Search results for: Recurrent Neural Networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2425

Search results for: Recurrent Neural Networks

1015 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
1014 A Comparative Analysis of Performance and QoS Issues in MANETs

Authors: Javed Parvez, Mushtaq Ahmad Peer

Abstract:

Mobile Ad hoc networks (MANETs) are collections of wireless mobile nodes dynamically reconfiguring and collectively forming a temporary network. These types of networks assume existence of no fixed infrastructure and are often useful in battle-field tactical operations or emergency search-and-rescue type of operations where fixed infrastructure is neither feasible nor practical. They also find use in ad hoc conferences, campus networks and commercial recreational applications carrying multimedia traffic. All of the above applications of MANETs require guaranteed levels of performance as experienced by the end-user. This paper focuses on key challenges in provisioning predetermined levels of such Quality of Service (QoS). It also identifies functional areas where QoS models are currently defined and used. Evolving functional areas where performance and QoS provisioning may be applied are also identified and some suggestions are provided for further research in this area. Although each of the above functional areas have been discussed separately in recent research studies, since these QoS functional areas are highly correlated and interdependent, a comprehensive and comparative analysis of these areas and their interrelationships is desired. In this paper we have attempted to provide such an overview.

Keywords: Bandwidth Reservation, Congestion, DynamicNetwork Topology, End-to-End Delay, Flexible QoS Model forMANET(FQMM), Hidden Terminal, Mobile AdhocNetwork(MANET), Packet Jitter, Queuing, Quality-of-Service(QoS), Relative Bandwidth Service Differentiation(RBSD), Resource ReSerVation Protocol (RSVP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2146
1013 A Traffic Simulation Package Based on Travel Demand

Authors: Tuong Huan Nguyen, Quoc Bao Vo, Hai L. Vu

Abstract:

In this paper we propose a new traffic simulation package, TDMSim, which supports both macroscopic and microscopic simulation on free-flowing and regulated traffic systems. Both simulators are based on travel demands, which specify the numbers of vehicles departing from origins to arrive at different destinations. The microscopic simulator implements the carfollowing model given the pre-defined routes of the vehicles but also supports the rerouting of vehicles. We also propose a macroscopic simulator which is built in integration with the microscopic simulator to allow the simulation to be scaled for larger networks without sacrificing the precision achievable through the microscopic simulator. The macroscopic simulator also enables the reuse of previous simulation results when simulating traffic on the same networks at later time. Validations have been conducted to show the correctness of both simulators.

Keywords: Macroscopic, Microscopic, Simulation, Traffic, Travel demand, Fundamental diagrams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
1012 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System

Authors: J. K. Adedeji, M. O. Oyekanmi

Abstract:

This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.

Keywords: Biometric characters, facial recognition, neural network, OpenCV.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
1011 Reconfiguration of Deregulated Distribution Network for Minimizing Energy Supply Cost by using Multi-Objective BGA

Authors: H. Kazemi Karegar, S. Jalilzadeh, V. Nabaei, A. Shabani

Abstract:

In this paper, the problem of finding the optimal topological configuration of a deregulated distribution network is considered. The new features of this paper are proposing a multiobjective function and its application on deregulated distribution networks for finding the optimal configuration. The multi-objective function will be defined for minimizing total Energy Supply Costs (ESC) and energy losses subject to load flow constraints. The optimal configuration will be obtained by using Binary Genetic Algorithm (BGA).The proposed method has been tested to analyze a sample and a practical distribution networks.

Keywords: Binary Genetic Algorithm, Deregulated Distribution Network, Minimizing Cost, Reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
1010 Supporting QoS-aware Multicasting in Differentiated Service Networks

Authors: Manas Ranjan Kabat, Rajib Mall, Chita Ranjan Tripathy

Abstract:

A scalable QoS aware multicast deployment in DiffServ networks has become an important research dimension in recent years. Although multicasting and differentiated services are two complementary technologies, the integration of the two technologies is a non-trivial task due to architectural conflicts between them. A popular solution proposed is to extend the functionality of the DiffServ components to support multicasting. In this paper, we propose an algorithm to construct an efficient QoSdriven multicast tree, taking into account the available bandwidth per service class. We also present an efficient way to provision the limited available bandwidth for supporting heterogeneous users. The proposed mechanism is evaluated using simulated tests. The simulated result reveals that our algorithm can effectively minimize the bandwidth use and transmission cost

Keywords: Differentiated Services, multicasting, QoSheterogeneity, DSCP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1009 A Convolutional Neural Network-Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets, especially in the motorist sector, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of Python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. 60 vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes that the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: Convolutional Neural Network, CNN, location identification, tracking, GPS, GSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
1008 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua

Abstract:

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may damage ToM by affecting on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks, (1) each patient group performed worse than HC; (2) there were no significant differences between LTLE and RTLE groups; and (3) the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Keywords: Cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
1007 Cluster Based Energy Efficient and Fault Tolerant n-Coverage in Wireless Sensor Network

Authors: D. Satish Kumar, N. Nagarajan

Abstract:

Coverage conservation and extend the network lifetime are the primary issues in wireless sensor networks. Due to the large variety of applications, coverage is focus to a wide range of interpretations. The applications necessitate that each point in the area is observed by only one sensor while other applications may require that each point is enclosed by at least sensors (n>1) to achieve fault tolerance. Sensor scheduling activities in existing Transparent and non- Transparent relay modes (T-NT) Mobile Multi-Hop relay networks fails to guarantee area coverage with minimal energy consumption and fault tolerance. To overcome these issues, Cluster based Energy Competent n- coverage scheme called (CEC n-coverage scheme) to ensure the full coverage of a monitored area while saving energy. CEC n-coverage scheme uses a novel sensor scheduling scheme based on the n-density and the remaining energy of each sensor to determine the state of all the deployed sensors to be either active or sleep as well as the state durations. Hence, it is attractive to trigger a minimum number of sensors that are able to ensure coverage area and turn off some redundant sensors to save energy and therefore extend network lifetime. In addition, decisive a smallest amount of active sensors based on the degree coverage required and its level. A variety of numerical parameters are computed using ns2 simulator on existing (T-NT) Mobile Multi-Hop relay networks and CEC n-coverage scheme. Simulation results showed that CEC n-coverage scheme in wireless sensor network provides better performance in terms of the energy efficiency, 6.61% reduced fault tolerant in terms of seconds and the percentage of active sensors to guarantee the area coverage compared to exiting algorithm.

Keywords: Wireless Sensor network, Mobile Multi-Hop relay networks, n-coverage, Cluster based Energy Competent, Transparent and non- Transparent relay modes, Fault Tolerant, sensor scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
1006 A Security Model of Voice Eavesdropping Protection over Digital Networks

Authors: Supachai Tangwongsan, Sathaporn Kassuvan

Abstract:

The purpose of this research is to develop a security model for voice eavesdropping protection over digital networks. The proposed model provides an encryption scheme and a personal secret key exchange between communicating parties, a so-called voice data transformation system, resulting in a real-privacy conversation. The operation of this system comprises two main steps as follows: The first one is the personal secret key exchange for using the keys in the data encryption process during conversation. The key owner could freely make his/her choice in key selection, so it is recommended that one should exchange a different key for a different conversational party, and record the key for each case into the memory provided in the client device. The next step is to set and record another personal option of encryption, either taking all frames or just partial frames, so-called the figure of 1:M. Using different personal secret keys and different sets of 1:M to different parties without the intervention of the service operator, would result in posing quite a big problem for any eavesdroppers who attempt to discover the key used during the conversation, especially in a short period of time. Thus, it is quite safe and effective to protect the case of voice eavesdropping. The results of the implementation indicate that the system can perform its function accurately as designed. In this regard, the proposed system is suitable for effective use in voice eavesdropping protection over digital networks, without any requirements to change presently existing network systems, mobile phone network and VoIP, for instance.

Keywords: Computer Security, Encryption, Key Exchange, Security Model, Voice Eavesdropping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1581
1005 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features

Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan

Abstract:

Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.

Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282
1004 Estimation of Real Power Transfer Allocation Using Intelligent Systems

Authors: H. Shareef, A. Mohamed, S. A. Khalid, Aziah Khamis

Abstract:

This paper presents application artificial intelligent (AI) techniques, namely artificial neural network (ANN), adaptive neuro fuzzy interface system (ANFIS), to estimate the real power transfer between generators and loads. Since these AI techniques adopt supervised learning, it first uses modified nodal equation method (MNE) to determine real power contribution from each generator to loads. Then the results of MNE method and load flow information are utilized to estimate the power transfer using AI techniques. The 25-bus equivalent system of south Malaysia is utilized as a test system to illustrate the effectiveness of both AI methods compared to that of the MNE method. The mean squared error of the estimate of ANN and ANFIS power transfer allocation methods are 1.19E-05 and 2.97E-05, respectively. Furthermore, when compared to MNE method, ANN and ANFIS methods computes generator contribution to loads within 20.99 and 39.37msec respectively whereas the MNE method took 360msec for the calculation of same real power transfer allocation. 

Keywords: Artificial intelligence, Power tracing, Artificial neural network, ANFIS, Power system deregulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
1003 A Recognition Method of Ancient Yi Script Based on Deep Learning

Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma

Abstract:

Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.

Keywords: Recognition, CNN, convolutional neural network, Yi character, divergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 748
1002 Pragati Node Popularity (PNP) Approach to Identify Congestion Hot Spots in MPLS

Authors: E. Ramaraj, A. Padmapriya

Abstract:

In large Internet backbones, Service Providers typically have to explicitly manage the traffic flows in order to optimize the use of network resources. This process is often referred to as Traffic Engineering (TE). Common objectives of traffic engineering include balance traffic distribution across the network and avoiding congestion hot spots. Raj P H and SVK Raja designed the Bayesian network approach to identify congestion hors pots in MPLS. In this approach for every node in the network the Conditional Probability Distribution (CPD) is specified. Based on the CPD the congestion hot spots are identified. Then the traffic can be distributed so that no link in the network is either over utilized or under utilized. Although the Bayesian network approach has been implemented in operational networks, it has a number of well known scaling issues. This paper proposes a new approach, which we call the Pragati (means Progress) Node Popularity (PNP) approach to identify the congestion hot spots with the network topology alone. In the new Pragati Node Popularity approach, IP routing runs natively over the physical topology rather than depending on the CPD of each node as in Bayesian network. We first illustrate our approach with a simple network, then present a formal analysis of the Pragati Node Popularity approach. Our PNP approach shows that for any given network of Bayesian approach, it exactly identifies the same result with minimum efforts. We further extend the result to a more generic one: for any network topology and even though the network is loopy. A theoretical insight of our result is that the optimal routing is always shortest path routing with respect to some considerations of hot spots in the networks.

Keywords: Conditional Probability Distribution, Congestion hotspots, Operational Networks, Traffic Engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1988
1001 Statistical Analysis and Predictive Learning of Mechanical Parameters for TiO2 Filled GFRP Composite

Authors: S. Srinivasa Moorthy, K. Manonmani

Abstract:

The new, polymer composites consisting of e-glass fiber reinforcement with titanium oxide filler in the double bonded unsaturated polyester resin matrix were made. The glass fiber and titanium oxide reinforcement composites were made in three different fiber lengths (3cm, 5cm, and 7cm), filler content (2 wt%, 4 wt%, and 6 wt%) and fiber content (20 wt%, 40 wt%, and 60 wt%). 27 different compositions were fabricated and a sequence of experiments were carried out to determine tensile strength and impact strength. The vital influencing factors fiber length, fiber content and filler content were chosen as 3 factors in 3 levels of Taguchi’s L9 orthogonal array. The influences of parameters were determined for tensile strength and impact strength by Analysis of variance (ANOVA) and S/N ratio. Using Artificial Neural Network (ANN) an expert system was devised to predict the properties of hybrid reinforcement GFRP composites. The predict models were experimentally proved with the maximum coincidence.

Keywords: Analysis of variance (ANOVA), Artificial neural network (ANN), Polymer composites, Taguchi’s orthogonal array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
1000 Shannon-Weaver Biodiversity of Neutrophils in Fractal Networks of Immunofluorescence for Medical Diagnostics

Authors: N.E.Galich

Abstract:

We develop new nonlinear methods of immunofluorescence analysis for a sensitive technology of respiratory burst reaction of DNA fluorescence due to oxidative activity in the peripheral blood neutrophils. Histograms in flow cytometry experiments represent a fluorescence flashes frequency as functions of fluorescence intensity. We used the Shannon-Weaver index for definition of neutrophils- biodiversity and Hurst index for definition of fractal-s correlations in immunofluorescence for different donors, as the basic quantitative criteria for medical diagnostics of health status. We analyze frequencies of flashes, information, Shannon entropies and their fractals in immunofluorescence networks due to reduction of histogram range. We found the number of simplest universal correlations for biodiversity, information and Hurst index in diagnostics and classification of pathologies for wide spectra of diseases. In addition is determined the clear criterion of a common immunity and human health status in a form of yes/no answers type. These answers based on peculiarities of information in immunofluorescence networks and biodiversity of neutrophils. Experimental data analysis has shown the existence of homeostasis for information entropy in oxidative activity of DNA in neutrophil nuclei for all donors.

Keywords: blood and cells fluorescence in diagnostics ofdiseases, cytometric histograms, entropy and information in fractalnetworks of oxidative activity of DNA, long-range chromosomalcorrelations in living cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1700
999 A Survey on MAC Protocols for Vehicular Ad-Hoc Networks

Authors: B. Cynthia Sherin, E. A. Mary Anita

Abstract:

Vehicular Ad-hoc Network (VANET) is an emerging and very promising technology that has great demand on the access capability of the existing wireless technology. VANETs help improve traffic safety and efficiency. Each vehicle can exchange their information to inform the other vehicles about the current status of the traffic flow or a dangerous situation such as an accident. To achieve these, a reliable and efficient Medium Access Control (MAC) protocol with minimal transmission collisions is required. High speed nodes, absence of infrastructure, variations in topology and their QoS requirements makes it difficult for designing a MAC protocol in vehicular networks. There are several MAC protocols proposed for VANETs to ensure that all the vehicles could send safety messages without collisions by reducing the end-to-end delay and packet loss ratio. This paper gives an overview of the several proposed MAC protocols for VANETs along with their benefits and limitations and presents an overall classification based on their characteristics.

Keywords: MAC Protocols, QoS, VANET, V2V, V2I.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 946
998 Study on Network-Based Technology for Detecting Potentially Malicious Websites

Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park

Abstract:

Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.

Keywords: Advanced Persistent Threat, Malware, Network Security, Network Packet, Exploit Kits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
997 Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting

Authors: Zsolt János Viharos, Krisztián Balázs Kis, Imre Paniti, Gábor Belső, Péter Németh, János Farkas

Abstract:

The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods' lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners’ estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods' lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected.

Keywords: Artificial neural network, low series manufacturing, polymer cutting, setup period estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
996 Person Identification by Using AR Model for EEG Signals

Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi

Abstract:

A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.

Keywords: Person Identification, Autoregressive Model, EEG, Neural Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
995 Dempster-Shafer Information Filtering in Multi-Modality Wireless Sensor Networks

Authors: D.M. Weeraddana, K.S. Walgama, E.C. Kulasekere

Abstract:

A framework to estimate the state of dynamically varying environment where data are generated from heterogeneous sources possessing partial knowledge about the environment is presented. This is entirely derived within Dempster-Shafer and Evidence Filtering frameworks. The belief about the current state is expressed as belief and plausibility functions. An addition to Single Input Single Output Evidence Filter, Multiple Input Single Output Evidence Filtering approach is introduced. Variety of applications such as situational estimation of an emergency environment can be developed within the framework successfully. Fire propagation scenario is used to justify the proposed framework, simulation results are presented.

Keywords: Dempster-Shafer Belief theory, Evidence Filtering, Evidence Fusion, Sensor Modalities, Wireless Sensor Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2236
994 Simulated Annealing and Genetic Algorithm in Telecommunications Network Planning

Authors: Aleksandar Tsenov

Abstract:

The main goal of this work is to propose a way for combined use of two nontraditional algorithms by solving topological problems on telecommunications concentrator networks. The algorithms suggested are the Simulated Annealing algorithm and the Genetic Algorithm. The Algorithm of Simulated Annealing unifies the well known local search algorithms. In addition - Simulated Annealing allows acceptation of moves in the search space witch lead to decisions with higher cost in order to attempt to overcome any local minima obtained. The Genetic Algorithm is a heuristic approach witch is being used in wide areas of optimization works. In the last years this approach is also widely implemented in Telecommunications Networks Planning. In order to solve less or more complex planning problem it is important to find the most appropriate parameters for initializing the function of the algorithm.

Keywords: Concentrator network, genetic algorithm, simulated annealing, UCPL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1722
993 Performance of QoS Parameters in MANET Application Traffics in Large Scale Scenarios

Authors: Vahid Ayatollahi Tafti, Abolfazl Gandomi

Abstract:

A mobile Ad-hoc network consists of wireless nodes communicating without the need for a centralized administration. A user can move anytime in an ad hoc scenario and, as a result, such a network needs to have routing protocols which can adopt dynamically changing topology. To accomplish this, a number of ad hoc routing protocols have been proposed and implemented, which include DSR, OLSR and AODV. This paper presents a study on the QoS parameters for MANET application traffics in large-scale scenarios with 50 and 120 nodes. The application traffics analyzed in this study is File Transfer Protocol (FTP). In large scale networks (120 nodes) OLSR shows better performance and in smaller scale networks (50 nodes)AODV shows less packet drop rate and OLSR shows better throughput.

Keywords: aodv, dsr, manet , olsr , qos.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
992 A New Routing Algorithm: MIRAD

Authors: Amir Gholami Pastaki, Ali Reza Sahab, Seyed Mehdi Sadeghi

Abstract:

LSP routing is among the prominent issues in MPLS networks traffic engineering. The objective of this routing is to increase number of the accepted requests while guaranteeing the quality of service (QoS). Requested bandwidth is the most important QoS criterion that is considered in literatures, and a various number of heuristic algorithms have been presented with that regards. Many of these algorithms prevent flows through bottlenecks of the network in order to perform load balancing, which impedes optimum operation of the network. Here, a modern routing algorithm is proposed as MIRAD: having a little information of the network topology, links residual bandwidth, and any knowledge of the prospective requests it provides every request with a maximum bandwidth as well as minimum end-to-end delay via uniform load distribution across the network. Simulation results of the proposed algorithm show a better efficiency in comparison with similar algorithms.

Keywords: new generation networks, QoS, traffic engineering, MPLS, QoS based routing, LSP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
991 On-line Identification of Continuous-time Hammerstein Systems via RBF Networks and Immune Algorithm

Authors: Tomohiro Hachino, Kengo Nagatomo, Hitoshi Takata

Abstract:

This paper deals with an on-line identification method of continuous-time Hammerstein systems by using the radial basis function (RBF) networks and immune algorithm (IA). An unknown nonlinear static part to be estimated is approximately represented by the RBF network. The IA is efficiently combined with the recursive least-squares (RLS) method. The objective function for the identification is regarded as the antigen. The candidates of the RBF parameters such as the centers and widths are coded into binary bit strings as the antibodies and searched by the IA. On the other hand, the candidates of both the weighting parameters of the RBF network and the system parameters of the linear dynamic part are updated by the RLS method. Simulation results are shown to illustrate the proposed method.

Keywords: Continuous-time System, Hammerstein System, OnlineIdentification, Immune Algorithm, RBF network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
990 A MATLAB Simulink Library for Transient Flow Simulation of Gas Networks

Authors: M. Behbahani-Nejad, A. Bagheri

Abstract:

An efficient transient flow simulation for gas pipelines and networks is presented. The proposed transient flow simulation is based on the transfer function models and MATLABSimulink. The equivalent transfer functions of the nonlinear governing equations are derived for different types of the boundary conditions. Next, a MATLAB-Simulink library is developed and proposed considering any boundary condition type. To verify the accuracy and the computational efficiency of the proposed simulation, the results obtained are compared with those of the conventional finite difference schemes (such as TVD, method of lines, and other finite difference implicit and explicit schemes). The effects of the flow inertia and the pipeline inclination are incorporated in this simulation. It is shown that the proposed simulation has a sufficient accuracy and it is computationally more efficient than the other methods.

Keywords: Gas network, MATLAB-Simulink, transfer functions, transient flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6486
989 Novel SNC-NN-MRAS Based Speed Estimator for Sensor-Less Vector Controlled IM Drives

Authors: A.Venkadesan, S.Himavathi, A.Muthuramalingam

Abstract:

Rotor Flux based Model Reference Adaptive System (RF-MRAS) is the most popularly used conventional speed estimation scheme for sensor-less IM drives. In this scheme, the voltage model equations are used for the reference model. This encounters major drawbacks at low frequencies/speed which leads to the poor performance of RF-MRAS. Replacing the reference model using Neural Network (NN) based flux estimator provides an alternate solution and addresses such drawbacks. This paper identifies an NN based flux estimator using Single Neuron Cascaded (SNC) Architecture. The proposed SNC-NN model replaces the conventional voltage model in RF-MRAS to form a novel MRAS scheme named as SNC-NN-MRAS. Through simulation the proposed SNC-NN-MRAS is shown to be promising in terms of all major issues and robustness to parameter variation. The suitability of the proposed SNC-NN-MRAS based speed estimator and its advantages over RF-MRAS for sensor-less induction motor drives is comprehensively presented through extensive simulations.

Keywords: Sensor-less operation, vector-controlled IM drives, SNC-NN-MRAS, single neuron cascaded architecture, RF-MRAS, artificial neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1875
988 Multi-Layer Perceptron Neural Network Classifier with Binary Particle Swarm Optimization Based Feature Selection for Brain-Computer Interfaces

Authors: K. Akilandeswari, G. M. Nasira

Abstract:

Brain-Computer Interfaces (BCIs) measure brain signals activity, intentionally and unintentionally induced by users, and provides a communication channel without depending on the brain’s normal peripheral nerves and muscles output pathway. Feature Selection (FS) is a global optimization machine learning problem that reduces features, removes irrelevant and noisy data resulting in acceptable recognition accuracy. It is a vital step affecting pattern recognition system performance. This study presents a new Binary Particle Swarm Optimization (BPSO) based feature selection algorithm. Multi-layer Perceptron Neural Network (MLPNN) classifier with backpropagation training algorithm and Levenberg-Marquardt training algorithm classify selected features.

Keywords: Brain-Computer Interfaces (BCI), Feature Selection (FS), Walsh–Hadamard Transform (WHT), Binary Particle Swarm Optimization (BPSO), Multi-Layer Perceptron (MLP), Levenberg–Marquardt algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
987 Organizational De-Evolution; the Small Group or Single Actor Terrorist

Authors: Audrey Heffron, Casserleigh, Jarrett Broder, Brad Skillman

Abstract:

Traditionally, terror groups have been formed by ideologically aligned actors who perceive a lack of options for achieving political or social change. However, terrorist attacks have been increasingly carried out by small groups of actors or lone individuals who may be only ideologically affiliated with larger, formal terrorist organizations. The formation of these groups represents the inverse of traditional organizational growth, whereby structural de-evolution within issue-based organizations leads to the formation of small, independent terror cells. Ideological franchising – the bypassing of formal affiliation to the “parent" organization – represents the de-evolution of traditional concepts of organizational structure in favor of an organic, independent, and focused unit. Traditional definitions of dark networks that are issue-based include focus on an identified goal, commitment to achieving this goal through unrestrained actions, and selection of symbolic targets. The next step in the de-evolution of small dark networks is the miniorganization, consisting of only a handful of actors working toward a common, violent goal. Information-sharing through social media platforms, coupled with civil liberties of democratic nations, provide the communication systems, access to information, and freedom of movement necessary for small dark networks to flourish without the aid of a parent organization. As attacks such as the 7/7 bombings demonstrate the effectiveness of small dark networks, terrorist actors will feel increasingly comfortable aligning with an ideology only, without formally organizing. The natural result of this de-evolving organization is the single actor event, where an individual seems to subscribe to a larger organization-s violent ideology with little or no formal ties.

Keywords: Organizational de-evolution, single actor, small group, terrorism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
986 A Robust Al-Hawalees Gaming Automation using Minimax and BPNN Decision

Authors: Ahmad Sharieh, R Bremananth

Abstract:

Artificial Intelligence based gaming is an interesting topic in the state-of-art technology. This paper presents an automation of a tradition Omani game, called Al-Hawalees. Its related issues are resolved and implemented using artificial intelligence approach. An AI approach called mini-max procedure is incorporated to make a diverse budges of the on-line gaming. If number of moves increase, time complexity will be increased in terms of propositionally. In order to tackle the time and space complexities, we have employed a back propagation neural network (BPNN) to train in off-line to make a decision for resources required to fulfill the automation of the game. We have utilized Leverberg- Marquardt training in order to get the rapid response during the gaming. A set of optimal moves is determined by the on-line back propagation training fashioned with alpha-beta pruning. The results and analyses reveal that the proposed scheme will be easily incorporated in the on-line scenario with one player against the system.

Keywords: Artificial neural network, back propagation gaming, Leverberg-Marquardt, minimax procedure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936