Search results for: Comprehensive learning Particle Swarmoptimization
1719 A Developmental Study of the Flipped Classroom Approach on Students’ Learning in English Language Modules in British University in Egypt
Authors: A. T. Zaki
Abstract:
The flipped classroom approach as a mode of blended learning was formally introduced to students of the English language modules at the British University in Egypt (BUE) at the start of the academic year 2015/2016. This paper aims to study the impact of the flipped classroom approach after three semesters of implementation. It will restrict itself to the examination of students’ achievement rates, student satisfaction, and how different student cohorts have benefited differently from the flipped practice. The paper concludes with recommendations of how the experience can be further developed.
Keywords: Achievement rates, developmental experience, Egypt, flipped classroom, higher education, student cohorts, student satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10851718 Blockchain-Based Assignment Management System
Authors: Amogh Katti, J. Sai Asritha, D. Nivedh, M. Kalyan Srinivas, B. Somnath Chakravarthi
Abstract:
Today's modern education system uses Learning Management System (LMS) portals for the scoring and grading of student performances, to maintain student records, and teachers are instructed to accept assignments through online submissions of .pdf, .doc, .ppt, etc. There is a risk of data tampering in the traditional portals; we will apply the Blockchain model instead of this traditional model to avoid data tampering and also provide a decentralized mechanism for overall fairness. Blockchain technology is a better and also recommended model because of the following features: consensus mechanism, decentralized system, cryptographic encryption, smart contracts, Ethereum blockchain. The proposed system ensures data integrity and tamper-proof assignment submission and grading, which will be helpful for both students and also educators.
Keywords: Education technology, learning management system, decentralized applications, blockchain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481717 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: Case-based reasoning, decision tree, stock selection, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17031716 Development of Multimodal e-Slide Presentation to Support Self-Learning for the Visually Impaired
Authors: Rustam Asnawi, Wan Fatimah Wan Ahmad
Abstract:
Currently electronic slide (e-slide) is one of the most common styles in educational presentation. Unfortunately, the utilization of e-slide for the visually impaired is uncommon since they are unable to see the content of such e-slides which are usually composed of text, images and animation. This paper proposes a model for presenting e-slide in multimodal presentation i.e. using conventional slide concurrent with voicing, in both languages Malay and English. At the design level, live multimedia presentation concept is used, while at the implementation level several components are used. The text content of each slide is extracted using COM component, Microsoft Speech API for voicing the text in English language and the text in Malay language is voiced using dictionary approach. To support the accessibility, an auditory user interface is provided as an additional feature. A prototype of such model named as VSlide has been developed and introduced.
Keywords: presentation, self-learning, slide, visually impaired
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681715 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761714 Collaborative Stylistic Group Project: A Drama Practical Analysis Application
Authors: Omnia F. Elkommos
Abstract:
In the course of teaching stylistics to undergraduate students of the Department of English Language and Literature, Faculty of Arts and Humanities, the linguistic tool kit of theories comes in handy and useful for the better understanding of the different literary genres: Poetry, drama, and short stories. In the present paper, a model of teaching of stylistics is compiled and suggested. It is a collaborative group project technique for use in the undergraduate diverse specialisms (Literature, Linguistics and Translation tracks) class. Students initially are introduced to the different linguistic tools and theories suitable for each literary genre. The second step is to apply these linguistic tools to texts. Students are required to watch videos performing the poems or play, for example, and search the net for interpretations of the texts by other authorities. They should be using a template (prepared by the researcher) that has guided questions leading students along in their analysis. Finally, a practical analysis would be written up using the practical analysis essay template (also prepared by the researcher). As per collaborative learning, all the steps include activities that are student-centered addressing differentiation and considering their three different specialisms. In the process of selecting the proper tools, the actual application and analysis discussion, students are given tasks that request their collaboration. They also work in small groups and the groups collaborate in seminars and group discussions. At the end of the course/module, students present their work also collaboratively and reflect and comment on their learning experience. The module/course uses a drama play that lends itself to the task: ‘The Bond’ by Amy Lowell and Robert Frost. The project results in an interpretation of its theme, characterization and plot. The linguistic tools are drawn from pragmatics, and discourse analysis among others.
Keywords: Applied linguistic theories, collaborative learning, cooperative principle, discourse analysis, drama analysis, group project, online acting performance, pragmatics, speech act theory, stylistics, technology enhanced learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10761713 Estimating an Optimal Neighborhood Size in the Spherical Self-Organizing Feature Map
Authors: Alexandros Leontitsis, Archana P. Sangole
Abstract:
This article presents a short discussion on optimum neighborhood size selection in a spherical selforganizing feature map (SOFM). A majority of the literature on the SOFMs have addressed the issue of selecting optimal learning parameters in the case of Cartesian topology SOFMs. However, the use of a Spherical SOFM suggested that the learning aspects of Cartesian topology SOFM are not directly translated. This article presents an approach on how to estimate the neighborhood size of a spherical SOFM based on the data. It adopts the L-curve criterion, previously suggested for choosing the regularization parameter on problems of linear equations where their right-hand-side is contaminated with noise. Simulation results are presented on two artificial 4D data sets of the coupled Hénon-Ikeda map.Keywords: Parameter estimation, self-organizing feature maps, spherical topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15181712 Electricity Consumption Prediction Model using Neuro-Fuzzy System
Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil
Abstract:
In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.
Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091711 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-learning Environments
Authors: Rachel Baruch
Abstract:
This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.Keywords: ICT tools, e-learning, pre-service teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10931710 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner
Authors: Guy Leshem, Ya'acov Ritov
Abstract:
Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39081709 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.
Keywords: Case based reasoning, classification, expert's knowledge, hybrid model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14181708 Eigenvalues of Particle Bound in Single and Double Delta Function Potentials through Numerical Analysis
Authors: Edward Aris D. Fajardo, Hamdi Muhyuddin D. Barra
Abstract:
This study employs the use of the fourth order Numerov scheme to determine the eigenstates and eigenvalues of particles, electrons in particular, in single and double delta function potentials. For the single delta potential, it is found that the eigenstates could only be attained by using specific potential depths. The depth of the delta potential well has a value that varies depending on the delta strength. These depths are used for each well on the double delta function potential and the eigenvalues are determined. There are two bound states found in the computation, one with a symmetric eigenstate and another one which is antisymmetric.Keywords: Double Delta Potential, Eigenstates, Eigenvalue, Numerov Method, Single Delta Potential
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30611707 Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm
Authors: Refaat M Mohamed, Ayman El-Baz, Aly A. Farag
Abstract:
This paper introduces a novel approach to estimate the clique potentials of Gibbs Markov random field (GMRF) models using the Support Vector Machines (SVM) algorithm and the Mean Field (MF) theory. The proposed approach is based on modeling the potential function associated with each clique shape of the GMRF model as a Gaussian-shaped kernel. In turn, the energy function of the GMRF will be in the form of a weighted sum of Gaussian kernels. This formulation of the GMRF model urges the use of the SVM with the Mean Field theory applied for its learning for estimating the energy function. The approach has been tested on synthetic texture images and is shown to provide satisfactory results in retrieving the synthesizing parameters.Keywords: Image Modeling, MRF, Parameters Estimation, SVM Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16351706 A Game Design Framework for Vocational Education
Authors: Heide Lukosch, Roy Van Bussel, Sebastiaan Meijer
Abstract:
Serious games have proven to be a useful instrument to engage learners and increase motivation. Nevertheless, a broadly accepted, practical instructional design approach to serious games does not exist. In this paper, we introduce the use of an instructional design model that has not been applied to serious games yet, and has some advantages compared to other design approaches. We present the case of mechanics mechatronics education to illustrate the close match with timing and role of knowledge and information that the instructional design model prescribes and how this has been translated to a rigidly structured game design. The structured approach answers the learning needs of applicable knowledge within the target group. It combines advantages of simulations with strengths of entertainment games to foster learner-s motivation in the best possible way. A prototype of the game will be evaluated along a well-respected evaluation method within an advanced test setting including test and control group.Keywords: Serious Gaming, Simulation, Complex Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17651705 A Comprehensive Analysis for Widespread use of Electric Vehicles
Authors: Yu Zhou, Zhaoyang Dong, Xiaomei Zhao
Abstract:
This paper mainly investigates the environmental and economic impacts of worldwide use of electric vehicles. It can be concluded that governments have good reason to promote the use of electric vehicles. First, the global vehicles population is evaluated with the help of grey forecasting model and the amount of oil saving is estimated through approximate calculation. After that, based on the game theory, the amount and types of electricity generation needed by electronic vehicles are established. Finally, some conclusions on the government-s attitudes are drawn.Keywords: electronic vehicles, grey prediction, game theory
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16531704 An Analysis of Classification of Imbalanced Datasets by Using Synthetic Minority Over-Sampling Technique
Authors: Ghada A. Alfattni
Abstract:
Analysing unbalanced datasets is one of the challenges that practitioners in machine learning field face. However, many researches have been carried out to determine the effectiveness of the use of the synthetic minority over-sampling technique (SMOTE) to address this issue. The aim of this study was therefore to compare the effectiveness of the SMOTE over different models on unbalanced datasets. Three classification models (Logistic Regression, Support Vector Machine and Nearest Neighbour) were tested with multiple datasets, then the same datasets were oversampled by using SMOTE and applied again to the three models to compare the differences in the performances. Results of experiments show that the highest number of nearest neighbours gives lower values of error rates.Keywords: Imbalanced datasets, SMOTE, machine learning, logistic regression, support vector machine, nearest neighbour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131703 Component Based Framework for Authoring and Multimedia Training in Mathematics
Authors: Ion Smeureanu, Marian Dardala, Adriana Reveiu
Abstract:
The new programming technologies allow for the creation of components which can be automatically or manually assembled to reach a new experience in knowledge understanding and mastering or in getting skills for a specific knowledge area. The project proposes an interactive framework that permits the creation, combination and utilization of components that are specific to mathematical training in high schools. The main framework-s objectives are: • authoring lessons by the teacher or the students; all they need are simple operating skills for Equation Editor (or something similar, or Latex); the rest are just drag & drop operations, inserting data into a grid, or navigating through menus • allowing sonorous presentations of mathematical texts and solving hints (easier understood by the students) • offering graphical representations of a mathematical function edited in Equation • storing of learning objects in a database • storing of predefined lessons (efficient for expressions and commands, the rest being calculations; allows a high compression) • viewing and/or modifying predefined lessons, according to the curricula The whole thing is focused on a mathematical expressions minicompiler, storing the code that will be later used for different purposes (tables, graphics, and optimisations). Programming technologies used. A Visual C# .NET implementation is proposed. New and innovative digital learning objects for mathematics will be developed; they are capable to interpret, contextualize and react depending on the architecture where they are assembled.Keywords: Adaptor, automatic assembly learning component and user control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17021702 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision making has not been far-fetched. Proper classification of these textual information in a given context has also been very difficult. As a result, a systematic review was conducted from previous literature on sentiment classification and AI-based techniques. The study was done in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that could correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy using the knowledge gain from the evaluation of different artificial intelligence techniques reviewed. The study evaluated over 250 articles from digital sources like ACM digital library, Google Scholar, and IEEE Xplore; and whittled down the number of research to 52 articles. Findings revealed that deep learning approaches such as Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Bidirectional Encoder Representations from Transformer (BERT), and Long Short-Term Memory (LSTM) outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also required to develop a robust sentiment classifier. Results also revealed that data can be obtained from places like Twitter, movie reviews, Kaggle, Stanford Sentiment Treebank (SST), and SemEval Task4 based on the required domain. The hybrid deep learning techniques like CNN+LSTM, CNN+ Gated Recurrent Unit (GRU), CNN+BERT outperformed single deep learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of development simplicity and AI-based library functionalities. Finally, the study recommended the findings obtained for building robust sentiment classifier in the future.
Keywords: Artificial Intelligence, Natural Language Processing, Sentiment Analysis, Social Network, Text.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5921701 Optimization of Three-dimensional Electrical Performance in a Solid Oxide Fuel Cell Stack by a Neural Network
Authors: Shih-Bin Wang, Ping Yuan, Syu-Fang Liu, Ming-Jun Kuo
Abstract:
By the application of an improved back-propagation neural network (BPNN), a model of current densities for a solid oxide fuel cell (SOFC) with 10 layers is established in this study. To build the learning data of BPNN, Taguchi orthogonal array is applied to arrange the conditions of operating parameters, which totally 7 factors act as the inputs of BPNN. Also, the average current densities achieved by numerical method acts as the outputs of BPNN. Comparing with the direct solution, the learning errors for all learning data are smaller than 0.117%, and the predicting errors for 27 forecasting cases are less than 0.231%. The results show that the presented model effectively builds a mathematical algorithm to predict performance of a SOFC stack immediately in real time. Also, the calculating algorithms are applied to proceed with the optimization of the average current density for a SOFC stack. The operating performance window of a SOFC stack is found to be between 41137.11 and 53907.89. Furthermore, an inverse predicting model of operating parameters of a SOFC stack is developed here by the calculating algorithms of the improved BPNN, which is proved to effectively predict operating parameters to achieve a desired performance output of a SOFC stack.Keywords: a SOFC stack, BPNN, inverse predicting model of operating parameters, optimization of the average current density
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13631700 Causal Relation Identification Using Convolutional Neural Networks and Knowledge Based Features
Authors: Tharini N. de Silva, Xiao Zhibo, Zhao Rui, Mao Kezhi
Abstract:
Causal relation identification is a crucial task in information extraction and knowledge discovery. In this work, we present two approaches to causal relation identification. The first is a classification model trained on a set of knowledge-based features. The second is a deep learning based approach training a model using convolutional neural networks to classify causal relations. We experiment with several different convolutional neural networks (CNN) models based on previous work on relation extraction as well as our own research. Our models are able to identify both explicit and implicit causal relations as well as the direction of the causal relation. The results of our experiments show a higher accuracy than previously achieved for causal relation identification tasks.
Keywords: Causal relation identification, convolutional neural networks, natural Language Processing, Machine Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22561699 A Unification and Relativistic Correction for Boltzmann’s Law
Authors: Lloyd G. Allred
Abstract:
The distribution of velocities of particles in plasma is a well understood discipline of plasma physics. Boltzmann’s law and the Maxwell-Boltzmann distribution describe the distribution of velocity of a particle in plasma as a function of mass and temperature. Particles with the same mass tend to have the same velocity. By expressing the same law in terms of energy alone, the author obtains a distribution independent of mass. In summary, for particles in plasma, the energies tend to equalize, independent of the masses of the individual particles. For high-energy plasma, the original law predicts velocities greater than the speed of light. If one uses Einstein’s formula for energy (E=mc2), then a relativistic correction is not required.
Keywords: Cosmology, EMP, Euclidean, plasma physics, relativity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10701698 Structural, Optical and Ferroelectric Properties of BaTiO3 Sintered at Different Temperatures
Authors: Anurag Gaur, Neha Sharma
Abstract:
In this work, we have synthesized BaTiO3 via sol gel method by sintering at different temperatures (600, 700, 800, 900, 10000C) and studied their structural, optical and ferroelectric properties through X-ray diffraction (XRD), UV-Vis spectrophotometer and PE Loop Tracer. X-ray diffraction patterns of barium titanate samples show that the peaks of the diffractogram are successfully indexed with the tetragonal and cubic structure of BaTiO3. The Optical band gap calculated through UV Visible spectrophotometer varies from 4.37 to 3.80 eV for the samples sintered at 600 to 10000C, respectively. The particle size calculated through transmission electron microscopy varies from 20 to 40 nm for the samples sintered at 600 to 10000C, respectively. Moreover, it has been observed that the ferroelectricity increases as we increase the sintering temperature.
Keywords: Nanostructures, Ferroelectricity, Sol-gel method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37491697 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing
Authors: Fazl Ullah, Rahmat Ullah
Abstract:
This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.
Keywords: Fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661696 Problems of Lifelong Education Course in Information and Communication Technology
Authors: Hisham Md Suhadi, Faaizah Shahbodin, Jamaluddin Hashim
Abstract:
The study is the way to identify the problems that occur in organizing short course’s lifelong learning in the information and communication technology (ICT) education which are faced by the lecturer and staff at the Mara Skill Institute and Industrial Training Institute in Pahang Malaysia. The important aspects of these issues are classified to five which are selecting the courses administrative. Fifty lecturers and staff were selected as a respondent. The sample is selected by using the non-random sampling method purpose sampling. The questionnaire is used as a research instrument and divided into five main parts. All the data that gain from the questionnaire are analyzed by using the SPSS in term of mean, standard deviation and percentage. The findings showed, there are the problems occur in organizing the short course for lifelong learning in ICT education.Keywords: Lifelong education, information and communication technology (ICT), short course, ICT education, courses administrative.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18091695 Application of a Theoretical Framework as a Context for a Travel Behavior Change Policy Intervention
Authors: F. Moghtaderi, M. Burke, J. Troelsen
Abstract:
There has been a significant decline in active travel and a massive increase in the use of car dependent travel in many countries during the past two decades. Evidential risks for people’s physical and mental health problems are correlated with this increased use of motorized travel. These health related problems range from overweight and obesity to increased air pollution. In response to these rising concerns health professionals, traffic planers, local authorities and others have introduced a variety of initiatives to counterbalance the dominance of cars for daily journeys. However, the nature of travel behavior change interventions, which aim to reduce car use, are very complex and challenging regarding their interactions with human behavior. To change travel behavior at least two aspects have to be taken into consideration. First, how to alter attitudes and perceptions toward the sustainable and healthy modes of travel, in competition with experiences of private car use. And second, how to make these behavior change processes irreversible and sustainable. There are no comprehensive models available to guide policy interventions to increase the level of success of travel behavior change interventions across both these dimensions. A comprehensive theoretical framework is required in the effort to optimize how to facilitate and guide the processes of data collection and analysis to achieve the best possible guidelines for policy makers. Regarding the gaps in the travel behavior change research literature, this paper attempted to identify and suggest a multidimensional framework in order to facilitate planning the implemented travel behavior change interventions. A structured mixed-method model is suggested to improve the analytic power of the results according to the complexity of human behavior. In order to recognize people’s attitudes towards a specific travel mode, the Theory of Planned Behavior (TPB) was operationalized. But in order to capture decision making processes the Transtheoretical model of Behavior Change (TTM) was also used. Consequently, the combination of these two theories (TTM and TPB) has resulted in a synthesis with appropriate concepts to identify and design an implemented travel behavior change interventions.
Keywords: Behavior change theories, Theoretical framework, Travel behavior change interventions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28671694 Game based Learning to Enhance Cognitive and Physical Capabilities of Elderly People: Concepts and Requirements
Authors: Aurelie Aurilla Bechina Arntzen
Abstract:
The last decade has seen an early majority of people The last decade, the role of the of the information communication technologies has increased in improving the social and business life of people. Today, it is recognized that game could contribute to enhance virtual rehabilitation by better engaging patients. Our research study aims to develop a game based system enhancing cognitive and physical capabilities of elderly people. To this end, the project aims to develop a low cost hand held system based on existing game such as Wii, PSP, or Xbox. This paper discusses the concepts and requirements for developing such game for elderly people. Based on the requirement elicitation, we intend to develop a prototype related to sport and dance activities.Keywords: Elderly people, Game based learning system, Health systems, rehabilitation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25151693 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning
Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold
Abstract:
The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.
Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6391692 Muscle: The Tactile Texture Designed for the Blind
Authors: Chantana Insra
Abstract:
The research objective focuses on creating a prototype media of the tactile texture of muscles for educational institutes to help visually impaired students learn massage extra learning materials further than the ordinary curriculum. This media is designed as an extra learning material. The population in this study was 30 blinded students between 4th - 6th grades who were able to read Braille language. The research was conducted during the second semester in 2012 at The Bangkok School for the Blind. The method in choosing the population in the study was purposive sampling. The methodology of the research includes collecting data related to visually impaired people, the production of the tactile texture media, human anatomy and Thai traditional massage from literature reviews and field studies. This information was used for analyzing and designing 14 tactile texture pictures presented to experts to evaluate and test the media.
Keywords: Blind, Tactile Texture, Muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18301691 Future-Proofing the Workforce: A Case Study of Integrated Human Capability Frameworks to Support Business Success
Authors: P. Paliadelis, A. Jones, G. Campbell
Abstract:
This paper discusses the development of co-designed capability frameworks for two large multinational organizations led by a university department. The aim was to create evidence-based, integrated capability frameworks that could define, identify, and measure human skill capabilities independent of specific work roles. The frameworks capture and cluster human skills required in the workplace and capture their application at various levels of mastery. Identified capability gaps inform targeted learning opportunities for workers to enhance their employability skills. The paper highlights the value of this evidence-based framework development process in capturing, defining, and assessing desired human-focused capabilities for organizational growth and success.
Keywords: Capability framework, human skills, work-integrated learning, credentialing, digital badging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 451690 Feature Based Unsupervised Intrusion Detection
Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein
Abstract:
The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.
Keywords: Information Gain (IG), Intrusion Detection System (IDS), K-means Clustering, Weka.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2774