Search results for: Siamese Neural Network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3077

Search results for: Siamese Neural Network

2957 Spacecraft Neural Network Control System Design using FPGA

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

Keywords: Spacecraft, neural network, FPGA, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
2956 Performance Evaluation of Neural Network Prediction for Data Prefetching in Embedded Applications

Authors: Sofien Chtourou, Mohamed Chtourou, Omar Hammami

Abstract:

Embedded systems need to respect stringent real time constraints. Various hardware components included in such systems such as cache memories exhibit variability and therefore affect execution time. Indeed, a cache memory access from an embedded microprocessor might result in a cache hit where the data is available or a cache miss and the data need to be fetched with an additional delay from an external memory. It is therefore highly desirable to predict future memory accesses during execution in order to appropriately prefetch data without incurring delays. In this paper, we evaluate the potential of several artificial neural networks for the prediction of instruction memory addresses. Neural network have the potential to tackle the nonlinear behavior observed in memory accesses during program execution and their demonstrated numerous hardware implementation emphasize this choice over traditional forecasting techniques for their inclusion in embedded systems. However, embedded applications execute millions of instructions and therefore millions of addresses to be predicted. This very challenging problem of neural network based prediction of large time series is approached in this paper by evaluating various neural network architectures based on the recurrent neural network paradigm with pre-processing based on the Self Organizing Map (SOM) classification technique.

Keywords: Address, data set, memory, prediction, recurrentneural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
2955 A Video Watermarking Algorithm Based on Chaotic and Wavelet Neural Network

Authors: Jiadong Liang

Abstract:

This paper presented a video watermarking algorithm based on wavelet chaotic neural network. First, to enhance binary image’s security, the algorithm encrypted it with double chaotic based on Arnold and Logistic map, Then, the host video was divided into some equal frames and distilled the key frame through chaotic sequence which generated by Logistic. Meanwhile, we distilled the low frequency coefficients of luminance component and self-adaptively embedded the processed image watermark into the low frequency coefficients of the wavelet transformed luminance component with the wavelet neural network. The experimental result suggested that the presented algorithm has better invisibility and robustness against noise, Gaussian filter, rotation, frame loss and other attacks.

Keywords: Video watermark, double chaotic encryption, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
2954 Application of the Neural Network to the Synthesis of Vertical Dipole Antenna over Imperfect Ground

Authors: Kais Hafsaoui

Abstract:

In this paper, we propose to study the synthesis of the vertical dipole antenna over imperfect ground. The synthesis implementation-s method for this type of antenna permits to approach the appropriated radiance-s diagram. The used approach is based on neural network. Our main contribution in this paper is the extension of a synthesis model of this vertical dipole antenna over imperfect ground.

Keywords: Vertical dipole antenna, imperfect ground, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1206
2953 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

Authors: Hamid Reza Boveiri

Abstract:

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1725
2952 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis

Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.

Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
2951 Effective Sonar Target Classification via Parallel Structure of Minimal Resource Allocation Network

Authors: W.S. Lim, M.V.C. Rao

Abstract:

In this paper, the processing of sonar signals has been carried out using Minimal Resource Allocation Network (MRAN) and a Probabilistic Neural Network (PNN) in differentiation of commonly encountered features in indoor environments. The stability-plasticity behaviors of both networks have been investigated. The experimental result shows that MRAN possesses lower network complexity but experiences higher plasticity than PNN. An enhanced version called parallel MRAN (pMRAN) is proposed to solve this problem and is proven to be stable in prediction and also outperformed the original MRAN.

Keywords: Ultrasonic sensing, target classification, minimalresource allocation network (MRAN), probabilistic neural network(PNN), stability-plasticity dilemma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
2950 Detection of Actuator Faults for an Attitude Control System using Neural Network

Authors: S. Montenegro, W. Hu

Abstract:

The objective of this paper is to develop a neural network-based residual generator to detect the fault in the actuators for a specific communication satellite in its attitude control system (ACS). First, a dynamic multilayer perceptron network with dynamic neurons is used, those neurons correspond a second order linear Infinite Impulse Response (IIR) filter and a nonlinear activation function with adjustable parameters. Second, the parameters from the network are adjusted to minimize a performance index specified by the output estimated error, with the given input-output data collected from the specific ACS. Then, the proposed dynamic neural network is trained and applied for detecting the faults injected to the wheel, which is the main actuator in the normal mode for the communication satellite. Then the performance and capabilities of the proposed network were tested and compared with a conventional model-based observer residual, showing the differences between these two methods, and indicating the benefit of the proposed algorithm to know the real status of the momentum wheel. Finally, the application of the methods in a satellite ground station is discussed.

Keywords: Satellite, Attitude Control, Momentum Wheel, Neural Network, Fault Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1992
2949 Application of the Neural Network to the Synthesis of Multibeam Antennas Arrays

Authors: Ridha Ghayoula, Mbarek Traii, Ali Gharsallah

Abstract:

In this paper, we intend to study the synthesis of the multibeam arrays. The synthesis implementation-s method for this type of arrays permits to approach the appropriated radiance-s diagram. The used approach is based on neural network that are capable to model the multibeam arrays, consider predetermined general criteria-s, and finally it permits to predict the appropriated diagram from the neural model. Our main contribution in this paper is the extension of a synthesis model of these multibeam arrays.

Keywords: Multibeam, modelling, neural networks, synthesis, antennas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1228
2948 Use of Radial Basis Function Neural Network for Bearing Pressure Prediction of Strip Footing on Reinforced Granular Bed Overlying Weak Soil

Authors: Srinath Shetty K., Shivashankar R., Rashmi P. Shetty

Abstract:

Earth reinforcing techniques have become useful and economical to solve problems related to difficult grounds and provide satisfactory foundation performance. In this context, this paper uses radial basis function neural network (RBFNN) for predicting the bearing pressure of strip footing on reinforced granular bed overlying weak soil. The inputs for the neural network models included plate width, thickness of granular bed and number of layers of reinforcements, settlement ratio, water content, dry density, cohesion and angle of friction. The results indicated that RBFNN model exhibited more than 84 % prediction accuracy, thereby demonstrating its application in a geotechnical problem.

Keywords: Bearing pressure, granular bed, radial basis function neural network, strip footing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
2947 Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling

Authors: Prof. Chokri SLIM

Abstract:

A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.

Keywords: Neural network, fuzzy inference, machine learning, fuzzy modeling and rule extraction, support vector regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16687
2946 Antenna Array Beamforming Using Neural Network

Authors: Maja Sarevska, Abdel-Badeeh M. Salem

Abstract:

This paper considers the problem of Null-Steering beamforming using Neural Network (NN) approach for antenna array system. Two cases are presented. First, unlike the other authors, the estimated Direction Of Arrivals (DOAs) are used for antenna array weights NN-based determination and the imprecise DOAs estimations are taken into account. Second, the blind null-steering beamforming is presented. In this case the antenna array outputs are presented at the input of the NN without DOAs estimation. The results of computer simulations will show much better relative mean error performances of the first NN approach compared to the NNbased blind beamforming.

Keywords: Beamforming, DOAs, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
2945 Forecast of Polyethylene Properties in the Gas Phase Polymerization Aided by Neural Network

Authors: Nasrin Bakhshizadeh, Ashkan Forootan

Abstract:

A major problem that affects the quality control of polymer in the industrial polymerization is the lack of suitable on-line measurement tools to evaluate the properties of the polymer such as melt and density indices. Controlling the polymerization in ordinary method is performed manually by taking samples, measuring the quality of polymer in the lab and registry of results. This method is highly time consuming and leads to producing large number of incompatible products. An online application for estimating melt index and density proposed in this study is a neural network based on the input-output data of the polyethylene production plant. Temperature, the level of reactors' bed, the intensity of ethylene mass flow, hydrogen and butene-1, the molar concentration of ethylene, hydrogen and butene-1 are used for the process to establish the neural model. The neural network is taught based on the actual operational data and back-propagation and Levenberg-Marquart techniques. The simulated results indicate that the neural network process model established with three layers (one hidden layer) for forecasting the density and the four layers for the melt index is able to successfully predict those quality properties.

Keywords: Polyethylene, polymerization, density, melt index, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 687
2944 Wavelet - Based Classification of Outdoor Natural Scenes by Resilient Neural Network

Authors: Amitabh Wahi, Sundaramurthy S.

Abstract:

Natural outdoor scene classification is active and promising research area around the globe. In this study, the classification is carried out in two phases. In the first phase, the features are extracted from the images by wavelet decomposition method and stored in a database as feature vectors. In the second phase, the neural classifiers such as back-propagation neural network (BPNN) and resilient back-propagation neural network (RPNN) are employed for the classification of scenes. Four hundred color images are considered from MIT database of two classes as forest and street. A comparative study has been carried out on the performance of the two neural classifiers BPNN and RPNN on the increasing number of test samples. RPNN showed better classification results compared to BPNN on the large test samples.

Keywords: BPNN, Classification, Feature extraction, RPNN, Wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943
2943 Generator Damage Recognition Based on Artificial Neural Network

Authors: Chang-Hung Hsu, Chun-Yao Lee, Guan-Lin Liao, Yung-Tsan Jou, Jin-Maun Ho, Yu-Hua Hsieh, Yi-Xing Shen

Abstract:

This article simulates the wind generator set which has two fault bearing collar rail destruction and the gear box oil leak fault. The electric current signal which produced by the generator, We use Empirical Mode Decomposition (EMD) as well as Fast Fourier Transform (FFT) obtains the frequency range-s signal figure and characteristic value. The last step is use a kind of Artificial Neural Network (ANN) classifies which determination fault signal's type and reason. The ANN purpose of the automatic identification wind generator set fault..

Keywords: Wind-driven generator, Fast Fourier Transform, Neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1761
2942 Using Artificial Neural Network Algorithm for Voltage Stability Improvement

Authors: Omid Borazjani, Mahmoud Roosta, Khodakhast Isapour, Ali Reza Rajabi

Abstract:

This paper presents an application of Artificial Neural Network (ANN) algorithm for improving power system voltage stability. The training data is obtained by solving several normal and abnormal conditions using the Linear Programming technique. The selected objective function gives minimum deviation of the reactive power control variables, which leads to the maximization of minimum Eigen value of load flow Jacobian. The considered reactive power control variables are switchable VAR compensators, OLTC transformers and excitation of generators. The method has been implemented on a modified IEEE 30-bus test system. The results obtain from the test clearly show that the trained neural network is capable of improving the voltage stability in power system with a high level of precision and speed.

Keywords: Artificial Neural Network (ANN), Load Flow, Voltage Stability, Power Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
2941 Rock Textures Classification Based on Textural and Spectral Features

Authors: Tossaporn Kachanubal, Somkait Udomhunsakul

Abstract:

In this paper, we proposed a method to classify each type of natural rock texture. Our goal is to classify 26 classes of rock textures. First, we extract five features of each class by using principle component analysis combining with the use of applied spatial frequency measurement. Next, the effective node number of neural network was tested. We used the most effective neural network in classification process. The results from this system yield quite high in recognition rate. It is shown that high recognition rate can be achieved in separation of 26 stone classes.

Keywords: Texture classification, SFM, neural network, rock texture classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
2940 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: Network Intrusion Detection, Machine learning, Artificial Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2078
2939 Modified Levenberg-Marquardt Method for Neural Networks Training

Authors: Amir Abolfazl Suratgar, Mohammad Bagher Tavakoli, Abbas Hoseinabadi

Abstract:

In this paper a modification on Levenberg-Marquardt algorithm for MLP neural network learning is proposed. The proposed algorithm has good convergence. This method reduces the amount of oscillation in learning procedure. An example is given to show usefulness of this method. Finally a simulation verifies the results of proposed method.

Keywords: Levenberg-Marquardt, modification, neural network, variable learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5049
2938 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs

Authors: Surinder Deswal, Mahesh Pal

Abstract:

An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.

Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
2937 Optimum Surface Roughness Prediction in Face Milling of High Silicon Stainless Steel

Authors: M. Farahnakian, M.R. Razfar, S. Elhami-Joosheghan

Abstract:

This paper presents an approach for the determination of the optimal cutting parameters (spindle speed, feed rate, depth of cut and engagement) leading to minimum surface roughness in face milling of high silicon stainless steel by coupling neural network (NN) and Electromagnetism-like Algorithm (EM). In this regard, the advantages of statistical experimental design technique, experimental measurements, artificial neural network, and Electromagnetism-like optimization method are exploited in an integrated manner. To this end, numerous experiments on this stainless steel were conducted to obtain surface roughness values. A predictive model for surface roughness is created by using a back propogation neural network, then the optimization problem was solved by using EM optimization. Additional experiments were performed to validate optimum surface roughness value predicted by EM algorithm. It is clearly seen that a good agreement is observed between the predicted values by EM coupled with feed forward neural network and experimental measurements. The obtained results show that the EM algorithm coupled with back propogation neural network is an efficient and accurate method in approaching the global minimum of surface roughness in face milling.

Keywords: cutting parameters, face milling, surface roughness, artificial neural network, Electromagnetism-like algorithm,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
2936 A Neural Network Approach in Predicting the Blood Glucose Level for Diabetic Patients

Authors: Zarita Zainuddin, Ong Pauline, C. Ardil

Abstract:

Diabetes Mellitus is a chronic metabolic disorder, where the improper management of the blood glucose level in the diabetic patients will lead to the risk of heart attack, kidney disease and renal failure. This paper attempts to enhance the diagnostic accuracy of the advancing blood glucose levels of the diabetic patients, by combining principal component analysis and wavelet neural network. The proposed system makes separate blood glucose prediction in the morning, afternoon, evening and night intervals, using dataset from one patient covering a period of 77 days. Comparisons of the diagnostic accuracy with other neural network models, which use the same dataset are made. The comparison results showed overall improved accuracy, which indicates the effectiveness of this proposed system.

Keywords: Diabetes Mellitus, principal component analysis, time-series, wavelet neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2989
2935 A New Face Recognition Method using PCA, LDA and Neural Network

Authors: A. Hossein Sahoolizadeh, B. Zargham Heidari, C. Hamid Dehghani

Abstract:

In this paper, a new face recognition method based on PCA (principal Component Analysis), LDA (Linear Discriminant Analysis) and neural networks is proposed. This method consists of four steps: i) Preprocessing, ii) Dimension reduction using PCA, iii) feature extraction using LDA and iv) classification using neural network. Combination of PCA and LDA is used for improving the capability of LDA when a few samples of images are available and neural classifier is used to reduce number misclassification caused by not-linearly separable classes. The proposed method was tested on Yale face database. Experimental results on this database demonstrated the effectiveness of the proposed method for face recognition with less misclassification in comparison with previous methods.

Keywords: Face recognition Principal component analysis, Linear discriminant analysis, Neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3213
2934 Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

Authors: M. Zerikat, M. Bendjebbar, N. Benouzza

Abstract:

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Keywords: Induction motor, fuzzy-logic control, neural network control, indirect field oriented control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2461
2933 Energy Distribution of EEG Signals: EEG Signal Wavelet-Neural Network Classifier

Authors: I. Omerhodzic, S. Avdakovic, A. Nuhanovic, K. Dizdarevic

Abstract:

In this paper, a wavelet-based neural network (WNN) classifier for recognizing EEG signals is implemented and tested under three sets EEG signals (healthy subjects, patients with epilepsy and patients with epileptic syndrome during the seizure). First, the Discrete Wavelet Transform (DWT) with the Multi-Resolution Analysis (MRA) is applied to decompose EEG signal at resolution levels of the components of the EEG signal (δ, θ, α, β and γ) and the Parseval-s theorem are employed to extract the percentage distribution of energy features of the EEG signal at different resolution levels. Second, the neural network (NN) classifies these extracted features to identify the EEGs type according to the percentage distribution of energy features. The performance of the proposed algorithm has been evaluated using in total 300 EEG signals. The results showed that the proposed classifier has the ability of recognizing and classifying EEG signals efficiently.

Keywords: Epilepsy, EEG, Wavelet transform, Energydistribution, Neural Network, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1977
2932 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: Keypoint detection, curve feature, convolutional neural network, press-fit assembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
2931 Hybrid Machine Learning Approach for Text Categorization

Authors: Nerijus Remeikis, Ignas Skucas, Vida Melninkaite

Abstract:

Text categorization - the assignment of natural language documents to one or more predefined categories based on their semantic content - is an important component in many information organization and management tasks. Performance of neural networks learning is known to be sensitive to the initial weights and architecture. This paper discusses the use multilayer neural network initialization with decision tree classifier for improving text categorization accuracy. An adaptation of the algorithm is proposed in which a decision tree from root node until a final leave is used for initialization of multilayer neural network. The experimental evaluation demonstrates this approach provides better classification accuracy with Reuters-21578 corpus, one of the standard benchmarks for text categorization tasks. We present results comparing the accuracy of this approach with multilayer neural network initialized with traditional random method and decision tree classifiers.

Keywords: Text categorization, decision trees, neural networks, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
2930 Comparison of Neural Network and Logistic Regression Methods to Predict Xerostomia after Radiotherapy

Authors: Hui-Min Ting, Tsair-Fwu Lee, Ming-Yuan Cho, Pei-Ju Chao, Chun-Ming Chang, Long-Chang Chen, Fu-Min Fang

Abstract:

To evaluate the ability to predict xerostomia after radiotherapy, we constructed and compared neural network and logistic regression models. In this study, 61 patients who completed a questionnaire about their quality of life (QoL) before and after a full course of radiation therapy were included. Based on this questionnaire, some statistical data about the condition of the patients’ salivary glands were obtained, and these subjects were included as the inputs of the neural network and logistic regression models in order to predict the probability of xerostomia. Seven variables were then selected from the statistical data according to Cramer’s V and point-biserial correlation values and were trained by each model to obtain the respective outputs which were 0.88 and 0.89 for AUC, 9.20 and 7.65 for SSE, and 13.7% and 19.0% for MAPE, respectively. These parameters demonstrate that both neural network and logistic regression methods are effective for predicting conditions of parotid glands.

Keywords: NPC, ANN, logistic regression, xerostomia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
2929 Artificial Neural Networks for Cognitive Radio Network: A Survey

Authors: Vishnu Pratap Singh Kirar

Abstract:

The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.

Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106
2928 Hand Gesture Recognition: Sign to Voice System (S2V)

Authors: Oi Mean Foong, Tan Jung Low, Satrio Wibowo

Abstract:

Hand gesture is one of the typical methods used in sign language for non-verbal communication. It is most commonly used by people who have hearing or speech problems to communicate among themselves or with normal people. Various sign language systems have been developed by manufacturers around the globe but they are neither flexible nor cost-effective for the end users. This paper presents a system prototype that is able to automatically recognize sign language to help normal people to communicate more effectively with the hearing or speech impaired people. The Sign to Voice system prototype, S2V, was developed using Feed Forward Neural Network for two-sequence signs detection. Different sets of universal hand gestures were captured from video camera and utilized to train the neural network for classification purpose. The experimental results have shown that neural network has achieved satisfactory result for sign-to-voice translation.

Keywords: Hand gesture detection, neural network, signlanguage, sequence detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857