Search results for: model data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12693

Search results for: model data

11373 Project Objective Structure Model: An Integrated, Systematic and Balanced Approach in Order to Achieve Project Objectives

Authors: Mohammad Reza Oftadeh

Abstract:

The purpose of the article is to describe project objective structure (POS) concept that was developed on research activities and experiences about project management, Balanced Scorecard (BSC) and European Foundation Quality Management Excellence Model (EFQM Excellence Model). Furthermore, this paper tries to define a balanced, systematic, and integrated measurement approach to meet project objectives and project strategic goals based on a process-oriented model. In this paper, POS is suggested in order to measure project performance in the project life cycle. After using the POS model, the project manager can ensure in order to achieve the project objectives on the project charter. This concept can help project managers to implement integrated and balanced monitoring and control project work.

Keywords: Project objectives, project performance management, PMBOK, key performance indicators, integration management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
11372 Correlation and Prediction of Biodiesel Density

Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos

Abstract:

The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg⋅m- 3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg·m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.

Keywords: Biodiesel, Correlation, Density, Equation of state, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3510
11371 Full-genomic Network Inference for Non-model organisms: A Case Study for the Fungal Pathogen Candida albicans

Authors: Jörg Linde, Ekaterina Buyko, Robert Altwasser, Udo Hahn, Reinhard Guthke

Abstract:

Reverse engineering of full-genomic interaction networks based on compendia of expression data has been successfully applied for a number of model organisms. This study adapts these approaches for an important non-model organism: The major human fungal pathogen Candida albicans. During the infection process, the pathogen can adapt to a wide range of environmental niches and reversibly changes its growth form. Given the importance of these processes, it is important to know how they are regulated. This study presents a reverse engineering strategy able to infer fullgenomic interaction networks for C. albicans based on a linear regression, utilizing the sparseness criterion (LASSO). To overcome the limited amount of expression data and small number of known interactions, we utilize different prior-knowledge sources guiding the network inference to a knowledge driven solution. Since, no database of known interactions for C. albicans exists, we use a textmining system which utilizes full-text research papers to identify known regulatory interactions. By comparing with these known regulatory interactions, we find an optimal value for global modelling parameters weighting the influence of the sparseness criterion and the prior-knowledge. Furthermore, we show that soft integration of prior-knowledge additionally improves the performance. Finally, we compare the performance of our approach to state of the art network inference approaches.

Keywords: Pathogen, network inference, text-mining, Candida albicans, LASSO, mutual information, reverse engineering, linear regression, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
11370 Scheduling Maintenance Actions for Gas Turbines Aircraft Engines

Authors: Anis Gharbi

Abstract:

This paper considers the problem of scheduling maintenance actions for identical aircraft gas turbine engines. Each one of the turbines consists of parts which frequently require replacement. A finite inventory of spare parts is available and all parts are ready for replacement at any time. The inventory consists of both new and refurbished parts. Hence, these parts have different field lives. The goal is to find a replacement part sequencing that maximizes the time that the aircraft will keep functioning before the inventory is replenished. The problem is formulated as an identical parallel machine scheduling problem where the minimum completion time has to be maximized. Two models have been developed. The first one is an optimization model which is based on a 0-1 linear programming formulation, while the second one is an approximate procedure which consists in decomposing the problem into several two-machine subproblems. Each subproblem is optimally solved using the first model. Both models have been implemented using Lingo and have been tested on two sets of randomly generated data with up to 150 parts and 10 turbines. Experimental results show that the optimization model is able to solve only instances with no more than 4 turbines, while the decomposition procedure often provides near-optimal solutions within a maximum CPU time of 3 seconds.

Keywords: Aircraft turbines, Scheduling, Identical parallel machines, 0-1 linear programming, Heuristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2001
11369 The Effect of Oil Price Uncertainty on Food Price in South Africa

Authors: Goodness C. Aye

Abstract:

This paper examines the effect of the volatility of oil prices on food price in South Africa using monthly data covering the period 2002:01 to 2014:09. Food price is measured by the South African consumer price index for food while oil price is proxied by the Brent crude oil. The study employs the GARCH-in-mean VAR model, which allows the investigation of the effect of a negative and positive shock in oil price volatility on food price. The model also allows the oil price uncertainty to be measured as the conditional standard deviation of a one-step-ahead forecast error of the change in oil price. The results show that oil price uncertainty has a positive and significant effect on food price in South Africa. The responses of food price to a positive and negative oil price shocks is asymmetric.

Keywords: Oil price volatility, Food price, Bivariate GARCH-in- mean VAR, Asymmetric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736
11368 Development of a Technology Assessment Model by Patents and Customers' Review Data

Authors: Kisik Song, Sungjoo Lee

Abstract:

Recent years have seen an increasing number of patent disputes due to excessive competition in the global market and a reduced technology life-cycle; this has increased the risk of investment in technology development. While many global companies have started developing a methodology to identify promising technologies and assess for decisions, the existing methodology still has some limitations. Post hoc assessments of the new technology are not being performed, especially to determine whether the suggested technologies turned out to be promising. For example, in existing quantitative patent analysis, a patent’s citation information has served as an important metric for quality assessment, but this analysis cannot be applied to recently registered patents because such information accumulates over time. Therefore, we propose a new technology assessment model that can replace citation information and positively affect technological development based on post hoc analysis of the patents for promising technologies. Additionally, we collect customer reviews on a target technology to extract keywords that show the customers’ needs, and we determine how many keywords are covered in the new technology. Finally, we construct a portfolio (based on a technology assessment from patent information) and a customer-based marketability assessment (based on review data), and we use them to visualize the characteristics of the new technologies.

Keywords: Technology assessment, patents, citation information, opinion mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
11367 Integration of Multi-Source Data to Monitor Coral Biodiversity

Authors: K. Jitkue, W. Srisang, C. Yaiprasert, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

This study aims at using multi-source data to monitor coral biodiversity and coral bleaching. We used coral reef at Racha Islands, Phuket as a study area. There were three sources of data: coral diversity, sensor based data and satellite data.

Keywords: Coral reefs, Remote sensing, Sea surfacetemperatue, Satellite imagery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
11366 Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System

Authors: Francisca Grimón, Marylin Giugni, Josep Monguet F., Joaquín Fernández, Luis León G.

Abstract:

In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.

Keywords: Blended Learning, System Adaptive, Model, Clustering Algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
11365 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps

Authors: Engin Yesil, Leon Urbas

Abstract:

Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.

Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
11364 Quality of Service Evaluation using a Combination of Fuzzy C-Means and Regression Model

Authors: Aboagela Dogman, Reza Saatchi, Samir Al-Khayatt

Abstract:

In this study, a network quality of service (QoS) evaluation system was proposed. The system used a combination of fuzzy C-means (FCM) and regression model to analyse and assess the QoS in a simulated network. Network QoS parameters of multimedia applications were intelligently analysed by FCM clustering algorithm. The QoS parameters for each FCM cluster centre were then inputted to a regression model in order to quantify the overall QoS. The proposed QoS evaluation system provided valuable information about the network-s QoS patterns and based on this information, the overall network-s QoS was effectively quantified.

Keywords: Fuzzy C-means; regression model, network quality of service

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1719
11363 Simulation of Organic Matter Variability on a Sugarbeet Field Using the Computer Based Geostatistical Methods

Authors: M. Rüstü Karaman, Tekin Susam, Fatih Er, Servet Yaprak, Osman Karkacıer

Abstract:

Computer based geostatistical methods can offer effective data analysis possibilities for agricultural areas by using vectorial data and their objective informations. These methods will help to detect the spatial changes on different locations of the large agricultural lands, which will lead to effective fertilization for optimal yield with reduced environmental pollution. In this study, topsoil (0-20 cm) and subsoil (20-40 cm) samples were taken from a sugar beet field by 20 x 20 m grids. Plant samples were also collected from the same plots. Some physical and chemical analyses for these samples were made by routine methods. According to derived variation coefficients, topsoil organic matter (OM) distribution was more than subsoil OM distribution. The highest C.V. value of 17.79% was found for topsoil OM. The data were analyzed comparatively according to kriging methods which are also used widely in geostatistic. Several interpolation methods (Ordinary,Simple and Universal) and semivariogram models (Spherical, Exponential and Gaussian) were tested in order to choose the suitable methods. Average standard deviations of values estimated by simple kriging interpolation method were less than average standard deviations (topsoil OM ± 0.48, N ± 0.37, subsoil OM ± 0.18) of measured values. The most suitable interpolation method was simple kriging method and exponantial semivariogram model for topsoil, whereas the best optimal interpolation method was simple kriging method and spherical semivariogram model for subsoil. The results also showed that these computer based geostatistical methods should be tested and calibrated for different experimental conditions and semivariogram models.

Keywords: Geostatistic, kriging, organic matter, sugarbeet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
11362 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
11361 Incremental Learning of Independent Topic Analysis

Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda

Abstract:

In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.

Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1057
11360 Positive Periodic Solutions for a Predator-prey Model with Modified Leslie-Gower Holling-type II Schemes and a Deviating Argument

Authors: Yanling Zhu, Kai Wang

Abstract:

In this paper, by utilizing the coincidence degree theorem a predator-prey model with modified Leslie-Gower Hollingtype II schemes and a deviating argument is studied. Some sufficient conditions are obtained for the existence of positive periodic solutions of the model.

Keywords: Predator-prey model, Holling II type functional response, positive periodic solution, coincidence degree theorem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
11359 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.

Keywords: Data science, fraud detection, machine learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
11358 Speed Sensorless Control with a Linearizationby State Feedback of Asynchronous Machine Using a Model Reference Adaptive System

Authors: A. Larabi, M. S. Boucherit

Abstract:

In this paper, we show that the association of the PI regulators for the speed and stator currents with a control strategy using the linearization by state feedback for an induction machine without speed sensor, and with an adaptation of the rotor resistance. The rotor speed is estimated by using the model reference adaptive system approach (MRAS). This method consists of using two models: The first is the reference model and the second is an adjustable one in which two components of the stator flux, obtained from the measurement of the currents and stator voltages are estimated. The estimated rotor speed is then obtained by canceling the difference between stator-flux of the reference model and those of the adjustable one. Satisfactory results of simulation are obtained and discussed in this paper to highlight the proposed approach.

Keywords: Asynchronous actuator, PI Regulator, adaptivemethod with reference model, Vector control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1115
11357 Evaluating the Validity of Computational Fluid Dynamics Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements

Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck

Abstract:

This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the mean geometric bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.

Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 370
11356 GeoSEMA: A Modelling Platform, Emerging “GeoSpatial-based Evolutionary and Mobile Agents“

Authors: Mohamed Dbouk, Ihab Sbeity

Abstract:

Spatial and mobile computing evolves. This paper describes a smart modeling platform called “GeoSEMA". This approach tends to model multidimensional GeoSpatial Evolutionary and Mobile Agents. Instead of 3D and location-based issues, there are some other dimensions that may characterize spatial agents, e.g. discrete-continuous time, agent behaviors. GeoSEMA is seen as a devoted design pattern motivating temporal geographic-based applications; it is a firm foundation for multipurpose and multidimensional special-based applications. It deals with multipurpose smart objects (buildings, shapes, missiles, etc.) by stimulating geospatial agents. Formally, GeoSEMA refers to geospatial, spatio-evolutive and mobile space constituents where a conceptual geospatial space model is given in this paper. In addition to modeling and categorizing geospatial agents, the model incorporates the concept of inter-agents event-based protocols. Finally, a rapid software-architecture prototyping GeoSEMA platform is also given. It will be implemented/ validated in the next phase of our work.

Keywords: Location-Trajectory management, GIS, Mobile- Moving Objects/Agents, Multipurpose/Spatiotemporal data, Multi- Agent Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
11355 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data

Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala

Abstract:

Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.

Keywords: Databases, data mining, multi-agent, spatial datamart.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
11354 Development of Sleep Quality Index Using Heart Rate

Authors: Dongjoo Kim, Chang-Sik Son, Won-Seok Kang

Abstract:

Adequate sleep affects various parts of one’s overall physical and mental life. As one of the methods in determining the appropriate amount of sleep, this research presents a heart rate based sleep quality index. In order to evaluate sleep quality using the heart rate, sleep data from 280 subjects taken over one month are used. Their sleep data are categorized by a three-part heart rate range. After categorizing, some features are extracted, and the statistical significances are verified for these features. The results show that some features of this sleep quality index model have statistical significance. Thus, this heart rate based sleep quality index may be a useful discriminator of sleep.

Keywords: Sleep, sleep quality, heart rate, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
11353 Bifurcations of a Delayed Prototype Model

Authors: Changjin Xu

Abstract:

In this paper, a delayed prototype model is studied. Regarding the delay as a bifurcation parameter, we prove that a sequence of Hopf bifurcations will occur at the positive equilibrium when the delay increases. Using the normal form method and center manifold theory, some explicit formulae are worked out for determining the stability and the direction of the bifurcated periodic solutions. Finally, Computer simulations are carried out to explain some mathematical conclusions.

Keywords: Prototype model, Stability, Hopf bifurcation, Delay, Periodic solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
11352 Pure and Mixed Nash Equilibria Domain of a Discrete Game Model with Dichotomous Strategy Space

Authors: A. S. Mousa, F. Shoman

Abstract:

We present a discrete game theoretical model with homogeneous individuals who make simultaneous decisions. In this model the strategy space of all individuals is a discrete and dichotomous set which consists of two strategies. We fully characterize the coherent, split and mixed strategies that form Nash equilibria and we determine the corresponding Nash domains for all individuals. We find all strategic thresholds in which individuals can change their mind if small perturbations in the parameters of the model occurs.

Keywords: Coherent strategy, split strategy, pure strategy, mixed strategy, Nash Equilibrium, game theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 713
11351 Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof

Authors: Marco Raciti Castelli, Alberto Castelli, Ernesto Benini

Abstract:

The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
11350 A Stochastic Analytic Hierarchy Process Based Weighting Model for Sustainability Measurement in an Organization

Authors: Faramarz Khosravi, Gokhan Izbirak

Abstract:

A weighted statistical stochastic based Analytical Hierarchy Process (AHP) model for modeling the potential barriers and enablers of sustainability for measuring and assessing the sustainability level is proposed. For context-dependent potential barriers and enablers, the proposed model takes the basis of the properties of the variables describing the sustainability functions and was developed into a realistic analytical model for the sustainable behavior of an organization. This thus serves as a means for measuring the sustainability of the organization. The main focus of this paper was the application of the AHP tool in a statistically-based model for measuring sustainability. Hence a strong weighted stochastic AHP based procedure was achieved. A case study scenario of a widely reported major Canadian electric utility was adopted to demonstrate the applicability of the developed model and comparatively examined its results with those of an equal-weighted model method. Variations in the sustainability of a company, as fluctuations, were figured out during the time. In the results obtained, sustainability index for successive years changed form 73.12%, 79.02%, 74.31%, 76.65%, 80.49%, 79.81%, 79.83% to more exact values 73.32%, 77.72%, 76.76%, 79.41%, 81.93%, 79.72%, and 80,45% according to priorities of factors that have found by expert views, respectively. By obtaining relatively necessary informative measurement indicators, the model can practically and effectively evaluate the sustainability extent of any organization and also to determine fluctuations in the organization over time.

Keywords: AHP, sustainability fluctuation, environmental indicators, performance measurement, environmental sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923
11349 Latent Topic Based Medical Data Classification

Authors: Jian-hua Yeh, Shi-yi Kuo

Abstract:

This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.

Keywords: classification, latent topics, outlier adjustment, feature scaling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1641
11348 Stability Analysis of a Human-Mosquito Model of Malaria with Infective Immigrants

Authors: Nisha Budhwar, Sunita Daniel

Abstract:

In this paper, we analyse the stability of the SEIR model of malaria with infective immigrants which was recently formulated by the authors. The model consists of an SEIR model for the human population and SI Model for the mosquitoes. Susceptible humans become infected after they are bitten by infectious mosquitoes and move on to the Exposed, Infected and Recovered classes respectively. The susceptible mosquito becomes infected after biting an infected person and remains infected till death. We calculate the reproduction number R0 using the next generation method and then discuss about the stability of the equilibrium points. We use the Lyapunov function to show the global stability of the equilibrium points.

Keywords: Susceptible, exposed, infective, recovered, infective immigrants, reproduction number, Lyapunov function, equilibrium points, global stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1294
11347 Appling Eyring-s Accelerated Life Testing Model to “Times to Breakdown“ of Insulating Fluid: A Combined Approach of an Accelerated and a Sequential Life Testing

Authors: D. I. De Souza, D. R. Fonseca, D. Kipper

Abstract:

In this paper, the test purpose will be to assess whether or not the accelerated model proposed by Eyring will be able to translate results for the shape and scale parameters of an underlying Weibull model, obtained under two accelerating using conditions, to expected normal using condition results for these parameters. The product being analyzed is a new type of insulate fluid, and the accelerating factor is the voltage stresses applied to the fluid at two different levels (30KV and 40KV). The normal operating voltage is 25KV. In this case, it was possible to test the insulate fluid at normal voltage using condition. Both results for the two parameters of the Weibull model, obtained under normal using condition and translated from accelerated using conditions to normal conditions, will be compared to each other to assess the accuracy of the Eyring model when the accelerating factor is only the voltage stress.

Keywords: Eyring Accelerated Model, Sequential Life Testing, Two-Parameter Weibull Distribution, Voltage Stresses.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
11346 Data Collection in Hospital Emergencies: A Questionnaire Survey

Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala

Abstract:

Many methods are used to collect data like questionnaires, surveys, focus group interviews. Or the collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses. In this context, and to overcome the aforementioned problems, we suggest in this paper an approach to achieve the collection of relevant data, by carrying out a large-scale questionnaire-based survey. We have been able to collect good quality, consistent and practical data on hospital emergencies to improve emergency services in hospitals, especially in the case of epidemics or pandemics.

Keywords: Data collection, survey, database, data analysis, hospital emergencies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
11345 Typical Day Prediction Model for Output Power and Energy Efficiency of a Grid-Connected Solar Photovoltaic System

Authors: Yan Su, L. C. Chan

Abstract:

A novel typical day prediction model have been built and validated by the measured data of a grid-connected solar photovoltaic (PV) system in Macau. Unlike conventional statistical method used by previous study on PV systems which get results by averaging nearby continuous points, the present typical day statistical method obtain the value at every minute in a typical day by averaging discontinuous points at the same minute in different days. This typical day statistical method based on discontinuous point averaging makes it possible for us to obtain the Gaussian shape dynamical distributions for solar irradiance and output power in a yearly or monthly typical day. Based on the yearly typical day statistical analysis results, the maximum possible accumulated output energy in a year with on site climate conditions and the corresponding optimal PV system running time are obtained. Periodic Gaussian shape prediction models for solar irradiance, output energy and system energy efficiency have been built and their coefficients have been determined based on the yearly, maximum and minimum monthly typical day Gaussian distribution parameters, which are obtained from iterations for minimum Root Mean Squared Deviation (RMSD). With the present model, the dynamical effects due to time difference in a day are kept and the day to day uncertainty due to weather changing are smoothed but still included. The periodic Gaussian shape correlations for solar irradiance, output power and system energy efficiency have been compared favorably with data of the PV system in Macau and proved to be an improvement than previous models.

Keywords: Grid Connected, RMSD, Solar PV System, Typical Day.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
11344 Port Governance in Santos, Brazil: A Qualitative Approach

Authors: Guilherme B. B. Vieira, Rafael M. da Silva, Eliana T. P. Senna, Luiz A. S. Senna, Francisco J. Kliemann Neto

Abstract:

Given the importance of ports as links in the global supply chains and because they are key elements to induce competitiveness in their hinterlands, the number of studies devoted to port governance, management and operations has increased in the last decades. Some of these studies address the port governance model as an element to improve coordination among the actors of the portlogistics chain and to generate a better port performance. In this context, the present study analyzes the governance of Port of Santos through individual interviews with port managers, based on a conceptual model that considers the key dimensions associated with port governance. The results reinforce the usefulness of the applied model and highlight some existing improvement opportunities in the port studied.

Keywords: Port Governance, Model, Port of Santos, Managers’ Perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2697