Search results for: Binary Particle Swarm Optimization (BPSO)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2660

Search results for: Binary Particle Swarm Optimization (BPSO)

1250 Assessing and Visualizing the Stability of Feature Selectors: A Case Study with Spectral Data

Authors: R.Guzman-Martinez, Oscar Garcia-Olalla, R.Alaiz-Rodriguez

Abstract:

Feature selection plays an important role in applications with high dimensional data. The assessment of the stability of feature selection/ranking algorithms becomes an important issue when the dataset is small and the aim is to gain insight into the underlying process by analyzing the most relevant features. In this work, we propose a graphical approach that enables to analyze the similarity between feature ranking techniques as well as their individual stability. Moreover, it works with whatever stability metric (Canberra distance, Spearman's rank correlation coefficient, Kuncheva's stability index,...). We illustrate this visualization technique evaluating the stability of several feature selection techniques on a spectral binary dataset. Experimental results with a neural-based classifier show that stability and ranking quality may not be linked together and both issues have to be studied jointly in order to offer answers to the domain experts.

Keywords: Feature Selection Stability, Spectral data, Data visualization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1525
1249 Equilibrium, Kinetic and Thermodynamic Studies of Simultaneous Co-Adsorptive Removal of Phenol and Cyanide Using Chitosan

Authors: Bhumica Agarwal, Priya Sengupta, Chandrajit Balomajumder

Abstract:

The present study analyses the potential of acid treated chitosan for simultaneous co-adsorptive removal of phenol and cyanide from a binary waste water solution. The effects of parameters like pH, temperature, initial concentration, adsorbent dose, and adsorbent size were studied. At an optimum pH of 8, temperature of 30⁰C, initial phenol and cyanide concentration of 200 mg/L and 20 mg/L respectively, adsorbent dose of 30 g/L and size between 0.4-0.6 mm the maximum percentage removal of phenol and cyanide was found to be 60.97% and 90.86% respectively. Amongst the adsorption isotherms applied extended Freundlich best depicted the adsorption of both phenol and cyanide based on lowest MPSD value. The kinetics depicted that chemisorption was the adsorption mechanism and intraparticle diffusion is not the only rate controlling step of the reaction. Thermodynamic studies revealed that phenol adsorption was exothermic and spontaneous whereas that of cyanide was an endothermic process.

 

Keywords: Chitosan, Co-adsorption, Cyanide, Phenol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
1248 Study of Electro-Optical Properties of ZnS Nanoparticles Prepared by Colloidal Particles Method

Authors: A. Rahdar, V. Arbabi, H. Ghanbari

Abstract:

ZnS nanoparticles of different size have been synthesized using a colloidal particles method. Zns nanoparticles prepared with capping agent (mercaptoethanol) then were characterized using X-ray diffraction (XRD) and UV-Vis spectroscopy. The particle size of the nanoparticles calculated from the XRD patterns has been found in the range 1.85-2.44nm. Absorption spectra have been obtained using UV-Vis spectrophotometer to find the optical band gap and the obtained values have been founded to being range 3.83-4.59eV. It was also found that energy band gap increase with the increase in molar capping agent solution.

Keywords: ZnS, Nanoparticle, X-ray.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1872
1247 Multi Objective Simultaneous Assembly Line Balancing and Buffer Sizing

Authors: Saif Ullah, Guan Zailin, Xu Xianhao, He Zongdong, Wang Baoxi

Abstract:

Assembly line balancing problem is aimed to divide the tasks among the stations in assembly lines and optimize some objectives. In assembly lines the workload on stations is different from each other due to different tasks times and the difference in workloads between stations can cause blockage or starvation in some stations in assembly lines. Buffers are used to store the semi-finished parts between the stations and can help to smooth the assembly production. The assembly line balancing and buffer sizing problem can affect the throughput of the assembly lines. Assembly line balancing and buffer sizing problems have been studied separately in literature and due to their collective contribution in throughput rate of assembly lines, balancing and buffer sizing problem are desired to study simultaneously and therefore they are considered concurrently in current research. Current research is aimed to maximize throughput, minimize total size of buffers in assembly line and minimize workload variations in assembly line simultaneously. A multi objective optimization objective is designed which can give better Pareto solutions from the Pareto front and a simple example problem is solved for assembly line balancing and buffer sizing simultaneously. Current research is significant for assembly line balancing research and it can be significant to introduce optimization approaches which can optimize current multi objective problem in future.

Keywords: Assembly line balancing, Buffer sizing, Pareto solutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3360
1246 Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm

Authors: R. Parameshwaran, R. Karunakaran, S. Iniyan, Anand A. Samuel

Abstract:

The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.

Keywords: Energy savings, fuzzy logic, Genetic algorithm, Thermal Comfort

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3209
1245 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of the CSC modeling research accommodates conceptual or process models which present general management frameworks and do not relate to acknowledged soft Operations Research methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, objectives, modeling approach, solution methods and software used. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop optimization models for integrated CSCM. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without translating the generic concepts to the context of construction industry.

Keywords: Construction supply chain management, modeling, operations research, optimization and simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2824
1244 An Investigation of New Phase Diagram of Ag2SO4 - CaSO4

Authors: Ravi V. Joat, Pravin S. Bodke, Shradha S. Binani, S. S. Wasnik

Abstract:

A phase diagram of the Ag2SO4 - CaSO4 (Silver sulphate – Calcium Sulphate) binaries system using conductivity, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis) data is constructed. The eutectic reaction (liquid -» a-Ag2SO4 + CaSO4) is observed at 10 mole% CaSO4 and 645°C. Room temperature solid solubility limit up to 5.27 mole % of Ca 2+ in Ag2SO4 is set using X-ray powder diffraction and scanning electron microscopy results. All compositions beyond this limit are two-phase mixtures below and above the transition temperature (≈ 416°C). The bulk conductivity, obtained following complex impedance spectroscopy, is found decreasing with increase in CaSO4 content. Amongst other binary compositions, the 80AgSO4-20CaSO4 gave improved sinterability/packing density.

Keywords: Ag2SO4-CaSO4 (Silver sulphate–Calcium Sulphate) binaries system, XRD (X-Ray Diffraction Technique) and DTA (Differential Thermal Analysis).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2184
1243 Effects of Test Environment on the Sliding Wear Behaviour of Cast Iron, Zinc-Aluminium Alloy and Its Composite

Authors: Mohammad M. Khan, Gajendra Dixit

Abstract:

Partially lubricated sliding wear behaviour of a zinc-based alloy reinforced with 10wt% SiC particles has been studied as a function of applied load and solid lubricant particle size and has been compared with that of matrix alloy and conventionally used grey cast iron. The wear tests were conducted at the sliding velocities of 2.1m/sec in various partial lubricated conditions using pin on disc machine as per ASTM G-99-05. Base oil (SAE 20W-40) or mixture of the base oil with 5wt% graphite of particle sizes (7-10 µm) and (100 µm) were used for creating lubricated conditions. The matrix alloy revealed primary dendrites of a and eutectoid a + h and Î phases in the Inter dendritic regions. Similar microstructure has been depicted by the composite with an additional presence of the dispersoid SiC particles. In the case of cast iron, flakes of graphite were observed in the matrix; the latter comprised of (majority of) pearlite and (limited quantity of) ferrite. Results show a large improvement in wear resistance of the zinc-based alloy after reinforcement with SiC particles. The cast iron shows intermediate response between the matrix alloy and composite. The solid lubrication improved the wear resistance and friction behaviour of both the reinforced and base alloy. Moreover, minimum wear rate is obtained in oil+ 5wt % graphite (7-10 µm) lubricated environment for the matrix alloy and composite while for cast iron addition of solid lubricant increases the wear rate and minimum wear rate is obtained in case of oil lubricated environment. The cast iron experienced higher frictional heating than the matrix alloy and composite in all the cases especially at higher load condition. As far as friction coefficient is concerned, a mixed trend of behaviour was noted. The wear rate and frictional heating increased with load while friction coefficient was affected in an opposite manner. Test duration influenced the frictional heating and friction coefficient of the samples in a mixed manner.

Keywords: Solid lubricant, sliding wear grey cast iron, zinc based metal matrix composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
1242 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore

Authors: Ronal Muresano, Andrea Pagano

Abstract:

Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.

Keywords: Algorithm optimization, Bank Failures, OpenMP, Parallel Techniques, Statistical tool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
1241 Optimization of Process Parameters for Friction Stir Welding of Cast Alloy AA7075 by Taguchi Method

Authors: Dhairya Partap Sing, Vikram Singh, Sudhir Kumar

Abstract:

This investigation proposes Friction stir welding technique to solve the fusion welding problems. Objectives of this investigation are fabrication of AA7075-10%wt. Silicon carbide (SiC) aluminum metal matrix composite and optimization of optimal process parameters of friction stir welded AA7075-10%wt. SiC Composites. Composites were prepared by the mechanical stir casting process. Experiments were performed with four process parameters such as tool rotational speed, weld speed, axial force and tool geometry considering three levels of each. The quality characteristics considered is joint efficiency (JE). The welding experiments were conducted using L27 orthogonal array. An orthogonal array and design of experiments were used to give best possible welding parameters that give optimal JE. The fabricated welded joints using rotational speed of 1500 rpm, welding speed (1.3 mm/sec), axial force (7 k/n) of and tool geometry (square) give best possible results. Experimental result reveals that the tool rotation speed, welding speed and axial force are the significant process parameters affecting the welding performance. The predicted optimal value of percentage JE is 95.621. The confirmation tests also have been done for verifying the results.

Keywords: Metal matrix composite, axial force, joint efficiency, rotational speed, traverse speed, tool geometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
1240 Streamwise Vorticity in the Wake of a Sliding Bubble

Authors: R. O’Reilly Meehan, D. B. Murray

Abstract:

In many practical situations, bubbles are dispersed in a liquid phase. Understanding these complex bubbly flows is therefore a key issue for applications such as shell and tube heat exchangers, mineral flotation and oxidation in water treatment. Although a large body of work exists for bubbles rising in an unbounded medium, that of bubbles rising in constricted geometries has received less attention. The particular case of a bubble sliding underneath an inclined surface is common to two-phase flow systems. The current study intends to expand this knowledge by performing experiments to quantify the streamwise flow structures associated with a single sliding air bubble under an inclined surface in quiescent water. This is achieved by means of two-dimensional, two-component particle image velocimetry (PIV), performed with a continuous wave laser and high-speed camera. PIV vorticity fields obtained in a plane perpendicular to the sliding surface show that there is significant bulk fluid motion away from the surface. The associated momentum of the bubble means that this wake motion persists for a significant time before viscous dissipation. The magnitude and direction of the flow structures in the streamwise measurement plane are found to depend on the point on its path through which the bubble enters the plane. This entry point, represented by a phase angle, affects the nature and strength of the vortical structures. This study reconstructs the vorticity field in the wake of the bubble, converting the field at different instances in time to slices of a large-scale wake structure. This is, in essence, Taylor’s ”frozen turbulence” hypothesis. Applying this to the vorticity fields provides a pseudo three-dimensional representation from 2-D data, allowing for a more intuitive understanding of the bubble wake. This study provides insights into the complex dynamics of a situation common to many engineering applications, particularly shell and tube heat exchangers in the nucleate boiling regime.

Keywords: Bubbly flow, particle image velocimetry, two-phase flow, wake structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
1239 Research on the Optimization of the Facility Layout of Efficient Cafeterias for Troops

Authors: Qing Zhang, Jiachen Nie, Yujia Wen, Guanyuan Kou, Peng Yu, Kun Xia, Qin Yang, Li Ding

Abstract:

Background: A facility layout problem (FLP) is an NP-complete (non-deterministic polynomial) problem, for which is hard to obtain an exact optimal solution. FLP has been widely studied in various limited spaces and workflows. For example, cafeterias with many types of equipment for troops cause chaotic processes when dining. Objective: This article tried to optimize the layout of a troops’ cafeteria and to improve the overall efficiency of the dining process. Methods: First, the original cafeteria layout design scheme was analyzed from an ergonomic perspective and two new design schemes were generated. Next, three facility layout models were designed, and further simulation was applied to compare the total time and density of troops between each scheme. Last, an experiment of the dining process with video observation and analysis verified the simulation results. Results: In a simulation, the dining time under the second new layout is shortened by 2.25% and 1.89% (p<0.0001, p=0.0001) compared with the other two layouts, while troops-flow density and interference both greatly reduced in the two new layouts. In the experiment, process completing time and the number of interferences reduced as well, which verified corresponding simulation results. Conclusion: Our two new layout schemes are tested to be optimal by a series of simulation and space experiments. In future research, similar approaches could be applied when taking layout-design algorithm calculation into consideration.

Keywords: Troops’ cafeteria, layout optimization, dining efficiency, AnyLogic simulation, field experiment

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 506
1238 Using Genetic Algorithms to Outline Crop Rotations and a Cropping-System Model

Authors: Nicolae Bold, Daniel Nijloveanu

Abstract:

The idea of cropping-system is a method used by farmers. It is an environmentally-friendly method, protecting the natural resources (soil, water, air, nutritive substances) and increase the production at the same time, taking into account some crop particularities. The combination of this powerful method with the concepts of genetic algorithms results into a possibility of generating sequences of crops in order to form a rotation. The usage of this type of algorithms has been efficient in solving problems related to optimization and their polynomial complexity allows them to be used at solving more difficult and various problems. In our case, the optimization consists in finding the most profitable rotation of cultures. One of the expected results is to optimize the usage of the resources, in order to minimize the costs and maximize the profit. In order to achieve these goals, a genetic algorithm was designed. This algorithm ensures the finding of several optimized solutions of cropping-systems possibilities which have the highest profit and, thus, which minimize the costs. The algorithm uses genetic-based methods (mutation, crossover) and structures (genes, chromosomes). A cropping-system possibility will be considered a chromosome and a crop within the rotation is a gene within a chromosome. Results about the efficiency of this method will be presented in a special section. The implementation of this method would bring benefits into the activity of the farmers by giving them hints and helping them to use the resources efficiently.

Keywords: Genetic algorithm, chromosomes, genes, cropping, agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
1237 Characteristics of Aluminum Hybrid Composites

Authors: S. O. Adeosun, L. O. Osoba, O. O. Taiwo

Abstract:

Aluminum hybrid reinforcement technology is a response to the dynamic ever increasing service requirements of such industries as transportation, aerospace, automobile, marine, etc. It is unique in that it offers a platform of almost unending combinations of materials to produce various hybrid composites. This article reviews the studies carried out on various combinations of aluminum hybrid composite and the effects on mechanical, physical and chemical properties. It is observed that the extent of enhancement of these properties of hybrid composites is strongly dependent on the nature of the reinforcement, its hardness, particle size, volume fraction, uniformity of dispersion within the matrix and the method of hybrid production.

Keywords: Aluminum alloy, hybrid composites, properties, reinforcements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5118
1236 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

 A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: Forecasting model, Steel demand uncertainty, Hierarchical Bayesian framework, Exponential smoothing method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2534
1235 Hybrid Approach for Software Defect Prediction Using Machine Learning with Optimization Technique

Authors: C. Manjula, Lilly Florence

Abstract:

Software technology is developing rapidly which leads to the growth of various industries. Now-a-days, software-based applications have been adopted widely for business purposes. For any software industry, development of reliable software is becoming a challenging task because a faulty software module may be harmful for the growth of industry and business. Hence there is a need to develop techniques which can be used for early prediction of software defects. Due to complexities in manual prediction, automated software defect prediction techniques have been introduced. These techniques are based on the pattern learning from the previous software versions and finding the defects in the current version. These techniques have attracted researchers due to their significant impact on industrial growth by identifying the bugs in software. Based on this, several researches have been carried out but achieving desirable defect prediction performance is still a challenging task. To address this issue, here we present a machine learning based hybrid technique for software defect prediction. First of all, Genetic Algorithm (GA) is presented where an improved fitness function is used for better optimization of features in data sets. Later, these features are processed through Decision Tree (DT) classification model. Finally, an experimental study is presented where results from the proposed GA-DT based hybrid approach is compared with those from the DT classification technique. The results show that the proposed hybrid approach achieves better classification accuracy.

Keywords: Decision tree, genetic algorithm, machine learning, software defect prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1463
1234 Direct Simulation Monte Carlo (DSMC) Algorithm – A Comparison of Mathematica Code with FLUENT 6.2 for Low Knudsen Number

Authors: Nabeel A. Qazi, Absaar ul Jabbar, Khalid Parvez

Abstract:

A code has been developed in Mathematica using Direct Simulation Monte Carlo (DSMC) technique. The code was tested for 2-D air flow around a circular cylinder. Same geometry and flow properties were used in FLUENT 6.2 for comparison. The results obtained from Mathematica simulation indicated significant agreement with FLUENT calculations, hence providing insight into particle nature of fluid flows.

Keywords: DSMC algorithm, non continuum gas flows, Monte Carlo methods

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3420
1233 Investigation and Evalution of Swelling Kinetics Related to Biocopolymers Based on CMC poly(AA-co BuMC)

Authors: Mohammad Sadeghi, Behrouz Heidari, Korush Montazeri

Abstract:

In this paper, we have focused on study of swelling kinetics and salt-sensitivity behavior of a superabsorbing hydrogel based on carboxymethylcellulose (CMC) and acrylic acid and 2- Buthyl methacrylate. The swelling kinetics of the hydrogels with various particle sizes was preliminary investigated as well. The swelling of the hydrogel showed a second order kinetics of swelling in water. In addition, swelling measurements of the synthesized hydrogels in various chloride salt solutions was measured. Results indicated that a swelling-loss with an increase in the ionic strength of the salt solutions.

Keywords: Carboxymethylcellulose, swelling kinetics, 2-hydroxypropylmetacrylate, acrylic acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1541
1232 Optimal Design of Flat – Gain Wide-Band Discrete Raman Amplifiers

Authors: Banaz Omer Rasheed, Parexan M. Aljaff

Abstract:

In this paper, a wide band gain–flattened discrete Raman amplifiers utilizing four optimum pump wavelengths is demonstrated.

Keywords: Fiber Raman Amplifiers, Optimization, WaveLength Division Multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
1231 Mapping Semantic Networks to Undirected Networks

Authors: Marko A. Rodriguez

Abstract:

There exists an injective, information-preserving function that maps a semantic network (i.e a directed labeled network) to a directed network (i.e. a directed unlabeled network). The edge label in the semantic network is represented as a topological feature of the directed network. Also, there exists an injective function that maps a directed network to an undirected network (i.e. an undirected unlabeled network). The edge directionality in the directed network is represented as a topological feature of the undirected network. Through function composition, there exists an injective function that maps a semantic network to an undirected network. Thus, aside from space constraints, the semantic network construct does not have any modeling functionality that is not possible with either a directed or undirected network representation. Two proofs of this idea will be presented. The first is a proof of the aforementioned function composition concept. The second is a simpler proof involving an undirected binary encoding of a semantic network.

Keywords: general-modeling, multi-relational networks, semantic networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
1230 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools

Authors: Chin-Yin Chen, Chi-Cheng Cheng

Abstract:

This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.

Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1947
1229 Silicon-based Low-Power Reconfigurable Optical Add-Drop Multiplexer (ROADM)

Authors: Junfeng Song, Xianshu Luo, Qing Fang, Lianxi Jia, Xiaoguang Tu, Tsung-Yang Liow, Mingbin Yu, Guo-Qiang Lo

Abstract:

We demonstrate a 1×4 coarse wavelength division-multiplexing (CWDM) planar concave grating multiplexer/demultiplexer and its application in re-configurable optical add/drop multiplexer (ROADM) system in silicon-on-insulator substrate. The wavelengths of the demonstrated concave grating multiplexer align well with the ITU-T standard. We demonstrate a prototype of ROADM comprising two such concave gratings and four wide-band thermo-optical MZI switches. Undercut technology which removes the underneath silicon substrate is adopted in optical switches in order to minimize the operation power. For all the thermal heaters, the operation voltage is smaller than 1.5 V, and the switch power is ~2.4 mW. High throughput pseudorandom binary sequence (PRBS) data transmission with up to 100 Gb/s is demonstrated, showing the high-performance ROADM functionality.

Keywords: ROADM, Optical switch, low power consumption, Integrated devices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
1228 Distillation Monitoring and Control using LabVIEW and SIMULINK Tools

Authors: J. Fernandez de Canete, P. Del Saz Orozco, S. Gonzalez-Perez

Abstract:

LabVIEW and SIMULINK are two most widely used graphical programming environments for designing digital signal processing and control systems. Unlike conventional text-based programming languages such as C, Cµ and MATLAB, graphical programming involves block-based code developments, allowing a more efficient mechanism to build and analyze control systems. In this paper a LabVIEW environment has been employed as a graphical user interface for monitoring the operation of a controlled distillation column, by visualizing both the closed loop performance and the user selected control conditions, while the column dynamics has been modeled under the SIMULINK environment. This tool has been applied to the PID based decoupled control of a binary distillation column. By means of such integrated environments the control designer is able to monitor and control the plant behavior and optimize the response when both, the quality improvement of distillation products and the operation efficiency tasks, are considered.

Keywords: Distillation control, software tools, SIMULINKLabVIEWinterface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3813
1227 Edge Detection in Digital Images Using Fuzzy Logic Technique

Authors: Abdallah A. Alshennawy, Ayman A. Aly

Abstract:

The fuzzy technique is an operator introduced in order to simulate at a mathematical level the compensatory behavior in process of decision making or subjective evaluation. The following paper introduces such operators on hand of computer vision application. In this paper a novel method based on fuzzy logic reasoning strategy is proposed for edge detection in digital images without determining the threshold value. The proposed approach begins by segmenting the images into regions using floating 3x3 binary matrix. The edge pixels are mapped to a range of values distinct from each other. The robustness of the proposed method results for different captured images are compared to those obtained with the linear Sobel operator. It is gave a permanent effect in the lines smoothness and straightness for the straight lines and good roundness for the curved lines. In the same time the corners get sharper and can be defined easily.

Keywords: Fuzzy logic, Edge detection, Image processing, computer vision, Mechanical parts, Measurement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4767
1226 Thermal Diffusivity Measurement of Cadmium Sulphide Nanoparticles Prepared by γ-Radiation Technique

Authors: Azmi Zakaria, Reza Zamiri, Parisa Vaziri, Elias Saion, M. Shahril Husin

Abstract:

In this study we applied thermal lens (TL) technique to study the effect of size on thermal diffusivity of cadmium sulphide (CdS) nanofluid prepared by using γ-radiation method containing particles with different sizes. In TL experimental set up a diode laser of wavelength 514 nm and intensity stabilized He-Ne laser were used as the excitation source and the probe beam respectively, respectively. The experimental results showed that the thermal diffusivity value of CdS nanofluid increases when the of particle size increased.

Keywords: Thermal diffusivity, nanofluids, thermal lens

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3416
1225 Pattern Recognition as an Internalized Motor Programme

Authors: M. Jändel

Abstract:

A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes.

Keywords: Competitive queuing model, Olfactory system, Pattern recognition, Support vector machine, Thalamus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1368
1224 Optimizing and Evaluating Performance Quality Control of the Production Process of Disposable Essentials Using Approach Vague Goal Programming

Authors: Hadi Gholizadeh, Ali Tajdin

Abstract:

To have effective production planning, it is necessary to control the quality of processes. This paper aims at improving the performance of the disposable essentials process using statistical quality control and goal programming in a vague environment. That is expressed uncertainty because there is always a measurement error in the real world. Therefore, in this study, the conditions are examined in a vague environment that is a distance-based environment. The disposable essentials process in Kach Company was studied. Statistical control tools were used to characterize the existing process for four factor responses including the average of disposable glasses’ weights, heights, crater diameters, and volumes. Goal programming was then utilized to find the combination of optimal factors setting in a vague environment which is measured to apply uncertainty of the initial information when some of the parameters of the models are vague; also, the fuzzy regression model is used to predict the responses of the four described factors. Optimization results show that the process capability index values for disposable glasses’ average of weights, heights, crater diameters and volumes were improved. Such increasing the quality of the products and reducing the waste, which will reduce the cost of the finished product, and ultimately will bring customer satisfaction, and this satisfaction, will mean increased sales.

Keywords: Goal programming, quality control, vague environment, disposable glasses’ optimization, fuzzy regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1039
1223 Static Recrystallization Behavior of Mg Alloy Single Crystals

Authors: Joon Ho Kim, Jae Ho Choi, Tae Kwon Ha

Abstract:

Single crystals of Magnesium alloys such as pure Mg, Mg-1Zn-0.5Y, Mg-0.1Y, and Mg-0.1Ce alloys were successfully fabricated in this study by employing the modified Bridgman method. To determine the exact orientation of crystals, pole figure measurement using X-ray diffraction were carried out on each single crystal. Hardness and compression tests were conducted followed by subsequent recrysatllization annealing. Recrystallization kinetics of Mg alloy single crystals has been investigated. Fabricated single crystals were cut into rectangular shaped specimen and solution treated at 400oC for 24 hrs, and then deformed in compression mode by 30% reduction. Annealing treatment for recrystallization has been conducted on these cold-rolled plates at temperatures of 300oC for various times from 1 to 20 mins. The microstructure observation and hardness measurement conducted on the recrystallized specimens revealed that static recrystallization of ternary alloy single crystal was very slow, while recrystallization behavior of binary alloy single crystals appeared to be very fast.

Keywords: Magnesium, Mg-rare earth alloys, compression test, static recrystallization, hardness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
1222 Predictive Maintenance of Industrial Shredders: Efficient Operation through Real-Time Monitoring Using Statistical Machine Learning

Authors: Federico Pittino, Dominik Holzmann, Krithika Sayar-Chand, Stefan Moser, Sebastian Pliessnig, Thomas Arnold

Abstract:

The shredding of waste materials is a key step in the recycling process towards circular economy. Industrial shredders for waste processing operate in very harsh operating conditions, leading to the need of frequent maintenance of critical components. The maintenance optimization is particularly important also to increase the machine’s efficiency, thereby reducing the operational costs. In this work, a monitoring system has been developed and deployed on an industrial shredder located at a waste recycling plant in Austria. The machine has been monitored for several months and methods for predictive maintenance have been developed for two key components: the cutting knives and the drive belt. The large amount of collected data is leveraged by statistical machine learning techniques, thereby not requiring a very detailed knowledge of the machine or its live operating conditions. The results show that, despite the wide range of operating conditions, a reliable estimate of the optimal time for maintenance can be derived. Moreover, the trade-off between the cost of maintenance and the increase in power consumption due to the wear state of the monitored components of the machine is investigated. This work proves the benefits of real-time monitoring system for efficient operation of industrial shredders.

Keywords: predictive maintenance, circular economy, industrial shredder, cost optimization, statistical machine learning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 639
1221 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, Nonlinearity distribution, Particle filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721