Search results for: Detecting of Envelope Modulation on Noise.
98 Aggregation Scheduling Algorithms in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In Wireless Sensor Networks which consist of tiny wireless sensor nodes with limited battery power, one of the most fundamental applications is data aggregation which collects nearby environmental conditions and aggregates the data to a designated destination, called a sink node. Important issues concerning the data aggregation are time efficiency and energy consumption due to its limited energy, and therefore, the related problem, named Minimum Latency Aggregation Scheduling (MLAS), has been the focus of many researchers. Its objective is to compute the minimum latency schedule, that is, to compute a schedule with the minimum number of timeslots, such that the sink node can receive the aggregated data from all the other nodes without any collision or interference. For the problem, the two interference models, the graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR), have been adopted with different power models, uniform-power and non-uniform power (with power control or without power control), and different antenna models, omni-directional antenna and directional antenna models. In this survey article, as the problem has proven to be NP-hard, we present and compare several state-of-the-art approximation algorithms in various models on the basis of latency as its performance measure.Keywords: Data aggregation, convergecast, gathering, approximation, interference, omni-directional, directional.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79997 Reliable Damping Measurements of Solid Beams with Special Focus on the Boundary Conditions and Non-Contact Test Set-Ups
Authors: Ferhat Kadioglu, Ahmet Reha Gunay
Abstract:
Correct measurement of a structural damping value is an important issue for the reliable design of the components exposed to vibratory and noise conditions. As far as a vibrating beam technique is concerned, the specimens under the test somehow are interacted with measuring and exciting devices and also with boundary conditions of the test set-up. The aim of this study is to propose a vibrating beam method that offers a non-contact dynamic measurement of solid beam specimens. To evaluate possible effects of the clamped portion of the specimens with clamped-free ends on the dynamic values (damping and the elastic modulus), the same measuring devices were used, and the results were compared to those with the free-free ends. To get clear idea about the sensitivity of the boundary conditions to the damping values at low, medium and high levels, representative materials were subjected to the tests. The results show that the specimens with low damping values are especially sensitive to the boundary conditions and the most reliable structural damping values are obtained for the specimens with free-free ends. For the damping values at the low levels, a deviation of about 368% was obtained between the specimens with free-free and clamped-free ends, yet, for those having high inherent damping values, comparable results were obtained.
Keywords: Vibrating beam technique, dynamic values, damping, boundary conditions, non-contact measuring systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29496 The Study of the Intelligent Fuzzy Weighted Input Estimation Method Combined with the Experiment Verification for the Multilayer Materials
Authors: Ming-Hui Lee, Tsung-Chien Chen, Tsu-Ping Yu, Horng-Yuan Jang
Abstract:
The innovative intelligent fuzzy weighted input estimation method (FWIEM) can be applied to the inverse heat transfer conduction problem (IHCP) to estimate the unknown time-varying heat flux of the multilayer materials as presented in this paper. The feasibility of this method can be verified by adopting the temperature measurement experiment. The experiment modular may be designed by using the copper sample which is stacked up 4 aluminum samples with different thicknesses. Furthermore, the bottoms of copper samples are heated by applying the standard heat source, and the temperatures on the tops of aluminum are measured by using the thermocouples. The temperature measurements are then regarded as the inputs into the presented method to estimate the heat flux in the bottoms of copper samples. The influence on the estimation caused by the temperature measurement of the sample with different thickness, the processing noise covariance Q, the weighting factor γ , the sampling time interval Δt , and the space discrete interval Δx , will be investigated by utilizing the experiment verification. The results show that this method is efficient and robust to estimate the unknown time-varying heat input of the multilayer materials.Keywords: Multilayer Materials, Input Estimation Method, IHCP, Heat Flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 123795 Stochastic Subspace Modelling of Turbulence
Authors: M. T. Sichani, B. J. Pedersen, S. R. K. Nielsen
Abstract:
Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical cross spectral density function for the along-wind turbulence component over the wind field area is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since the succeeding state space and ARMA modelling of the turbulence rely on the positive definiteness of the cross-spectral density matrix, the problem with the non-positive definiteness of such matrices is at first addressed and suitable treatments regarding it are proposed. From the adjusted positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.Keywords: Turbulence, wind turbine, complex coherence, state space modelling, ARMA modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 164694 Image Classification and Accuracy Assessment Using the Confusion Matrix, Contingency Matrix, and Kappa Coefficient
Authors: F. F. Howard, C. B. Boye, I. Yakubu, J. S. Y. Kuma
Abstract:
One of the ways that could be used for the production of land use and land cover maps by a procedure known as image classification is the use of the remote sensing technique. Numerous elements ought to be taken into consideration, including the availability of highly satisfactory Landsat imagery, secondary data and a precise classification process. The goal of this study was to classify and map the land use and land cover of the study area using remote sensing and Geospatial Information System (GIS) analysis. The classification was done using Landsat 8 satellite images acquired in December 2020 covering the study area. The Landsat image was downloaded from the USGS. The Landsat image with 30 m resolution was geo-referenced to the WGS_84 datum and Universal Transverse Mercator (UTM) Zone 30N coordinate projection system. A radiometric correction was applied to the image to reduce the noise in the image. This study consists of two sections: the Land Use/Land Cover (LULC) and Accuracy Assessments using the confusion and contingency matrix and the Kappa coefficient. The LULC classifications were vegetation (agriculture) (67.87%), water bodies (0.01%), mining areas (5.24%), forest (26.02%), and settlement (0.88%). The overall accuracy of 97.87% and the kappa coefficient (K) of 97.3% were obtained for the confusion matrix. While an overall accuracy of 95.7% and a Kappa coefficient of 0.947 were obtained for the contingency matrix, the kappa coefficients were rated as substantial; hence, the classified image is fit for further research.
Keywords: Confusion Matrix, contingency matrix, kappa coefficient, land used/ land cover, accuracy assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25393 Navigation and Guidance System Architectures for Small Unmanned Aircraft Applications
Authors: Roberto Sabatini, Celia Bartel, Anish Kaharkar, Tesheen Shaid, Subramanian Ramasamy
Abstract:
Two multisensor system architectures for navigation and guidance of small Unmanned Aircraft (UA) are presented and compared. The main objective of our research is to design a compact, light and relatively inexpensive system capable of providing the required navigation performance in all phases of flight of small UA, with a special focus on precision approach and landing, where Vision Based Navigation (VBN) techniques can be fully exploited in a multisensor integrated architecture. Various existing techniques for VBN are compared and the Appearance-Based Navigation (ABN) approach is selected for implementation. Feature extraction and optical flow techniques are employed to estimate flight parameters such as roll angle, pitch angle, deviation from the runway centreline and body rates. Additionally, we address the possible synergies of VBN, Global Navigation Satellite System (GNSS) and MEMS-IMU (Micro-Electromechanical System Inertial Measurement Unit) sensors, and the use of Aircraft Dynamics Model (ADM) to provide additional information suitable to compensate for the shortcomings of VBN and MEMS-IMU sensors in high-dynamics attitude determination tasks. An Extended Kalman Filter (EKF) is developed to fuse the information provided by the different sensors and to provide estimates of position, velocity and attitude of the UA platform in real-time. The key mathematical models describing the two architectures i.e., VBN-IMU-GNSS (VIG) system and VIGADM (VIGA) system are introduced. The first architecture uses VBN and GNSS to augment the MEMS-IMU. The second mode also includes the ADM to provide augmentation of the attitude channel. Simulation of these two modes is carried out and the performances of the two schemes are compared in a small UA integration scheme (i.e., AEROSONDE UA platform) exploring a representative cross-section of this UA operational flight envelope, including high dynamics manoeuvres and CAT-I to CAT-III precision approach tasks. Simulation of the first system architecture (i.e., VIG system) shows that the integrated system can reach position, velocity and attitude accuracies compatible with the Required Navigation Performance (RNP) requirements. Simulation of the VIGA system also shows promising results since the achieved attitude accuracy is higher using the VBN-IMU-ADM than using VBN-IMU only. A comparison of VIG and VIGA system is also performed and it shows that the position and attitude accuracy of the proposed VIG and VIGA systems are both compatible with the RNP specified in the various UA flight phases, including precision approach down to CAT-II.
Keywords: Global Navigation Satellite System (GNSS), Lowcost Navigation Sensors, MEMS Inertial Measurement Unit (IMU), Unmanned Aerial Vehicle, Vision Based Navigation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321592 Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities
Authors: Sumathi Poobal, G. Ravindran
Abstract:
Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.Keywords: DCT, FIC, PIFS, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182491 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features
Authors: Hyun-Koo Kim, Young-Nam Shin, Sa-gong Kuk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.Keywords: Night-time traffic light detection, multi-class classification, driving assistance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 388590 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication
Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti
Abstract:
In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.
Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188489 An Investigation to Effective Parameters on the Damage of Dual Phase Steels by Acoustic Emission Using Energy Ratio
Authors: A. Fallahi, R. Khamedi
Abstract:
Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms of failure due to volume fraction of martensite second phase; a new method is introduced to identifying the mechanisms of failure in the various phases of these types of steels. In this method the acoustic emission (AE) technique was used to detect damage progression. These failure mechanisms consist of Ferrite-Martensite interface decohesion and/or martensite phase fracture. For this aim, dual phase steels with different volume fraction of martensite second phase has provided by various heat treatment methods on a low carbon steel (0.1% C), and then AE monitoring is used during tensile test of these DPSs. From AE measurements and an energy ratio curve elaborated from the value of AE energy (it was obtained as the ratio between the strain energy to the acoustic energy), that allows detecting important events, corresponding to the sudden drops. These AE signals events associated with various failure mechanisms are classified for ferrite and (DPS)s with various amount of Vm and different martensite morphology. It is found that AE energy increase with increasing Vm. This increasing of AE energy is because of more contribution of martensite fracture in the failure of samples with higher Vm. Final results show a good relationship between the AE signals and the mechanisms of failure.Keywords: Dual phase steel (DPS)s, Failure mechanisms, Acoustic Emission, Fracture strain energy to the acoustic energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188988 Taguchi-Based Optimization of Surface Roughness and Dimensional Accuracy in Wire EDM Process with S7 Heat Treated Steel
Authors: Joseph C. Chen, Joshua Cox
Abstract:
This research focuses on the use of the Taguchi method to reduce the surface roughness and improve dimensional accuracy of parts machined by Wire Electrical Discharge Machining (EDM) with S7 heat treated steel material. Due to its high impact toughness, the material is a candidate for a wide variety of tooling applications which require high precision in dimension and desired surface roughness. This paper demonstrates that Taguchi Parameter Design methodology is able to optimize both dimensioning and surface roughness successfully by investigating seven wire-EDM controllable parameters: pulse on time (ON), pulse off time (OFF), servo voltage (SV), voltage (V), servo feed (SF), wire tension (WT), and wire speed (WS). The temperature of the water in the Wire EDM process is investigated as the noise factor in this research. Experimental design and analysis based on L18 Taguchi orthogonal arrays are conducted. This paper demonstrates that the Taguchi-based system enables the wire EDM process to produce (1) high precision parts with an average of 0.6601 inches dimension, while the desired dimension is 0.6600 inches; and (2) surface roughness of 1.7322 microns which is significantly improved from 2.8160 microns.
Keywords: Taguchi parameter design, surface roughness, dimensional accuracy, Wire EDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108887 Implementation of a Multimodal Biometrics Recognition System with Combined Palm Print and Iris Features
Authors: Rabab M. Ramadan, Elaraby A. Elgallad
Abstract:
With extensive application, the performance of unimodal biometrics systems has to face a diversity of problems such as signal and background noise, distortion, and environment differences. Therefore, multimodal biometric systems are proposed to solve the above stated problems. This paper introduces a bimodal biometric recognition system based on the extracted features of the human palm print and iris. Palm print biometric is fairly a new evolving technology that is used to identify people by their palm features. The iris is a strong competitor together with face and fingerprints for presence in multimodal recognition systems. In this research, we introduced an algorithm to the combination of the palm and iris-extracted features using a texture-based descriptor, the Scale Invariant Feature Transform (SIFT). Since the feature sets are non-homogeneous as features of different biometric modalities are used, these features will be concatenated to form a single feature vector. Particle swarm optimization (PSO) is used as a feature selection technique to reduce the dimensionality of the feature. The proposed algorithm will be applied to the Institute of Technology of Delhi (IITD) database and its performance will be compared with various iris recognition algorithms found in the literature.
Keywords: Iris recognition, particle swarm optimization, feature extraction, feature selection, palm print, scale invariant feature transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88486 A Novel Approach for Coin Identification using Eigenvalues of Covariance Matrix, Hough Transform and Raster Scan Algorithms
Authors: J. Prakash, K. Rajesh
Abstract:
In this paper we present a new method for coin identification. The proposed method adopts a hybrid scheme using Eigenvalues of covariance matrix, Circular Hough Transform (CHT) and Bresenham-s circle algorithm. The statistical and geometrical properties of the small and large Eigenvalues of the covariance matrix of a set of edge pixels over a connected region of support are explored for the purpose of circular object detection. Sparse matrix technique is used to perform CHT. Since sparse matrices squeeze zero elements and contain only a small number of non-zero elements, they provide an advantage of matrix storage space and computational time. Neighborhood suppression scheme is used to find the valid Hough peaks. The accurate position of the circumference pixels is identified using Raster scan algorithm which uses geometrical symmetry property. After finding circular objects, the proposed method uses the texture on the surface of the coins called texton, which are unique properties of coins, refers to the fundamental micro structure in generic natural images. This method has been tested on several real world images including coin and non-coin images. The performance is also evaluated based on the noise withstanding capability.Keywords: Circular Hough Transform, Coin detection, Covariance matrix, Eigenvalues, Raster scan Algorithm, Texton.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188085 Automatic Detection of Breast Tumors in Sonoelastographic Images Using DWT
Authors: A. Sindhuja, V. Sadasivam
Abstract:
Breast Cancer is the most common malignancy in women and the second leading cause of death for women all over the world. Earlier the detection of cancer, better the treatment. The diagnosis and treatment of the cancer rely on segmentation of Sonoelastographic images. Texture features has not considered for Sonoelastographic segmentation. Sonoelastographic images of 15 patients containing both benign and malignant tumorsare considered for experimentation.The images are enhanced to remove noise in order to improve contrast and emphasize tumor boundary. It is then decomposed into sub-bands using single level Daubechies wavelets varying from single co-efficient to six coefficients. The Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) features are extracted and then selected by ranking it using Sequential Floating Forward Selection (SFFS) technique from each sub-band. The resultant images undergo K-Means clustering and then few post-processing steps to remove the false spots. The tumor boundary is detected from the segmented image. It is proposed that Local Binary Pattern (LBP) from the vertical coefficients of Daubechies wavelet with two coefficients is best suited for segmentation of Sonoelastographic breast images among the wavelet members using one to six coefficients for decomposition. The results are also quantified with the help of an expert radiologist. The proposed work can be used for further diagnostic process to decide if the segmented tumor is benign or malignant.
Keywords: Breast Cancer, Segmentation, Sonoelastography, Tumor Detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220784 A System for Analyzing and Eliciting Public Grievances Using Cache Enabled Big Data
Authors: P. Kaladevi, N. Giridharan
Abstract:
The system for analyzing and eliciting public grievances serves its main purpose to receive and process all sorts of complaints from the public and respond to users. Due to the more number of complaint data becomes big data which is difficult to store and process. The proposed system uses HDFS to store the big data and uses MapReduce to process the big data. The concept of cache was applied in the system to provide immediate response and timely action using big data analytics. Cache enabled big data increases the response time of the system. The unstructured data provided by the users are efficiently handled through map reduce algorithm. The processing of complaints takes place in the order of the hierarchy of the authority. The drawbacks of the traditional database system used in the existing system are set forth by our system by using Cache enabled Hadoop Distributed File System. MapReduce framework codes have the possible to leak the sensitive data through computation process. We propose a system that add noise to the output of the reduce phase to avoid signaling the presence of sensitive data. If the complaints are not processed in the ample time, then automatically it is forwarded to the higher authority. Hence it ensures assurance in processing. A copy of the filed complaint is sent as a digitally signed PDF document to the user mail id which serves as a proof. The system report serves to be an essential data while making important decisions based on legislation.Keywords: Big Data, Hadoop, HDFS, Caching, MapReduce, web personalization, e-governance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159283 Evaluation of the IMERG Product Performance at Estimating the Rainfall Properties in a Semi-Arid Region of Mexico
Authors: Eric Muñoz de la Torre, Julián González Trinidad, Efrén González Ramírez
Abstract:
Rain varies greatly in its duration, intensity, and spatial coverage, it is important to have sub-daily rainfall data for various applications, including risk prevention, however, the ground measurements are limited by the low and irregular density of rain gauges. An alternative to this problem is the Satellite Precipitation Products (SPPs) that use passive microwave and infrared sensors to estimate rainfall, as IMERG, however, these SPPs have to be validated before their application. The aim of this study is to evaluate the performance of the IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurement final run V06B SPP in a semi-arid region of Mexico, using four rain gauges sub-daily data of October 2019 and June to September 2021, using the Minimum inter-event Time (MIT) criterion to separate unique rain events with a dry period of 10 hrs for the purpose of evaluating the rainfall properties (depth, duration and intensity). Point to pixel analysis, continuous, categorical, and volumetric statistical metrics were used. Results show that IMERG is capable to estimate the rainfall depth with a slight overestimation but is unable to identify the real duration and intensity of the rain events, showing moderate overestimations and underestimations, respectively. The study zone presented 80 to 85% of convective rain events, the rest were stratiform rain events, classified by the depth magnitude variation of IMERG pixels and rain gauges. IMERG showed poorer performance at detecting the first ones but had a good performance at estimating stratiform rain events that are originated by Cold Fronts.
Keywords: IMERG, rainfall, rain gauge, remote sensing, statistical evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7982 Lightweight and Seamless Distributed Scheme for the Smart Home
Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro
Abstract:
Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.Keywords: Authentication, key-session, security, wireless sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87781 Hands-off Parking: Deep Learning Gesture-Based System for Individuals with Mobility Needs
Authors: Javier Romera, Alberto Justo, Ignacio Fidalgo, Javier Araluce, Joshué Pérez
Abstract:
Nowadays, individuals with mobility needs face a significant challenge when docking vehicles. In many cases, after parking, they encounter insufficient space to exit, leading to two undesired outcomes: either avoiding parking in that spot or settling for improperly placed vehicles. To address this issue, this paper presents a parking control system employing gestural teleoperation. The system comprises three main phases: capturing body markers, interpreting gestures, and transmitting orders to the vehicle. The initial phase is centered around the MediaPipe framework, a versatile tool optimized for real-time gesture recognition. MediaPipe excels at detecting and tracing body markers, with a special emphasis on hand gestures. Hands detection is done by generating 21 reference points for each hand. Subsequently, after data capture, the project employs the MultiPerceptron Layer (MPL) for in-depth gesture classification. This tandem of MediaPipe’s extraction prowess and MPL’s analytical capability ensures that human gestures are translated into actionable commands with high precision. Furthermore, the system has been trained and validated within a built-in dataset. To prove the domain adaptation, a framework based on the Robot Operating System 2 (ROS2), as a communication backbone, alongside CARLA Simulator, is used. Following successful simulations, the system is transitioned to a real-world platform, marking a significant milestone in the project. This real-vehicle implementation verifies the practicality and efficiency of the system beyond theoretical constructs.
Keywords: Gesture detection, MediaPipe, MultiLayer Perceptron Layer, Robot Operating System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13780 Objects Extraction by Cooperating Optical Flow, Edge Detection and Region Growing Procedures
Abstract:
The image segmentation method described in this paper has been developed as a pre-processing stage to be used in methodologies and tools for video/image indexing and retrieval by content. This method solves the problem of whole objects extraction from background and it produces images of single complete objects from videos or photos. The extracted images are used for calculating the object visual features necessary for both indexing and retrieval processes. The segmentation algorithm is based on the cooperation among an optical flow evaluation method, edge detection and region growing procedures. The optical flow estimator belongs to the class of differential methods. It permits to detect motions ranging from a fraction of a pixel to a few pixels per frame, achieving good results in presence of noise without the need of a filtering pre-processing stage and includes a specialised model for moving object detection. The first task of the presented method exploits the cues from motion analysis for moving areas detection. Objects and background are then refined using respectively edge detection and seeded region growing procedures. All the tasks are iteratively performed until objects and background are completely resolved. The method has been applied to a variety of indoor and outdoor scenes where objects of different type and shape are represented on variously textured background.Keywords: Image Segmentation, Motion Detection, Object Extraction, Optical Flow
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175679 Chaotic Properties of Hemodynamic Responsein Functional Near Infrared Spectroscopic Measurement of Brain Activity
Authors: Ni Ni Soe , Masahiro Nakagawa
Abstract:
Functional near infrared spectroscopy (fNIRS) is a practical non-invasive optical technique to detect characteristic of hemoglobin density dynamics response during functional activation of the cerebral cortex. In this paper, fNIRS measurements were made in the area of motor cortex from C4 position according to international 10-20 system. Three subjects, aged 23 - 30 years, were participated in the experiment. The aim of this paper was to evaluate the effects of different motor activation tasks of the hemoglobin density dynamics of fNIRS signal. The chaotic concept based on deterministic dynamics is an important feature in biological signal analysis. This paper employs the chaotic properties which is a novel method of nonlinear analysis, to analyze and to quantify the chaotic property in the time series of the hemoglobin dynamics of the various motor imagery tasks of fNIRS signal. Usually, hemoglobin density in the human brain cortex is found to change slowly in time. An inevitable noise caused by various factors is to be included in a signal. So, principle component analysis method (PCA) is utilized to remove high frequency component. The phase pace is reconstructed and evaluated the Lyapunov spectrum, and Lyapunov dimensions. From the experimental results, it can be conclude that the signals measured by fNIRS are chaotic.Keywords: Chaos, hemoglobin, Lyapunov spectrum, motorimagery, near infrared spectroscopy (NIRS), principal componentanalysis (PCA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172778 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions
Authors: Hazem M. El-Bakry
Abstract:
In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.Keywords: Boolean Functions, Simplification, KarnoughMap, Implementation of Logic Functions, Modular NeuralNetworks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 181477 Unequal Error Protection of Facial Features for Personal ID Images Coding
Abstract:
This paper presents an approach for an unequal error protection of facial features of personal ID images coding. We consider unequal error protection (UEP) strategies for the efficient progressive transmission of embedded image codes over noisy channels. This new method is based on the progressive image compression embedded zerotree wavelet (EZW) algorithm and UEP technique with defined region of interest (ROI). In this case is ROI equal facial features within personal ID image. ROI technique is important in applications with different parts of importance. In ROI coding, a chosen ROI is encoded with higher quality than the background (BG). Unequal error protection of image is provided by different coding techniques and encoding LL band separately. In our proposed method, image is divided into two parts (ROI, BG) that consist of more important bytes (MIB) and less important bytes (LIB). The proposed unequal error protection of image transmission has shown to be more appropriate to low bit rate applications, producing better quality output for ROI of the compresses image. The experimental results verify effectiveness of the design. The results of our method demonstrate the comparison of the UEP of image transmission with defined ROI with facial features and the equal error protection (EEP) over additive white gaussian noise (AWGN) channel.Keywords: Embedded zerotree wavelet (EZW), equal error protection (EEP), facial features, personal ID images, region of interest (ROI), unequal error protection (UEP)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149076 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions
Authors: Hazem M. El-Bakry
Abstract:
In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.
Keywords: Boolean functions, simplification, Karnough map, implementation of logic functions, modular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207075 Flight School Perceptions of Electric Planes for Training
Authors: C. Edwards, P. Parker
Abstract:
Flight school members are facing a major disruption in the technologies available for them to fly as electric planes enter the aviation industry. The year 2020 marked a new era in aviation with the first type certification of an electric plane. The Pipistrel Velis Electro is a two-seat electric aircraft (e-plane) designed for flight training. Electric flight training has the potential to deeply reduce emissions, noise, and cost of pilot training. Though these are all attractive features, understanding must be developed on the perceptions of the essential actor of the technology, the pilot. This study asks student pilots, flight instructors, flight center managers, and other members of flight schools about their perceptions of e-planes. The questions were divided into three categories: safety and trust of the technology, expected costs in comparison to conventional planes, and interest in the technology, including their desire to fly electric planes. Participants were recruited from flight schools using a protocol approved by the Office of Research Ethics. None of these flight schools have an e-plane in their fleet so these views are based on perceptions rather than direct experience. The results revealed perceptions that were strongly positive with many qualitative comments indicating great excitement about the potential of the new electric aviation technology. Some concerns were raised regarding battery endurance limits. Overall, the flight school community is clearly in favor of introducing electric propulsion technology and reducing the environmental impacts of their industry.
Keywords: electric planes, flight training, green aircraft, student pilots, sustainable aviation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 117874 Device for 3D Analysis of Basic Movements of the Lower Extremity
Authors: Jiménez Villanueva Mayra Alejandra, Ortíz Casallas Diana Carolina, Luengas Contreras Lely Adriana
Abstract:
This document details the process of developing a wireless device that captures the basic movements of the foot (plantar flexion, dorsal flexion, abduction, adduction.), and the knee movement (flexion). It implements a motion capture system by using a hardware based on optical fiber sensors, due to the advantages in terms of scope, noise immunity and speed of data transmission and reception. The operating principle used by this system is the detection and transmission of joint movement by mechanical elements and their respective measurement by optical ones (in this case infrared). Likewise, Visual Basic software is used for reception, analysis and signal processing of data acquired by the device, generating a 3D graphical representation in real time of each movement. The result is a boot in charge of capturing the movement, a transmission module (Implementing Xbee Technology) and a receiver module for receiving information and sending it to the PC for their respective processing. The main idea with this device is to help on topics such as bioengineering and medicine, by helping to improve the quality of life and movement analysis.Keywords: abduction, adduction, A / D converter, Autodesk 3DMax, Infrared Diode, Driver, extension, flexion, Infrared LEDs, Interface, Modeling OPENGL, Optical Fiber, USB CDC(Communications Device Class), Virtual Reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 169473 Improving Fake News Detection Using K-means and Support Vector Machine Approaches
Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy
Abstract:
Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.
Keywords: Fake news detection, feature selection, support vector machine, K-means clustering, machine learning, social media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452472 Microalbuminuria in Essential Hypertension
Authors: Sharan Badiger, Prema T. Akkasaligar, Sandeep HM, Biradar MS
Abstract:
Essential hypertension (HTN) usually clusters with other cardiovascular risk factors such as age, overweight, diabetes, insulin resistance and dyslipidemia. The target organ damage (TOD) such as left ventricular hypertrophy, microalbuminuria (MA), acute coronary syndrome (ACS), stroke and cognitive dysfunction takes place early in course of hypertension. Though the prevalence of hypertension is high in India, the relationship between microalbuminuria and target organ damage in hypertension is not well studied. This study aim at detecting MA in essential hypertension and its relation to severity of HTN, duration of HTN, body mass index (BMI), age and TOD such as HTN retinopathy and acute coronary syndrome The present study was done in 100 patients of essential hypertension non diabetics admitted to B.L.D.E.University-s Sri B.M.Patil Medical College, Bijapur, from October 2008 to April 2011. The patients underwent detailed history and clinical examination. Early morning 5 ml of urine sample was collected & MA was estimated by immunoturbidometry method. The relationship of MA with the duration & severity of HTN, BMI, age, sex and TOD's like hypertensive retinopathy, ACS was assessed by univariate analysis. The prevalence of MA in this study was found to be 63 %. In that 42% were male & 21% were female. In this study a significant association between MA and the duration of hypertension (p = 0.036) & (OR =0.438). Longer the duration of hypertension, more possibility of microalbumin in urine. Also there was a significant association between severity of hypertension and MA (p=0.045) and (OR=0.093). MA was positive in 50 (79.4%) patients out of 63, whose blood pressure was >160/100 mm Hg. In this study a significant association between MA and the grades of hypertensive retinopathy (p =0.011) and acute coronary syndrome (p = 0.041) (OR =2.805). Gender and BMI did not pose high risk for MA in this study.The prevalence of MA in essential hypertension is high in this part of the community and MA will increase the risk of developing target organ damage.Early screening of patients with essential hypertension for MA and aggressive management of positive cases might reduce the burden of chronic kidney diseases and cardiovascular diseases in the community.
Keywords: Acute coronary syndrome, Essential hypertension, Microalbuminuria, Target organ damage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 239071 Optimum Replacement Policies for Kuwait Passenger Transport Company Busses: Case Study
Authors: Hilal A. Abdelwali, Elsayed E.M. Ellaimony, Ahmad E.M. Murad, Jasem M.S. Al-Rajhi
Abstract:
Due to the excess of a vehicle operation through its life, some elements may face failure and deteriorate with time. This leads us to carry out maintenance, repair, tune up or full overhaul. After a certain period, the vehicle elements deteriorations increase with time which causes a very high increase of doing the maintenance operations and their costs. However, the logic decision at this point is to replace the current vehicle by a new one with minimum failure and maximum income. The importance of studying vehicle replacement problems come from the increase of stopping days due to many deteriorations in the vehicle parts. These deteriorations increase year after year causing an increase of operating costs and decrease the vehicle income. Vehicle replacement aims to determine the optimum time to keep, maintain, overhaul, renew and replace vehicles. This leads to an improvement in vehicle income, total operating costs, maintenance cost, fuel and oil costs, ton-kilometers, vehicle and engine performance, vehicle noise, vibration, and pollution. The aim of this paper is to find the optimum replacement policies of Kuwait Passenger Transport Company (KPTCP) fleet of busses. The objective of these policies is to maximize the busses pure profits. The dynamic programming (D.P.) technique is used to generate the busses optimal replacement policies
Keywords: Replacement Problem, Automotive Replacement, Dynamic Programming, Equipment Replacement, K.P.T.C.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153070 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel
Authors: Pankaj Chandna, Dinesh Kumar
Abstract:
The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.
Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276869 Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People
Authors: Muhammad Irfan Aziz, Thomas Owens, Uzair Khaleeq uz Zaman
Abstract:
The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.
Keywords: Bluetooth, indoor/outdoor localization, received signal strength indicator, visually impaired.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 784