Search results for: functional data
6644 Parameter Estimation using Maximum Likelihood Method from Flight Data at High Angles of Attack
Authors: Rakesh Kumar, A. K. Ghosh
Abstract:
The paper presents the modeling of nonlinear longitudinal aerodynamics using flight data of Hansa-3 aircraft at high angles of attack near stall. The Kirchhoff-s quasi-steady stall model has been used to incorporate nonlinear aerodynamic effects in the aerodynamic model used to estimate the parameters, thereby, making the aerodynamic model nonlinear. The Maximum Likelihood method has been applied to the flight data (at high angles of attack) for the estimation of parameters (aerodynamic and stall characteristics) using the nonlinear aerodynamic model. To improve the accuracy level of the estimates, an approach of fixing the strong parameters has also been presented.Keywords: Maximum Likelihood, nonlinear, parameters, stall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22166643 Network Anomaly Detection using Soft Computing
Authors: Surat Srinoy, Werasak Kurutach, Witcha Chimphlee, Siriporn Chimphlee
Abstract:
One main drawback of intrusion detection system is the inability of detecting new attacks which do not have known signatures. In this paper we discuss an intrusion detection method that proposes independent component analysis (ICA) based feature selection heuristics and using rough fuzzy for clustering data. ICA is to separate these independent components (ICs) from the monitored variables. Rough set has to decrease the amount of data and get rid of redundancy and Fuzzy methods allow objects to belong to several clusters simultaneously, with different degrees of membership. Our approach allows us to recognize not only known attacks but also to detect activity that may be the result of a new, unknown attack. The experimental results on Knowledge Discovery and Data Mining- (KDDCup 1999) dataset.Keywords: Network security, intrusion detection, rough set, ICA, anomaly detection, independent component analysis, rough fuzzy .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19566642 First-Principle Investigation of the Electronic Band Structure and Dielectric Response Function of ZnIn2Se4 and ZnIn2Te4
Authors: Nnamdi N. Omehe, Chibuzo Emeruwa
Abstract:
ZnIn2Se4 and ZnIn2Te4 are vacancy defect materials whose properties have been investigated using Density Functional Theory (DFT) framework. The pseudopotential method in conjunction with the LDA+U technique and the Projector Augmented Wave (PAW) was used to calculate the electronic band structure, total density of state, and the partial density of state; while the norm-conserving pseudopotential was used to calculate the dielectric response function with scissors shift. Both ZnIn2Se4 and ZnIn2Te4 were predicted to be semiconductors with energy band gap of 1.66 eV and 1.33 eV respectively, and they both have direct energy band gap at the gamma point of high symmetry. The topmost valence subband for ZnIn2Se4 and ZnIn2Te4 has an energy width of 5.7 eV and 6.0 eV respectively. The calculations of partial density of state (PDOS) show that for ZnIn2Se4, the top of the valence band is dominated by Se-4p orbital, while the bottom of the conduction band is composed of In-5p, In-5s, and Zn-4s states. PDOS for ZnIn2Te4, shows that the top of the valence band is mostly of Te-5p states, while its conduction band bottom is composed mainly of Zn-4s, Te-5p, Te-5s, and In-5s states. Dielectric response function calculation yielded (0) of 11.9 and 36 for ZnIn2Se4 and ZnIn2Te4 respectively.
Keywords: Optoelectronic, Dielectric Response Function, LDA+U, band structure calculation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1096641 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: Building system, time series, diagnosis, outliers, delay, data gap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9046640 Daily and Seasonal Changes of Air Pollution in Kuwait
Authors: H. Ettouney, A. AL-Haddad, S. Saqer
Abstract:
This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.
Keywords: Air pollution, Emission inventory, ISCST3 model, Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24216639 Regular Data Broadcasting Plan with Grouping in Wireless Mobile Environment
Authors: John T. Tsiligaridis
Abstract:
The broadcast problem including the plan design is considered. The data are inserted and numbered at predefined order into customized size relations. The server ability to create a full, regular Broadcast Plan (RBP) with single and multiple channels after some data transformations is examined. The Regular Geometric Algorithm (RGA) prepares a RBP and enables the users to catch their items avoiding energy waste of their devices. Moreover, the Grouping Dimensioning Algorithm (GDA) based on integrated relations can guarantee the discrimination of services with a minimum number of channels. This last property among the selfmonitoring, self-organizing, can be offered by servers today providing also channel availability and less energy consumption by using smaller number of channels. Simulation results are provided.Keywords: Broadcast, broadcast plan, mobile computing, wireless networks, scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14546638 Survival Model for Partly Interval-Censored Data with Application to Anti D in Rhesus D Negative Studies
Authors: F. A. M. Elfaki, Amar Abobakar, M. Azram, M. Usman
Abstract:
This paper discusses regression analysis of partly interval-censored failure time data, which is occur in many fields including demographical, epidemiological, financial, medical and sociological studies. For the problem, we focus on the situation where the survival time of interest can be described by the additive hazards model in the present of partly interval-censored. A major advantage of the approach is its simplicity and it can be easily implemented by using R software. Simulation studies are conducted which indicate that the approach performs well for practical situations and comparable to the existing methods. The methodology is applied to a set of partly interval-censored failure time data arising from anti D in Rhesus D negative studies.
Keywords: Anti D in Rhesus D negative, Cox’s model, EM algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16936637 Metabolic Predictive Model for PMV Control Based on Deep Learning
Authors: Eunji Choi, Borang Park, Youngjae Choi, Jinwoo Moon
Abstract:
In this study, a predictive model for estimating the metabolism (MET) of human body was developed for the optimal control of indoor thermal environment. Human body images for indoor activities and human body joint coordinated values were collected as data sets, which are used in predictive model. A deep learning algorithm was used in an initial model, and its number of hidden layers and hidden neurons were optimized. Lastly, the model prediction performance was analyzed after the model being trained through collected data. In conclusion, the possibility of MET prediction was confirmed, and the direction of the future study was proposed as developing various data and the predictive model.
Keywords: Deep learning, indoor quality, metabolism, predictive model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11956636 Optimising Data Transmission in Heterogeneous Sensor Networks
Authors: M. Hammerton, J. Trevathan, T. Myers, W. Read
Abstract:
The transfer rate of messages in distributed sensor network applications is a critical factor in a system's performance. The Sensor Abstraction Layer (SAL) is one such system. SAL is a middleware integration platform for abstracting sensor specific technology in order to integrate heterogeneous types of sensors in a network. SAL uses Java Remote Method Invocation (RMI) as its connection method, which has unsatisfying transfer rates, especially for streaming data. This paper analyses different connection methods to optimize data transmission in SAL by replacing RMI. Our results show that the most promising Java-based connections were frameworks for Java New Input/Output (NIO) including Apache MINA, JBoss Netty, and xSocket. A test environment was implemented to evaluate each respective framework based on transfer rate, resource usage, and scalability. Test results showed the most suitable connection method to improve data transmission in SAL JBoss Netty as it provides a performance enhancement of 68%.
Keywords: Wireless sensor networks, remote method invocation, transmission time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20386635 A Computational Cost-Effective Clustering Algorithm in Multidimensional Space Using the Manhattan Metric: Application to the Global Terrorism Database
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
The increasing amount of collected data has limited the performance of the current analyzing algorithms. Thus, developing new cost-effective algorithms in terms of complexity, scalability, and accuracy raised significant interests. In this paper, a modified effective k-means based algorithm is developed and experimented. The new algorithm aims to reduce the computational load without significantly affecting the quality of the clusterings. The algorithm uses the City Block distance and a new stop criterion to guarantee the convergence. Conducted experiments on a real data set show its high performance when compared with the original k-means version.
Keywords: Pattern recognition, partitional clustering, K-means clustering, Manhattan distance, terrorism data analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13596634 HelpMeBreathe: A Web-Based System for Asthma Management
Authors: Alia Al Rayssi, Mahra Al Marar, Alyazia Alkhaili, Reem Al Dhaheri, Shayma Alkobaisi, Hoda Amer
Abstract:
We present in this paper a web-based system called “HelpMeBreathe” for managing asthma. The proposed system provides analytical tools, which allow better understanding of environmental triggers of asthma, hence better support of data-driven decision making. The developed system provides warning messages to a specific asthma patient if the weather in his/her area might cause any difficulty in breathing or could trigger an asthma attack. HelpMeBreathe collects, stores, and analyzes individuals’ moving trajectories and health conditions as well as environmental data. It then processes and displays the patients’ data through an analytical tool that leads to an effective decision making by physicians and other decision makers.
Keywords: Asthma, environmental triggers, map interface, peak flow, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8706633 Application of Neural Networks for 24-Hour-Ahead Load Forecasting
Authors: Fatemeh Mosalman Yazdi
Abstract:
One of the most important requirements for the operation and planning activities of an electrical utility is the prediction of load for the next hour to several days out, known as short term load forecasting. This paper presents the development of an artificial neural network based short-term load forecasting model. The model can forecast daily load profiles with a load time of one day for next 24 hours. In this method can divide days of year with using average temperature. Groups make according linearity rate of curve. Ultimate forecast for each group obtain with considering weekday and weekend. This paper investigates effects of temperature and humidity on consuming curve. For forecasting load curve of holidays at first forecast pick and valley and then the neural network forecast is re-shaped with the new data. The ANN-based load models are trained using hourly historical. Load data and daily historical max/min temperature and humidity data. The results of testing the system on data from Yazd utility are reported.Keywords: Artificial neural network, Holiday forecasting, pickand valley load forecasting, Short-term load-forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21936632 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy
Authors: Lina Paola Orozco-Marín, Yuliet Montoya, John Bustamante
Abstract:
Ischemic events can culminate in acute myocardial infarction with irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Tissue engineering proposes therapeutic alternatives by using biomaterials to resemble the native extracellular medium combined with healthy and functional cells. This research focused on developing a natural thermosensitive hydrogel, its physical-chemical characterization and in vitro biocompatibility determination. Hydrogels’ morphological characterization was carried out through scanning electron microscopy and its chemical characterization by employing Infrared Spectroscopy technic. In addition, the biocompatibility was determined using fetal human ventricular cardiomyocytes cell line RL-14 and the MTT cytotoxicity test according to the ISO 10993-5 standard. Four biocompatible and thermosensitive hydrogels were obtained with a three-dimensional internal structure and two gelation times. The results show the potential of the hydrogel to increase the cell survival rate to the cardiac cell therapies under investigation and lay the foundations to continue with its characterization and biological evaluation both in vitro and in vivo models.
Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7556631 On the Joint Optimization of Performance and Power Consumption in Data Centers
Authors: Samee Ullah Khan, C. Ardil
Abstract:
We model the process of a data center as a multi- objective problem of mapping independent tasks onto a set of data center machines that simultaneously minimizes the energy consump¬tion and response time (makespan) subject to the constraints of deadlines and architectural requirements. A simple technique based on multi-objective goal programming is proposed that guarantees Pareto optimal solution with excellence in convergence process. The proposed technique also is compared with other traditional approach. The simulation results show that the proposed technique achieves superior performance compared to the min-min heuristics, and com¬petitive performance relative to the optimal solution implemented in UNDO for small-scale problems.
Keywords: Energy-efficient computing, distributed systems, multi-objective optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16916630 Preparing Data for Calibration of Mechanistic-Empirical Pavement Design Guide in Central Saudi Arabia
Authors: Abdulraaof H. Alqaili, Hamad A. Alsoliman
Abstract:
Through progress in pavement design developments, a pavement design method was developed, which is titled the Mechanistic Empirical Pavement Design Guide (MEPDG). Nowadays, the evolution in roads network and highways is observed in Saudi Arabia as a result of increasing in traffic volume. Therefore, the MEPDG currently is implemented for flexible pavement design by the Saudi Ministry of Transportation. Implementation of MEPDG for local pavement design requires the calibration of distress models under the local conditions (traffic, climate, and materials). This paper aims to prepare data for calibration of MEPDG in Central Saudi Arabia. Thus, the first goal is data collection for the design of flexible pavement from the local conditions of the Riyadh region. Since, the modifying of collected data to input data is needed; the main goal of this paper is the analysis of collected data. The data analysis in this paper includes processing each: Trucks Classification, Traffic Growth Factor, Annual Average Daily Truck Traffic (AADTT), Monthly Adjustment Factors (MAFi), Vehicle Class Distribution (VCD), Truck Hourly Distribution Factors, Axle Load Distribution Factors (ALDF), Number of axle types (single, tandem, and tridem) per truck class, cloud cover percent, and road sections selected for the local calibration. Detailed descriptions of input parameters are explained in this paper, which leads to providing of an approach for successful implementation of MEPDG. Local calibration of MEPDG to the conditions of Riyadh region can be performed based on the findings in this paper.
Keywords: Mechanistic-empirical pavement design guide, traffic characteristics, materials properties, climate, Riyadh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12246629 Economized Sensor Data Processing with Vehicle Platooning
Authors: Henry Hexmoor, Kailash Yelasani
Abstract:
We present vehicular platooning as a special case of crowd-sensing framework where sharing sensory information among a crowd is used for their collective benefit. After offering an abstract policy that governs processes involving a vehicular platoon, we review several common scenarios and components surrounding vehicular platooning. We then present a simulated prototype that illustrates efficiency of road usage and vehicle travel time derived from platooning. We have argued that one of the paramount benefits of platooning that is overlooked elsewhere, is the substantial computational savings (i.e., economizing benefits) in acquisition and processing of sensory data among vehicles sharing the road. The most capable vehicle can share data gathered from its sensors with nearby vehicles grouped into a platoon.
Keywords: Cloud network, collaboration, Internet of Things, social network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7116628 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process
Authors: Jan Stodt, Christoph Reich
Abstract:
The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.Keywords: Audit, machine learning, assessment, metrics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10316627 Information Seeking through Assimilation Process in Thai Organization
Authors: Pornprom Chomngam
Abstract:
The purpose of this study is to examine employee assessments of the usefulness/value of different types of information available to those employees during the process of organizational assimilation. Participants in the study were 247 “new" employees at Bangkok Bank. Bangkok Bank considers employees whose length of stay with the bank has been less than 18 months as new employees. Questionnaires were administered to all of the Bank-s new employees to obtain the data for this study. Repeated measures analysis was used to analyze the data. The data were summed and coded by using Statistical Package for Social Science. Newcomers indicate that social information is the most useful information, followed by job (technical, referent, and appraisal information), political, normative, and organizational information. Essentially, social, job, and political information are evaluated by newcomers as highly useful, while normative and organizational information are rated as moderately useful.
Keywords: Information seeking, organization assimilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16616626 Image Steganography Using Least Significant Bit Technique
Authors: Preeti Kumari, Ridhi Kapoor
Abstract:
In any communication, security is the most important issue in today’s world. In this paper, steganography is the process of hiding the important data into other data, such as text, audio, video, and image. The interest in this topic is to provide availability, confidentiality, integrity, and authenticity of data. The steganographic technique that embeds hides content with unremarkable cover media so as not to provoke eavesdropper’s suspicion or third party and hackers. In which many applications of compression, encryption, decryption, and embedding methods are used for digital image steganography. Due to compression, the nose produces in the image. To sustain noise in the image, the LSB insertion technique is used. The performance of the proposed embedding system with respect to providing security to secret message and robustness is discussed. We also demonstrate the maximum steganography capacity and visual distortion.Keywords: Steganography, LSB, encoding, information hiding, color image.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10926625 Chinese Language Teaching as a Second Language: Immersion Teaching
Authors: Lee Bih Ni, Kiu Su Na
Abstract:
This paper discusses the Chinese Language Teaching as a Second Language by focusing on Immersion Teaching. Researchers used narrative literature review to describe the current states of both art and science in focused areas of inquiry. Immersion teaching comes with a standard that teachers must reliably meet. Chinese language-immersion instruction consists of language and content lessons, including functional usage of the language, academic language, authentic language, and correct Chinese sociocultural language. Researchers used narrative literature reviews to build a scientific knowledge base. Researchers collected all the important points of discussion, and put them here with reference to the specific field where this paper is originally based on. The findings show that Chinese Language in immersion teaching is not like standard foreign language classroom; immersion setting provides more opportunities to teach students colloquial language than academic. Immersion techniques also introduce a language’s cultural and social contexts in a meaningful and memorable way. It is particularly important that immersion teachers connect classwork with real-life experiences. Immersion also includes more elements of discovery and inquiry based learning than do other kinds of instructional practices. Students are always and consistently interpreted the conclusions and context clues.Keywords: A second language, Chinese language teaching, immersion teaching, instructional strategies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21866624 Using Data Mining Techniques for Finding Cardiac Outlier Patients
Authors: Farhan Ismaeel Dakheel, Raoof Smko, K. Negrat, Abdelsalam Almarimi
Abstract:
In this paper we used data mining techniques to identify outlier patients who are using large amount of drugs over a long period of time. Any healthcare or health insurance system should deal with the quantities of drugs utilized by chronic diseases patients. In Kingdom of Bahrain, about 20% of health budget is spent on medications. For the managers of healthcare systems, there is no enough information about the ways of drug utilization by chronic diseases patients, is there any misuse or is there outliers patients. In this work, which has been done in cooperation with information department in the Bahrain Defence Force hospital; we select the data for Cardiac patients in the period starting from 1/1/2008 to December 31/12/2008 to be the data for the model in this paper. We used three techniques for finding the drug utilization for cardiac patients. First we applied a clustering technique, followed by measuring of clustering validity, and finally we applied a decision tree as classification algorithm. The clustering results is divided into three clusters according to the drug utilization, for 1603 patients, who received 15,806 prescriptions during this period can be partitioned into three groups, where 23 patients (2.59%) who received 1316 prescriptions (8.32%) are classified to be outliers. The classification algorithm shows that the use of average drug utilization and the age, and the gender of the patient can be considered to be the main predictive factors in the induced model.Keywords: Data Mining, Clustering, Classification, Drug Utilization..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18996623 Retail Strategy to Reduce Waste Keeping High Profit Utilizing Taylor's Law in Point-of-Sales Data
Authors: Gen Sakoda, Hideki Takayasu, Misako Takayasu
Abstract:
Waste reduction is a fundamental problem for sustainability. Methods for waste reduction with point-of-sales (POS) data are proposed, utilizing the knowledge of a recent econophysics study on a statistical property of POS data. Concretely, the non-stationary time series analysis method based on the Particle Filter is developed, which considers abnormal fluctuation scaling known as Taylor's law. This method is extended for handling incomplete sales data because of stock-outs by introducing maximum likelihood estimation for censored data. The way for optimal stock determination with pricing the cost of waste reduction is also proposed. This study focuses on the examination of the methods for large sales numbers where Taylor's law is obvious. Numerical analysis using aggregated POS data shows the effectiveness of the methods to reduce food waste maintaining a high profit for large sales numbers. Moreover, the way of pricing the cost of waste reduction reveals that a small profit loss realizes substantial waste reduction, especially in the case that the proportionality constant of Taylor’s law is small. Specifically, around 1% profit loss realizes half disposal at =0.12, which is the actual value of processed food items used in this research. The methods provide practical and effective solutions for waste reduction keeping a high profit, especially with large sales numbers.
Keywords: Food waste reduction, particle filter, point of sales, sustainable development goals, Taylor's Law, time series analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8716622 Experimental teaching, Perceived usefulness, Ease of use, Learning Interest and Science Achievement of Taiwan 8th Graders in TIMSS 2007 Database
Authors: Pei Wen Liao, Tsung Hau Jen
Abstract:
the data of Taiwanese 8th grader in the 4th cycle of Trends in International Mathematics and Science Study (TIMSS) are analyzed to examine the influence of the science teachers- preference in experimental teaching on the relationships between the affective variables ( the perceived usefulness of science, ease of using science and science learning interest) and the academic achievement in science. After dealing with the missing data, 3711 students and 145 science teacher-s data were analyzed through a Hierarchical Linear Modeling technique. The major objective of this study was to determine the role of the experimental teaching moderates the relationship between perceived usefulness and achievement.Keywords: TIMSS database, Science achievement, Experimental teaching, Perceived Usefulness, Perceived Ease of Use
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16576621 Effect of Heat-Moisture Treatment on the Formation and Properties of Resistant Starches From Mung Bean (Phaseolus radiatus) Starches
Authors: Su-Ling Li, Qun-Yu Gao
Abstract:
Mung bean starches were subjected to heat-moisture treatment (HMT) by different moisture contents (15%, 20%, 25%, 30% and 35%) at 120Ôäâ for 12h. The impact on the yields of resistant starch (RS), microstructure, physicochemical and functional properties was investigated. Compared to native starch, the RS content of heat-moisture treated starches increased significantly. The RS level of HMT-20 was the highest of all the starches. Birefringence was displayed clear at the center of native starch. For HMT starches, pronounced birefringence was exhibited on the periphery of starch granules; however, birefringence disappeared at the centre of some starch granules. The shape of HMT starches hadn-t been changed and the integrity of starch granules was preserved for all the conditions. Concavity could be observed on HMT starches under scanning electronic microscopy. After HMT, apparent amylose contents were increased and starch macromolecule was degraded in comparison with those of native starch. There was a reduction in swelling power on HMT starches, but the solubility of HMT starches was higher than that of native starch. Both of native and HMT starches showed A-type X-ray diffraction pattern. Furthermore, there is a higher intensity at the peak of 15.0 and 22.9 Å than those of native starch.
Keywords: Resistant starch, mung bean (Phaseolus radiatus) starch, heat-moisture treatment, physicochemical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35226620 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-tai Jung, Sung-yong Choi, Young-hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.
Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22076619 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System
Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park
Abstract:
The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.
Keywords: Creep, Lean concrete, Pavement, Fiber reinforced concrete, Base.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13656618 Corporate Governance Mechanisms, Whistle-Blowing Policy and Earnings Management Practices of Firms in Malaysia
Authors: Mujeeb Saif Mohsen Al-Absy, Ku Nor Izah Ku Ismail, Sitraselvi Chandren
Abstract:
This study examines whether corporate governance (CG) mechanisms in firms that have a whistle-blowing policy (WHBLP) are more effective in constraining earnings management (EM), than those without. A sample of 288 Malaysian firms for the years 2013 to 2015, amounting to 864 firm-years were grouped into firms with and without WHBLP. Results show that for firms without WHBLP, the board chairman tenure would minimize EM activities. Meanwhile, for firms with WHBLP, board chairman independence, board chairman tenure, audit committee size, audit committee meeting and women in the audit committees are found to be associated with less EM activities. Further, it is found that ownership concentration and Big 4 auditing firms help to reduce EM activities in firms with WHBLP, while not in firms without WHBLP. Hence, functional and effective governance can be achieved by having a WHBLP, which is in line with agency and resource dependent theories. Therefore, this study suggests that firms should have a WHBLP in place, and policymakers should come up with enhanced criteria to strengthen the mechanisms of WHBLP.
Keywords: Corporate governance, earnings management, whistle-blowing policy, audit committee, board of directors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12726617 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy
Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez
Abstract:
The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.
Keywords: Intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10136616 A Cumulative Learning Approach to Data Mining Employing Censored Production Rules (CPRs)
Authors: Rekha Kandwal, Kamal K.Bharadwaj
Abstract:
Knowledge is indispensable but voluminous knowledge becomes a bottleneck for efficient processing. A great challenge for data mining activity is the generation of large number of potential rules as a result of mining process. In fact sometimes result size is comparable to the original data. Traditional data mining pruning activities such as support do not sufficiently reduce the huge rule space. Moreover, many practical applications are characterized by continual change of data and knowledge, thereby making knowledge voluminous with each change. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. Michalski & Winston proposed Censored Production Rules (CPRs), as an extension of production rules, that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence, are tight or there is simply no information available as to whether it holds or not. Thus the 'If P Then D' part of the CPR expresses important information while the Unless C part acts only as a switch changes the polarity of D to ~D. In this paper a scheme based on Dempster-Shafer Theory (DST) interpretation of a CPR is suggested for discovering CPRs from the discovered flat PRs. The discovery of CPRs from flat rules would result in considerable reduction of the already discovered rules. The proposed scheme incrementally incorporates new knowledge and also reduces the size of knowledge base considerably with each episode. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested cumulative learning scheme would be useful in mining data streams.
Keywords: Censored production rules, cumulative learning, data mining, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14856615 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.
Keywords: Adomian’s Decomposition Method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796