classes of AI methods for Power quality data mining are studied: Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs). We show that SVMs are superior to ANNs in two critical respects: SVMs train and run an order of magnitude faster; and SVMs give higher classification accuracy.

Keywords: back propagation network, power quality, probabilistic neural network, radial basis function support vector machine

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557
1297 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1283
1296 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2584
1295 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: Recognition, CNN, convolutional neural network, Yi character, divergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
1294 Study on Practice of Improving Water Quality in Urban Rivers by Diverting Clean Water

Authors: Manjie Li, Xiangju Cheng, Yongcan Chen

Abstract:

With rapid development of industrialization and urbanization, water environmental deterioration is widespread in majority of urban rivers, which seriously affects city image and life satisfaction of residents. As an emergency measure to improve water quality, clean water diversion is introduced for water environmental management. Lubao River and Southwest River, two urban rivers in typical plain tidal river network, are identified as technically and economically feasible for the application of clean water diversion. One-dimensional hydrodynamic-water quality model is developed to simulate temporal and spatial variations of water level and water quality, with satisfactory accuracy. The mathematical model after calibration is applied to investigate hydrodynamic and water quality variations in rivers as well as determine the optimum operation scheme of water diversion. Assessment system is developed for evaluation of positive and negative effects of water diversion, demonstrating the effectiveness of clean water diversion and the necessity of pollution reduction.

Keywords: Assessment system, clean water diversion, hydrodynamic-water quality model, tidal river network, urban rivers, water environment improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 788
1293 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions

Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin

Abstract:

One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.

Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
1292 A Prevalence of Phonological Disorder in Children with Specific Language Impairment

Authors: Etim, Victoria Enefiok, Dada, Oluseyi Akintunde, Bassey Okon

Abstract:

Phonological disorder is a serious and disturbing issue to many parents and teachers. Efforts towards resolving the problem have been undermined by other specific disabilities which were hidden to many regular and special education teachers. It is against this background that this study was motivated to provide data on the prevalence of phonological disorders in children with specific language impairment (CWSLI) as the first step towards critical intervention. The study was a survey of 15 CWSLI from St. Louise Inclusive schools, Ikot Ekpene in Akwa Ibom State of Nigeria. Phonological Processes Diagnostic Scale (PPDS) with 17 short sentences, which cut across the five phonological processes that were examined, were validated by experts in test measurement, phonology and special education. The respondents were made to read the sentences with emphasis on the targeted sounds. Their utterances were recorded and analyzed in the language laboratory using Praat Software. Data were also collected through friendly interactions at different times from the clients. The theory of generative phonology was adopted for the descriptive analysis of the phonological processes. Data collected were analyzed using simple percentage and composite bar chart for better understanding of the result. The study found out that CWSLI exhibited the five phonological processes under investigation. It was revealed that 66.7%, 80%, 73.3%, 80%, and 86.7% of the respondents have severe deficit in fricative stopping, velar fronting, liquid gliding, final consonant deletion and cluster reduction, respectively. It was therefore recommended that a nationwide survey should be carried out to have national statistics of CWSLI with phonological deficits and develop intervention strategies for effective therapy to remediate the disorder.

Keywords: Language disorders, phonology, phonological processes, specific language impairment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1074
1291 A Simplified Approach for Load Flow Analysis of Radial Distribution Network

Authors: K. Vinoth Kumar, M.P. Selvan

Abstract:

This paper presents a simple approach for load flow analysis of a radial distribution network. The proposed approach utilizes forward and backward sweep algorithm based on Kirchoff-s current law (KCL) and Kirchoff-s voltage law (KVL) for evaluating the node voltages iteratively. In this approach, computation of branch current depends only on the current injected at the neighbouring node and the current in the adjacent branch. This approach starts from the end nodes of sub lateral line, lateral line and main line and moves towards the root node during branch current computation. The node voltage evaluation begins from the root node and moves towards the nodes located at the far end of the main, lateral and sub lateral lines. The proposed approach has been tested using four radial distribution systems of different size and configuration and found to be computationally efficient.

Keywords: constant current load, constant impedance load, constant power load, forward–backward sweep, load flow analysis, radial distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2675
1290 Network Based Intrusion Detection and Prevention Systems in IP-Level Security Protocols

Authors: R. Kabila

Abstract:

IPsec has now become a standard information security technology throughout the Internet society. It provides a well-defined architecture that takes into account confidentiality, authentication, integrity, secure key exchange and protection mechanism against replay attack also. For the connectionless security services on packet basis, IETF IPsec Working Group has standardized two extension headers (AH&ESP), key exchange and authentication protocols. It is also working on lightweight key exchange protocol and MIB's for security management. IPsec technology has been implemented on various platforms in IPv4 and IPv6, gradually replacing old application-specific security mechanisms. IPv4 and IPv6 are not directly compatible, so programs and systems designed to one standard can not communicate with those designed to the other. We propose the design and implementation of controlled Internet security system, which is IPsec-based Internet information security system in IPv4/IPv6 network and also we show the data of performance measurement. With the features like improved scalability and routing, security, ease-of-configuration, and higher performance of IPv6, the controlled Internet security system provides consistent security policy and integrated security management on IPsec-based Internet security system.

Keywords: IDS, IPS, IP-Sec, IPv6, IPv4, VPN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4542
1289 Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite

Authors: S. Srinivasa Moorthy, K. Manonmani

Abstract:

The new, polymer composites consisting of e-glass fiber reinforcement with titanium oxide filler in the double bonded unsaturated polyester resin matrix were made. The glass fiber and titanium oxide reinforcement composites were made in three different fiber lengths (3cm, 5cm, and 7cm), filler content (2 wt%, 4 wt%, and 6 wt%) and fiber content (20 wt%, 40 wt%, and 60 wt%). 27 different compositions were fabricated and a sequence of experiments were carried out to determine tensile strength and impact strength. The vital influencing factors fiber length, fiber content and filler content were chosen as 3 factors in 3 levels of Taguchi’s L9 orthogonal array. The influences of parameters were determined for tensile strength and impact strength by Analysis of variance (ANOVA) and S/N ratio. Using Artificial Neural Network (ANN) an expert system was devised to predict the properties of hybrid reinforcement GFRP composites. The predict models were experimentally proved with the maximum coincidence.

Keywords: Analysis of variance (ANOVA), Artificial neural network (ANN), Polymer composites, Taguchi’s orthogonal array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
1288 End-to-End Pyramid Based Method for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: Accelerate MRI scans, image reconstruction, pyramid network, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 336
1287 A Car Parking Monitoring System Using Wireless Sensor Networks

Authors: Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper presents a car parking monitoring system using wireless sensor networks. Multiple sensor nodes and a sink node, a gateway, and a server constitute a wireless network for monitoring a parking lot. Each of the sensor nodes is equipped with a 3-axis AMR sensor and deployed in the center of a parking space. Each sensor node reads its sensor values periodically and transmits the data to the sink node if the current and immediate past sensor values show a difference exceeding a threshold value. The sensor nodes and sink node use the 448 MHz band for wireless communication. Since RF transmission only occurs when sensor values show abrupt changes, the number of RF transmission operations is reduced and battery power can be conserved. The data from the sensor nodes reach the server via the sink node and gateway. The server determines which parking spaces are taken by cars based upon the received sensor data and reference values. The reference values are average sensor values measured by each sensor node when the corresponding parking spot is not occupied by a vehicle. Because the decision making is done by the server, the computational burden of the sensor node is relieved, which helps reduce the duty cycle of the sensor node.

Keywords: Car parking monitoring, magnetometer, sensor node, wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8177