Search results for: medical image
612 Data Integrity: Challenges in Health Information Systems in South Africa
Authors: T. Thulare, M. Herselman, A. Botha
Abstract:
Poor system use, including inappropriate design of health information systems, causes difficulties in communication with patients and increased time spent by healthcare professionals in recording the necessary health information for medical records. System features like pop-up reminders, complex menus, and poor user interfaces can make medical records far more time consuming than paper cards as well as affect decision-making processes. Although errors associated with health information and their real and likely effect on the quality of care and patient safety have been documented for many years, more research is needed to measure the occurrence of these errors and determine the causes to implement solutions. Therefore, the purpose of this paper is to identify data integrity challenges in hospital information systems through a scoping review and based on the results provide recommendations on how to manage these. Only 34 papers were found to be most suitable out of 297 publications initially identified in the field. The results indicated that human and computerized systems are the most common challenges associated with data integrity and factors such as policy, environment, health workforce, and lack of awareness attribute to these challenges but if measures are taken the data integrity challenges can be managed.
Keywords: Data integrity, data integrity challenges, hospital information systems, South Africa.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397611 Object Speed Estimation by using Fuzzy Set
Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi
Abstract:
Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.
Keywords: Blur Analysis, Fuzzy sets, Speed estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889610 Automatic Detection and Classification of Diabetic Retinopathy Using Retinal Fundus Images
Authors: A. Biran, P. Sobhe Bidari, A. Almazroe V. Lakshminarayanan, K. Raahemifar
Abstract:
Diabetic Retinopathy (DR) is a severe retinal disease which is caused by diabetes mellitus. It leads to blindness when it progress to proliferative level. Early indications of DR are the appearance of microaneurysms, hemorrhages and hard exudates. In this paper, an automatic algorithm for detection of DR has been proposed. The algorithm is based on combination of several image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Also, Support Vector Machine (SVM) Classifier is used to classify retinal images to normal or abnormal cases including non-proliferative or proliferative DR. The proposed method has been tested on images selected from Structured Analysis of the Retinal (STARE) database using MATLAB code. The method is perfectly able to detect DR. The sensitivity specificity and accuracy of this approach are 90%, 87.5%, and 91.4% respectively.Keywords: Diabetic retinopathy, fundus images, STARE, Gabor filter, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1679609 A Method of Planar-Template- Based Camera Self-Calibration for Single-View
Abstract:
Camera calibration is an important step in 3D reconstruction. Camera calibration may be classified into two major types: traditional calibration and self-calibration. However, a calibration method in using a checkerboard is intermediate between traditional calibration and self-calibration. A self is proposed based on a square in this paper. Only a square in the planar template, the camera self-calibration can be completed through the single view. The proposed algorithm is that the virtual circle and straight line are established by a square on planar template, and circular points, vanishing points in straight lines and the relation between them are be used, in order to obtain the image of the absolute conic (IAC) and establish the camera intrinsic parameters. To make the calibration template is simpler, as compared with the Zhang Zhengyou-s method. Through real experiments and experiments, the experimental results show that this algorithm is feasible and available, and has a certain precision and robustness.Keywords: Absolute conic, camera calibration, circle point, vanishing point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1900608 Texture Characterization Based on a Chandrasekhar Fast Adaptive Filter
Authors: Mounir Sayadi, Farhat Fnaiech
Abstract:
In the framework of adaptive parametric modelling of images, we propose in this paper a new technique based on the Chandrasekhar fast adaptive filter for texture characterization. An Auto-Regressive (AR) linear model of texture is obtained by scanning the image row by row and modelling this data with an adaptive Chandrasekhar linear filter. The characterization efficiency of the obtained model is compared with the model adapted with the Least Mean Square (LMS) 2-D adaptive algorithm and with the cooccurrence method features. The comparison criteria is based on the computation of a characterization degree using the ratio of "betweenclass" variances with respect to "within-class" variances of the estimated coefficients. Extensive experiments show that the coefficients estimated by the use of Chandrasekhar adaptive filter give better results in texture discrimination than those estimated by other algorithms, even in a noisy context.
Keywords: Texture analysis, statistical features, adaptive filters, Chandrasekhar algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622607 Multiple Object Tracking using Particle Swarm Optimization
Authors: Chen-Chien Hsu, Guo-Tang Dai
Abstract:
This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.Keywords: multiple object tracking, particle swarm optimization, gray-level histogram, image
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4108606 High-Value Health System for All: Technologies for Promoting Health Education and Awareness
Authors: M. P. Sebastian
Abstract:
Health for all is considered as a sign of well-being and inclusive growth. New healthcare technologies are contributing to the quality of human lives by promoting health education and awareness, leading to the prevention, early diagnosis and treatment of the symptoms of diseases. Healthcare technologies have now migrated from the medical and institutionalized settings to the home and everyday life. This paper explores these new technologies and investigates how they contribute to health education and awareness, promoting the objective of high-value health system for all. The methodology used for the research is literature review. The paper also discusses the opportunities and challenges with futuristic healthcare technologies. The combined advances in genomics medicine, wearables and the IoT with enhanced data collection in electronic health record (EHR) systems, environmental sensors, and mobile device applications can contribute in a big way to high-value health system for all. The promise by these technologies includes reduced total cost of healthcare, reduced incidence of medical diagnosis errors, and reduced treatment variability. The major barriers to adoption include concerns with security, privacy, and integrity of healthcare data, regulation and compliance issues, service reliability, interoperability and portability of data, and user friendliness and convenience of these technologies.
Keywords: Bigdata, education, healthcare, ICT, patients, technologies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049605 Face Detection using Variance based Haar-Like feature and SVM
Authors: Cuong Nguyen Khac, Ju H. Park, Ho-Youl Jung
Abstract:
This paper proposes a new approach to perform the problem of real-time face detection. The proposed method combines primitive Haar-Like feature and variance value to construct a new feature, so-called Variance based Haar-Like feature. Face in image can be represented with a small quantity of features using this new feature. We used SVM instead of AdaBoost for training and classification. We made a database containing 5,000 face samples and 10,000 non-face samples extracted from real images for learning purposed. The 5,000 face samples contain many images which have many differences of light conditions. And experiments showed that face detection system using Variance based Haar-Like feature and SVM can be much more efficient than face detection system using primitive Haar-Like feature and AdaBoost. We tested our method on two Face databases and one Non-Face database. We have obtained 96.17% of correct detection rate on YaleB face database, which is higher 4.21% than that of using primitive Haar-Like feature and AdaBoost.Keywords: AdaBoost, Haar-Like feature, SVM, variance, Variance based Haar-Like feature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3744604 Factors Having Impact on Marketing and Improvement Measures in the Real Estate Sector of Turkey
Authors: Ali Ihtiyar, Serdar Durdyev, Syuhaida Ismail
Abstract:
Marketing is an essential issue to the survival of any real estate company in Turkey. There are some factors which are constraining the achievements of the marketing and sales strategies in the Turkey real estate industry. This study aims to identify and prioritise the most significant constraints to marketing in real estate sector and new strategies based on those constraints. This study is based on survey method, where the respondents such as credit counsellors, real estate investors, consultants, academicians and marketing representatives in Turkey were asked to rank forty seven sub-factors according to their levels of impact. The results of Multiattribute analytical technique indicated that the main subcomponents having impact on marketing in real estate sector are interest rates, real estate credit availability, accessibility, company image and consumer real income, respectively. The identified constraints are expected to guide the marketing team in a sales-effective way.Keywords: Marketing, marketing constraints, Real estate marketing, Turkey real estate sector
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590603 Comparing Hilditch, Rosenfeld, Zhang-Suen,and Nagendraprasad -Wang-Gupta Thinning
Authors: Anastasia Rita Widiarti
Abstract:
This paper compares Hilditch, Rosenfeld, Zhang- Suen, dan Nagendraprasad Wang Gupta (NWG) thinning algorithms for Javanese character image recognition. Thinning is an effective process when the focus in not on the size of the pattern, but rather on the relative position of the strokes in the pattern. The research analyzes the thinning of 60 Javanese characters. Time-wise, Zhang-Suen algorithm gives the best results with the average process time being 0.00455188 seconds. But if we look at the percentage of pixels that meet one-pixel thickness, Rosenfelt algorithm gives the best results, with a 99.98% success rate. From the number of pixels that are erased, NWG algorithm gives the best results with the average number of pixels erased being 84.12%. It can be concluded that the Hilditch algorithm performs least successfully compared to the other three algorithms.Keywords: Hilditch algorithm, Nagendraprasad-Wang-Guptaalgorithm, Rosenfeld algorithm, Thinning, Zhang-suen algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3935602 Mean Shift-based Preprocessing Methodology for Improved 3D Buildings Reconstruction
Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour
Abstract:
In this work, we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014601 Computer Aided Detection on Mammography
Authors: Giovanni Luca Masala
Abstract:
A typical definition of the Computer Aided Diagnosis (CAD), found in literature, can be: A diagnosis made by a radiologist using the output of a computerized scheme for automated image analysis as a diagnostic aid. Often it is possible to find the expression Computer Aided Detection (CAD or CADe): this definition emphasizes the intent of CAD to support rather than substitute the human observer in the analysis of radiographic images. In this article we will illustrate the application of CAD systems and the aim of these definitions. Commercially available CAD systems use computerized algorithms for identifying suspicious regions of interest. In this paper are described the general CAD systems as an expert system constituted of the following components: segmentation / detection, feature extraction, and classification / decision making. As example, in this work is shown the realization of a Computer- Aided Detection system that is able to assist the radiologist in identifying types of mammary tumor lesions. Furthermore this prototype of station uses a GRID configuration to work on a large distributed database of digitized mammographic images.Keywords: Computer Aided Detection, Computer Aided Diagnosis, mammography, GRID.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934600 Connect among Green, Sustainability and Hotel Industry: A Prospective Simulation Study
Authors: Leena N. Fukey, Surya S. Issac
Abstract:
This review paper aims at understanding the importance of implementing sustainable green practices in the current hotel industry and the perception of the same from the point of view of the customers as well as the industry experts. Many hotels have benefited from green management such as enhanced reputation of the firm and more worth customers. For the business standing, it reduces business’s cost for posting advertisements and the clear hotel’s orientation shows hotels’ positive image which might increase employees’ recognition toward the business. Sustainability in business is the growth in lively processes which enable people to understand the potential to protect the Earth’s existent support systems. Well, looking to the future today’s green concerns will definitely become facet of more synchronized business environment, perhaps the concerns discussed in this study, may exchange a few words which hotels may consider in near future to widen awareness and improve business model.
Keywords: Environmental Protection, Green Hotel Concept, Hotel Industry, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8875599 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan
Authors: Jieh-Haur Chen, Pei-Fen Huang
Abstract:
This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690598 The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens
Authors: M. E. Abalaka, S. Y. Daniyan, S. O. Adeyemo, D. Damisa
Abstract:
Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.
Keywords: Gold Nanoparticles, Gomphrena celesioides, Prunus amygdalus, Pathogens.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3831597 Positioning a Southern Inclusive Framework Embedded in the Social Model of Disability Theory Contextualized for Guyana
Authors: Lidon Lashley
Abstract:
This paper presents how the social model of disability can be used to reshape inclusive education practices in Guyana. Inclusive education in Guyana is metamorphosizing but still firmly held in the tenets of the Medical Model of Disability which influences the experiences of children with Special Education Needs and/or Disabilities (SEN/D). An ethnographic approach to data gathering was employed in this study. Qualitative data were gathered from the voices of children with and without SEN/D as well as their mainstream teachers to present the interplay of discourses and subjectivities in the situation. The data were analyzed using Adele Clarke's situational analysis. The data suggest that it is possible but will be challenging to fully contextualize and adopt Loreman's synthesis and Booths and Ainscow's Index in the two mainstream schools studied. In addition, the data paved the way for the presentation of the 'Southern Inclusive Education Framework for Guyana' and its support tool 'The Inclusive Checker created for Southern mainstream primary classrooms'.
Keywords: Social Model of Disability, Medical Model of Disability, subjectivities, metamorphosis, special education needs, postcolonial Guyana, Quasi-inclusion practices, Guyanese cultural challenges, mainstream primary schools, Loreman's Synthesis, Booths and Ainscow's Index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 669596 Supervisory Fuzzy Learning Control for Underwater Target Tracking
Authors: C.Kia, M.R.Arshad, A.H.Adom, P.A.Wilson
Abstract:
This paper presents recent work on the improvement of the robotics vision based control strategy for underwater pipeline tracking system. The study focuses on developing image processing algorithms and a fuzzy inference system for the analysis of the terrain. The main goal is to implement the supervisory fuzzy learning control technique to reduce the errors on navigation decision due to the pipeline occlusion problem. The system developed is capable of interpreting underwater images containing occluded pipeline, seabed and other unwanted noise. The algorithm proposed in previous work does not explore the cooperation between fuzzy controllers, knowledge and learnt data to improve the outputs for underwater pipeline tracking. Computer simulations and prototype simulations demonstrate the effectiveness of this approach. The system accuracy level has also been discussed.Keywords: Fuzzy logic, Underwater target tracking, Autonomous underwater vehicles, Artificial intelligence, Simulations, Robot navigation, Vision system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905595 Edge Detection in Digital Images Using Fuzzy Logic Technique
Authors: Abdallah A. Alshennawy, Ayman A. Aly
Abstract:
The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.Keywords: Fuzzy logic, Edge detection, Image processing, computer vision, Mechanical parts, Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4776594 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition
Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami
Abstract:
As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.
Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697593 Localisation of Anatomical Soft Tissue Landmarks of the Head in CT Images
Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
In this paper, algorithms for the automatic localisation of two anatomical soft tissue landmarks of the head the medial canthus (inner corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), in CT images are describet. These landmarks are to be used as a basis for an automated image-to-patient registration system we are developing. The landmarks are localised on a surface model extracted from CT images, based on surface curvature and a rule based system that incorporates prior knowledge of the landmark characteristics. The approach was tested on a dataset of near isotropic CT images of 95 patients. The position of the automatically localised landmarks was compared to the position of the manually localised landmarks. The average difference was 1.5 mm and 0.8 mm for the medial canthus and tragus, with a maximum difference of 4.5 mm and 2.6 mm respectively.The medial canthus and tragus can be automatically localised in CT images, with performance comparable to manual localisationKeywords: Anatomical soft tissue landmarks, automatic localisation, Computed Tomography (CT)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849592 Human Facial Expression Recognition using MANFIS Model
Authors: V. Gomathi, Dr. K. Ramar, A. Santhiyaku Jeevakumar
Abstract:
Facial expression analysis plays a significant role for human computer interaction. Automatic analysis of human facial expression is still a challenging problem with many applications. In this paper, we propose neuro-fuzzy based automatic facial expression recognition system to recognize the human facial expressions like happy, fear, sad, angry, disgust and surprise. Initially facial image is segmented into three regions from which the uniform Local Binary Pattern (LBP) texture features distributions are extracted and represented as a histogram descriptor. The facial expressions are recognized using Multiple Adaptive Neuro Fuzzy Inference System (MANFIS). The proposed system designed and tested with JAFFE face database. The proposed model reports 94.29% of classification accuracy.Keywords: Adaptive neuro-fuzzy inference system, Facialexpression, Local binary pattern, Uniform Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2108591 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices
Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar
Abstract:
Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSRinfected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.Keywords: Oil palm, image processing, disease, leaves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969590 Feature Extraction for Surface Classification – An Approach with Wavelets
Authors: Smriti H. Bhandari, S. M. Deshpande
Abstract:
Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.
Keywords: Dual-tree complex wavelet transform, surface metrology, surface roughness, texture classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249589 Evolutionary Eigenspace Learning using CCIPCA and IPCA for Face Recognition
Authors: Ghazy M.R. Assassa, Mona F. M. Mursi, Hatim A. Aboalsamh
Abstract:
Traditional principal components analysis (PCA) techniques for face recognition are based on batch-mode training using a pre-available image set. Real world applications require that the training set be dynamic of evolving nature where within the framework of continuous learning, new training images are continuously added to the original set; this would trigger a costly continuous re-computation of the eigen space representation via repeating an entire batch-based training that includes the old and new images. Incremental PCA methods allow adding new images and updating the PCA representation. In this paper, two incremental PCA approaches, CCIPCA and IPCA, are examined and compared. Besides, different learning and testing strategies are proposed and applied to the two algorithms. The results suggest that batch PCA is inferior to both incremental approaches, and that all CCIPCAs are practically equivalent.Keywords: Candid covariance-free incremental principal components analysis (CCIPCA), face recognition, incremental principal components analysis (IPCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828588 Image Analysis of Fine Structures of Supercavitation in the Symmetric Wake of a Cylinder
Authors: Y. Obikane , M.Kaneko, K.Kakioka, K.Ogura
Abstract:
The fine structure of supercavitation in the wake of a symmetrical cylinder is studied with high-speed video cameras. The flow is observed in a cavitation tunnel at the speed of 8m/sec when the sidewall and the wake are partially filled with the massive cavitation bubbles. The present experiment observed that a two-dimensional ripple wave with a wave length of 0.3mm is propagated in a downstream direction, and then abruptly increases to a thicker three-dimensional layer. IR-photography recorded that the wakes originated from the horseshoe vortexes alongside the cylinder. The wake was developed to inside the dead water zone, which absorbed the bubbly wake propelled from the separated vortices at the center of the cylinder. A remote sensing classification technique (maximum most likelihood) determined that the surface porosity was 0.2, and the mean speed in the mixed wake was 7m/sec. To confirm the existence of two-dimensional wave motions in the interface, the experiments were conducted at a very low frequency, and showed similar gravity waves in both the upper and lower interfaces.Keywords: Supercavitation, density gradient correlation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1531587 Electro-Thermal Imaging of Breast Phantom: An Experimental Study
Authors: H. Feza Carlak, N. G. Gencer
Abstract:
To increase the temperature contrast in thermal images, the characteristics of the electrical conductivity and thermal imaging modalities can be combined. In this experimental study, it is objected to observe whether the temperature contrast created by the tumor tissue can be improved just due to the current application within medical safety limits. Various thermal breast phantoms are developed to simulate the female breast tissue. In vitro experiments are implemented using a thermal infrared camera in a controlled manner. Since experiments are implemented in vitro, there is no metabolic heat generation and blood perfusion. Only the effects and results of the electrical stimulation are investigated. Experimental study is implemented with two-dimensional models. Temperature contrasts due to the tumor tissues are obtained. Cancerous tissue is determined using the difference and ratio of healthy and tumor images. 1 cm diameter single tumor tissue causes almost 40 °mC temperature contrast on the thermal-breast phantom. Electrode artifacts are reduced by taking the difference and ratio of background (healthy) and tumor images. Ratio of healthy and tumor images show that temperature contrast is increased by the current application.Keywords: Medical diagnostic imaging, breast phantom, active thermography, breast cancer detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495586 Automatic Facial Skin Segmentation Using Possibilistic C-Means Algorithm for Evaluation of Facial Surgeries
Authors: Elham Alaee, Mousa Shamsi, Hossein Ahmadi, Soroosh Nazem, Mohammadhossein Sedaaghi
Abstract:
Human face has a fundamental role in the appearance of individuals. So the importance of facial surgeries is undeniable. Thus, there is a need for the appropriate and accurate facial skin segmentation in order to extract different features. Since Fuzzy CMeans (FCM) clustering algorithm doesn’t work appropriately for noisy images and outliers, in this paper we exploit Possibilistic CMeans (PCM) algorithm in order to segment the facial skin. For this purpose, first, we convert facial images from RGB to YCbCr color space. To evaluate performance of the proposed algorithm, the database of Sahand University of Technology, Tabriz, Iran was used. In order to have a better understanding from the proposed algorithm; FCM and Expectation-Maximization (EM) algorithms are also used for facial skin segmentation. The proposed method shows better results than the other segmentation methods. Results include misclassification error (0.032) and the region’s area error (0.045) for the proposed algorithm.
Keywords: Facial image, segmentation, PCM, FCM, skin error, facial surgery.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999585 A Weighted Approach to Unconstrained Iris Recognition
Authors: Yao-Hong Tsai
Abstract:
This paper presents a weighted approach to unconstrained iris recognition. In nowadays, commercial systems are usually characterized by strong acquisition constraints based on the subject’s cooperation. However, it is not always achievable for real scenarios in our daily life. Researchers have been focused on reducing these constraints and maintaining the performance of the system by new techniques at the same time. With large variation in the environment, there are two main improvements to develop the proposed iris recognition system. For solving extremely uneven lighting condition, statistic based illumination normalization is first used on eye region to increase the accuracy of iris feature. The detection of the iris image is based on Adaboost algorithm. Secondly, the weighted approach is designed by Gaussian functions according to the distance to the center of the iris. Furthermore, local binary pattern (LBP) histogram is then applied to texture classification with the weight. Experiment showed that the proposed system provided users a more flexible and feasible way to interact with the verification system through iris recognition.
Keywords: Authentication, iris recognition, Adaboost, local binary pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944584 Analysis of Feature Space for a 2d/3d Vision based Emotion Recognition Method
Authors: Robert Niese, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
In modern human computer interaction systems (HCI), emotion recognition is becoming an imperative characteristic. The quest for effective and reliable emotion recognition in HCI has resulted in a need for better face detection, feature extraction and classification. In this paper we present results of feature space analysis after briefly explaining our fully automatic vision based emotion recognition method. We demonstrate the compactness of the feature space and show how the 2d/3d based method achieves superior features for the purpose of emotion classification. Also it is exposed that through feature normalization a widely person independent feature space is created. As a consequence, the classifier architecture has only a minor influence on the classification result. This is particularly elucidated with the help of confusion matrices. For this purpose advanced classification algorithms, such as Support Vector Machines and Artificial Neural Networks are employed, as well as the simple k- Nearest Neighbor classifier.Keywords: Facial expression analysis, Feature extraction, Image processing, Pattern Recognition, Application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930583 Fingerprint Image Encryption Using a 2D Chaotic Map and Elliptic Curve Cryptography
Authors: D. M. S. Bandara, Yunqi Lei, Ye Luo
Abstract:
Fingerprints are suitable as long-term markers of human identity since they provide detailed and unique individual features which are difficult to alter and durable over life time. In this paper, we propose an algorithm to encrypt and decrypt fingerprint images by using a specially designed Elliptic Curve Cryptography (ECC) procedure based on block ciphers. In addition, to increase the confusing effect of fingerprint encryption, we also utilize a chaotic-behaved method called Arnold Cat Map (ACM) for a 2D scrambling of pixel locations in our method. Experimental results are carried out with various types of efficiency and security analyses. As a result, we demonstrate that the proposed fingerprint encryption/decryption algorithm is advantageous in several different aspects including efficiency, security and flexibility. In particular, using this algorithm, we achieve a margin of about 0.1% in the test of Number of Pixel Changing Rate (NPCR) values comparing to the-state-of-the-art performances.Keywords: Arnold cat map, biometric encryption, block cipher, elliptic curve cryptography, fingerprint encryption, Koblitz’s Encoding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108