Search results for: Learning algorithm
3828 Multimedia Firearms Training System
Authors: Aleksander Nawrat, Karol Jędrasiak, Artur Ryt, Dawid Sobel
Abstract:
The goal of the article is to present a novel Multimedia Firearms Training System. The system was developed in order to compensate for major problems of existing shooting training systems. The designed and implemented solution can be characterized by five major advantages: algorithm for automatic geometric calibration, algorithm of photometric recalibration, firearms hit point detection using thermal imaging camera, IR laser spot tracking algorithm for after action review analysis, and implementation of ballistics equations. The combination of the abovementioned advantages in a single multimedia firearms training system creates a comprehensive solution for detecting and tracking of the target point usable for shooting training systems and improving intervention tactics of uniformed services. The introduced algorithms of geometric and photometric recalibration allow the use of economically viable commercially available projectors for systems that require long and intensive use without most of the negative impacts on color mapping of existing multi-projector multimedia shooting range systems. The article presents the results of the developed algorithms and their application in real training systems.
Keywords: Firearms shot detection, geometric recalibration, photometric recalibration, IR tracking algorithm, thermography, ballistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13343827 A Bacterial Foraging Optimization Algorithm Applied to the Synthesis of Polyacrylamide Hydrogels
Authors: Florin Leon, Silvia Curteanu
Abstract:
The Bacterial Foraging Optimization (BFO) algorithm is inspired by the behavior of bacteria such as Escherichia coli or Myxococcus xanthus when searching for food, more precisely the chemotaxis behavior. Bacteria perceive chemical gradients in the environment, such as nutrients, and also other individual bacteria, and move toward or in the opposite direction to those signals. The application example considered as a case study consists in establishing the dependency between the reaction yield of hydrogels based on polyacrylamide and the working conditions such as time, temperature, monomer, initiator, crosslinking agent and inclusion polymer concentrations, as well as type of the polymer added. This process is modeled with a neural network which is included in an optimization procedure based on BFO. An experimental study of BFO parameters is performed. The results show that the algorithm is quite robust and can obtain good results for diverse combinations of parameter values.
Keywords: Bacterial foraging optimization, hydrogels, neural networks, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7303826 A Novel Receiver Algorithm for Coherent Underwater Acoustic Communications
Authors: Liang Zhao, Jianhua Ge
Abstract:
In this paper, we proposed a novel receiver algorithm for coherent underwater acoustic communications. The proposed receiver is composed of three parts: (1) Doppler tracking and correction, (2) Time reversal channel estimation and combining, and (3) Joint iterative equalization and decoding (JIED). To reduce computational complexity and optimize the equalization algorithm, Time reversal (TR) channel estimation and combining is adopted to simplify multi-channel adaptive decision feedback equalizer (ADFE) into single channel ADFE without reducing the system performance. Simultaneously, the turbo theory is adopted to form joint iterative ADFE and convolutional decoder (JIED). In JIED scheme, the ADFE and decoder exchange soft information in an iterative manner, which can enhance the equalizer performance using decoding gain. The simulation results show that the proposed algorithm can reduce computational complexity and improve the performance of equalizer. Therefore, the performance of coherent underwater acoustic communications can be improved greatly.Keywords: Underwater acoustic communication, Time reversal (TR) combining, joint iterative equalization and decoding (JIED)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17233825 A Conservative Multi-block Algorithm for Two-dimensional Numerical Model
Authors: Yaoxin Zhang, Yafei Jia, Sam S.Y. Wang
Abstract:
A multi-block algorithm and its implementation in two-dimensional finite element numerical model CCHE2D are presented. In addition to a conventional Lagrangian Interpolation Method (LIM), a novel interpolation method, called Consistent Interpolation Method (CIM), is proposed for more accurate information transfer across the interfaces. The consistent interpolation solves the governing equations over the auxiliary elements constructed around the interpolation nodes using the same numerical scheme used for the internal computational nodes. With the CIM, the momentum conservation can be maintained as well as the mass conservation. An imbalance correction scheme is used to enforce the conservation laws (mass and momentum) across the interfaces. Comparisons of the LIM and the CIM are made using several flow simulation examples. It is shown that the proposed CIM is physically more accurate and produces satisfactory results efficiently.
Keywords: Multi-block algorithm, conservation, interpolation, numerical model, flow simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17933824 Multi-objective Optimization of Graph Partitioning using Genetic Algorithm
Authors: M. Farshbaf, M. R. Feizi-Derakhshi
Abstract:
Graph partitioning is a NP-hard problem with multiple conflicting objectives. The graph partitioning should minimize the inter-partition relationship while maximizing the intra-partition relationship. Furthermore, the partition load should be evenly distributed over the respective partitions. Therefore this is a multiobjective optimization problem (MOO). One of the approaches to MOO is Pareto optimization which has been used in this paper. The proposed methods of this paper used to improve the performance are injecting best solutions of previous runs into the first generation of next runs and also storing the non-dominated set of previous generations to combine with later generation's non-dominated set. These improvements prevent the GA from getting stuck in the local optima and increase the probability of finding more optimal solutions. Finally, a simulation research is carried out to investigate the effectiveness of the proposed algorithm. The simulation results confirm the effectiveness of the proposed method.Keywords: Graph partitioning, Genetic algorithm, Multiobjective optimization, Pareto front.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19683823 Robust Coherent Noise Suppression by Point Estimation of the Cauchy Location Parameter
Authors: Ephraim Gower, Thato Tsalaile, Monageng Kgwadi, Malcolm Hawksford.
Abstract:
This paper introduces a new point estimation algorithm, with particular focus on coherent noise suppression, given several measurements of the device under test where it is assumed that 1) the noise is first-order stationery and 2) the device under test is linear and time-invariant. The algorithm exploits the robustness of the Pitman estimator of the Cauchy location parameter through the initial scaling of the test signal by a centred Gaussian variable of predetermined variance. It is illustrated through mathematical derivations and simulation results that the proposed algorithm is more accurate and consistently robust to outliers for different tailed density functions than the conventional methods of sample mean (coherent averaging technique) and sample median search.
Keywords: Central limit theorem, Fisher-Cramer Rao, gamma function, Pitman estimator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19223822 Fuzzy Logic Control for Flexible Joint Manipulator: An Experimental Implementation
Authors: Sophia Fry, Mahir Irtiza, Alexa Hoffman, Yousef Sardahi
Abstract:
This study presents an intelligent control algorithm for a flexible robotic arm. Fuzzy control is used to control the motion of the arm to maintain the arm tip at the desired position while reducing vibration and increasing the system speed of response. The Fuzzy controller (FC) is based on adding the tip angular position to the arm deflection angle and using their sum as a feedback signal to the control algorithm. This reduces the complexity of the FC in terms of the input variables, number of membership functions, fuzzy rules, and control structure. Also, the design of the fuzzy controller is model-free and uses only our knowledge about the system. To show the efficacy of the FC, the control algorithm is implemented on the flexible joint manipulator (FJM) developed by Quanser. The results show that the proposed control method is effective in terms of response time, overshoot, and vibration amplitude.
Keywords: Fuzzy logic control, model-free control, flexible joint manipulators, nonlinear control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5793821 Digital Watermarking Based on Visual Cryptography and Histogram
Authors: R. Rama Kishore, Sunesh
Abstract:
Nowadays, robust and secure watermarking algorithm and its optimization have been need of the hour. A watermarking algorithm is presented to achieve the copy right protection of the owner based on visual cryptography, histogram shape property and entropy. In this, both host image and watermark are preprocessed. Host image is preprocessed by using Butterworth filter, and watermark is with visual cryptography. Applying visual cryptography on water mark generates two shares. One share is used for embedding the watermark, and the other one is used for solving any dispute with the aid of trusted authority. Usage of histogram shape makes the process more robust against geometric and signal processing attacks. The combination of visual cryptography, Butterworth filter, histogram, and entropy can make the algorithm more robust, imperceptible, and copy right protection of the owner.
Keywords: Butterworth filter, digital watermarking, histogram, visual cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16783820 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime
Authors: Vrince Vimal, Madhav J. Nigam
Abstract:
Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9753819 The Impact of E-Learning on Medication Administration of Nursing Students: What Recent Studies Say?
Authors: Z. Karakus, Z. Ozer
Abstract:
Nurses are responsible for the care and treatment of individuals, as well as health maintenance and education. Medication administration is an important part of health promotion. The administration of a medicine is a common but important clinical procedure for nurses because of its complex structure. Therefore, medication errors are inevitable for nurses or nursing students. Medication errors can cause ineffective treatment, patient’s prolonged hospital stay, disablement or death. Additionally, medication errors affect the global economy adversely by increasing health costs. Hence, preventing or decreasing of medication errors is a critical and essential issue in nursing. Nurse educators are in pursuit of new teaching methods to teach students significance of medication application. In the light of technological developments of this age, e-learning has started to be accepted as an important teaching method. E-learning is the use of electronic media and information and communication technologies in education. It has advantages such as flexibility of time and place, lower costs, faster delivery and lower environmental impact. Students can make their own schedule and decide the learning method. This study is conducted to determine the impact of e-learning on medication administration of nursing students.
Keywords: E-Learning, Medication Administration, Nursing, Nursing Students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27613818 Pre-Service Teachers’ Assessment of Information Technology Application to Instruction
Authors: Adesanya Anuoluwapo Olusola
Abstract:
Technology has moved into the classroom, and it becomes difficult talking of achievement in and attitude to learning without making mention of it. The use of technology makes learning easy, real and practical as it motivates learners, sustains their interest and improves their attitude to learning. This study, therefore examined the pre-service teachers’ assessment of information technology application to instruction. The use of technology emphasizes and encourages active learning in the classroom. The study involved 100 pre-service teachers in the selected two (2) Colleges of Education, Nigeria. Purposive random sampling was used in selecting the participants and ex-post facto design was adopted the in which there is no manipulation of variables. Two valid and reliable instruments were used for data collection: Access Point ICT facilities and Application of ICT. The study established that pre-service teachers have less access to ICT facilities and Application of ICT in the college, apart from those students having the access outside the college. Also fewer pre-service teachers used ICT facilities on weekly and monthly bases. It was concluded that the establishment of students’ resources centres and Campus wide wireless connectivity must be implemented so as to improve and enhance students’ achievement in and attitude to learning. The time and attention devoted to learning activities and strategic specialized ICT skills and requisite entrepreneur skills should be increased so as to have easy access to information sources and be able to apply it in teaching process.
Keywords: Computer, ICT Application, Learning Facilities, Pre-Service Teachers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19323817 A New Extended Group Mutual Exclusion Algorithm with Low Message Complexity in Distributed Systems
Authors: S. Dehghan, A.M. Rahmani
Abstract:
The group mutual exclusion (GME) problem is an interesting generalization of the mutual exclusion problem. In the group mutual exclusion, multiple processes can enter a critical section simultaneously if they belong to the same group. In the extended group mutual exclusion, each process is a member of multiple groups at the same time. As a result, after the process by selecting a group enter critical section, other processes can select the same group with its belonging group and can enter critical section at the moment, so that it avoids their unnecessary blocking. This paper presents a quorum-based distributed algorithm for the extended group mutual exclusion problem. The message complexity of our algorithm is O(4Q ) in the best case and O(5Q) in the worst case, where Q is a quorum size.Keywords: Group Mutual Exclusion (GME), Extended GME, Distributed systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15263816 Machine Learning Techniques in Bank Credit Analysis
Authors: Fernanda M. Assef, Maria Teresinha A. Steiner
Abstract:
The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.
Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12813815 Effects of Multimedia-based Instructional Designs for Arabic Language Learning among Pupils of Different Achievement Levels
Authors: Aldalalah, M. Osamah, Soon Fook Fong & Ababneh, W. Ziad
Abstract:
The purpose of this study is to investigate the effects of modality principles in instructional software among first grade pupils- achievements in the learning of Arabic Language. Two modes of instructional software were systematically designed and developed, audio with images (AI), and text with images (TI). The quasi-experimental design was used in the study. The sample consisted of 123 male and female pupils from IRBED Education Directorate, Jordan. The pupils were randomly assigned to any one of the two modes. The independent variable comprised the two modes of the instructional software, the students- achievement levels in the Arabic Language class and gender. The dependent variable was the achievements of the pupils in the Arabic Language test. The theoretical framework of this study was based on Mayer-s Cognitive Theory of Multimedia Learning. Four hypotheses were postulated and tested. Analyses of Variance (ANOVA) showed that pupils using the (AI) mode performed significantly better than those using (TI) mode. This study concluded that the audio with images mode was an important aid to learning as compared to text with images mode.Keywords: Cognitive theory of Multimedia Learning, ModalityPrinciple, Multimedia, Arabic Language learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22653814 An Improvement of PDLZW implementation with a Modified WSC Updating Technique on FPGA
Authors: Perapong Vichitkraivin, Orachat Chitsobhuk
Abstract:
In this paper, an improvement of PDLZW implementation with a new dictionary updating technique is proposed. A unique dictionary is partitioned into hierarchical variable word-width dictionaries. This allows us to search through dictionaries in parallel. Moreover, the barrel shifter is adopted for loading a new input string into the shift register in order to achieve a faster speed. However, the original PDLZW uses a simple FIFO update strategy, which is not efficient. Therefore, a new window based updating technique is implemented to better classify the difference in how often each particular address in the window is referred. The freezing policy is applied to the address most often referred, which would not be updated until all the other addresses in the window have the same priority. This guarantees that the more often referred addresses would not be updated until their time comes. This updating policy leads to an improvement on the compression efficiency of the proposed algorithm while still keep the architecture low complexity and easy to implement.Keywords: lossless data compression, LZW algorithm, PDLZW algorithm, WSC and dictionary update.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16283813 Determination of Skills Gap between School-Based Learning and Laboratory-Based Learning in Omar Al-Mukhtar University
Authors: Aisha Othman, Crinela Pislaru, Ahmed Impes
Abstract:
This paper provides an identification of the existing practical skills gap between school-based learning (SBL) and laboratory based learning (LBL) in the Computing Department within the Faculty of Science at Omar Al-Mukhtar University in Libya. A survey has been conducted and the first author has elicited the responses of two groups of stakeholders, namely the academic teachers and students.
The primary goal is to review the main strands of evidence available and argue that there is a gap between laboratory and school-based learning in terms of opportunities for experiment and application of skills. In addition, the nature of experimental work within the laboratory at Omar Al-Mukhtar University needs to be reconsidered. Another goal of our study was to identify the reasons for students’ poor performance in the laboratory and to determine how this poor performance can be eliminated by the modification of teaching methods. Bloom’s taxonomy of learning outcomes has been applied in order to classify questions and problems into categories, and the survey was formulated with reference to third year Computing Department students. Furthermore, to discover students’ opinions with respect to all the issues, an exercise was conducted. The survey provided questions related to what the students had learnt and how well they had learnt. We were also interested in feedback on how to improve the course and the final question provided an opportunity for such feedback.
Keywords: Bloom’s taxonomy, e-learning, Omar Al-Mukhtar University.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24273812 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on hyperspectral image (HSI) dataset on Indian Pines. The results confirm the capability of the proposed method.
Keywords: Continual learning, data reconstruction, remote sensing, hyperspectral image segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333811 Influence of the Line Parameters in Transmission Line Fault Location
Authors: Marian Dragomir, Alin Dragomir
Abstract:
In the paper, two fault location algorithms are presented for transmission lines which use the line parameters to estimate the distance to the fault. The first algorithm uses only the measurements from one end of the line and the positive and zero sequence parameters of the line, while the second one uses the measurements from both ends of the line and only the positive sequence parameters of the line. The algorithms were tested using a transmission grid transposed in MATLAB. In a first stage it was established a fault location base line, where the algorithms mentioned above estimate the fault locations using the exact line parameters. After that, the positive and zero sequence resistance and reactance of the line were calculated again for different ground resistivity values and then the fault locations were estimated again in order to compare the results with the base line results. The results show that the algorithm which uses the zero sequence impedance of the line is the most sensitive to the line parameters modifications. The other algorithm is less sensitive to the line parameters modification.
Keywords: Estimation algorithms, fault location, line parameters, simulation tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11543810 Multiple Sequence Alignment Using Optimization Algorithms
Authors: M. F. Omar, R. A. Salam, R. Abdullah, N. A. Rashid
Abstract:
Proteins or genes that have similar sequences are likely to perform the same function. One of the most widely used techniques for sequence comparison is sequence alignment. Sequence alignment allows mismatches and insertion/deletion, which represents biological mutations. Sequence alignment is usually performed only on two sequences. Multiple sequence alignment, is a natural extension of two-sequence alignment. In multiple sequence alignment, the emphasis is to find optimal alignment for a group of sequences. Several applicable techniques were observed in this research, from traditional method such as dynamic programming to the extend of widely used stochastic optimization method such as Genetic Algorithms (GAs) and Simulated Annealing. A framework with combination of Genetic Algorithm and Simulated Annealing is presented to solve Multiple Sequence Alignment problem. The Genetic Algorithm phase will try to find new region of solution while Simulated Annealing can be considered as an alignment improver for any near optimal solution produced by GAs.
Keywords: Simulated annealing, genetic algorithm, sequence alignment, multiple sequence alignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24093809 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment
Authors: Hae-Yeoun Lee
Abstract:
Mosaic refers to a technique that makes image by gathering lots of small materials in various colors. This paper presents an automatic algorithm that makes the photo-mosaic image using photos. The algorithm is composed of 4 steps: partition and feature extraction, block matching, redundancy removal and color adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.
Keywords: Photo-mosaic, Euclidean distance, Block matching, Intensity adjustment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35713808 Edge-end Pixel Extraction for Edge-based Image Segmentation
Authors: Mahinda P. Pathegama, Özdemir Göl
Abstract:
Extraction of edge-end-pixels is an important step for the edge linking process to achieve edge-based image segmentation. This paper presents an algorithm to extract edge-end pixels together with their directional sensitivities as an augmentation to the currently available mathematical models. The algorithm is implemented in the Java environment because of its inherent compatibility with web interfaces since its main use is envisaged to be for remote image analysis on a virtual instrumentation platform.
Keywords: edge-end pixels, image processing, imagesegmentation, pixel extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21543807 Medical Image Segmentation Based On Vigorous Smoothing and Edge Detection Ideology
Authors: Jagadish H. Pujar, Pallavi S. Gurjal, Shambhavi D. S, Kiran S. Kunnur
Abstract:
Medical image segmentation based on image smoothing followed by edge detection assumes a great degree of importance in the field of Image Processing. In this regard, this paper proposes a novel algorithm for medical image segmentation based on vigorous smoothening by identifying the type of noise and edge diction ideology which seems to be a boom in medical image diagnosis. The main objective of this algorithm is to consider a particular medical image as input and make the preprocessing to remove the noise content by employing suitable filter after identifying the type of noise and finally carrying out edge detection for image segmentation. The algorithm consists of three parts. First, identifying the type of noise present in the medical image as additive, multiplicative or impulsive by analysis of local histograms and denoising it by employing Median, Gaussian or Frost filter. Second, edge detection of the filtered medical image is carried out using Canny edge detection technique. And third part is about the segmentation of edge detected medical image by the method of Normalized Cut Eigen Vectors. The method is validated through experiments on real images. The proposed algorithm has been simulated on MATLAB platform. The results obtained by the simulation shows that the proposed algorithm is very effective which can deal with low quality or marginal vague images which has high spatial redundancy, low contrast and biggish noise, and has a potential of certain practical use of medical image diagnosis.
Keywords: Image Segmentation, Image smoothing, Edge Detection, Impulsive noise, Gaussian noise, Median filter, Canny edge, Eigen values, Eigen vector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19133806 Optimization of Transmitter Aperture by Genetic Algorithm in Optical Satellite
Authors: Karim Kemih, Yacine Yaiche, Malek Benslama
Abstract:
To establish optical communication between any two satellites, the transmitter satellite must track the beacon of the receiver satellite and point the information optical beam in its direction. Optical tracking and pointing systems for free space suffer during tracking from high-amplitude vibration because of background radiation from interstellar objects such as the Sun, Moon, Earth, and stars in the tracking field of view or the mechanical impact from satellite internal and external sources. The vibrations of beam pointing increase the bit error rate and jam communication between the two satellites. One way to overcome this problem is the use of very small transmitter beam divergence angles of too narrow divergence angle is that the transmitter beam may sometimes miss the receiver satellite, due to pointing vibrations. In this paper we propose the use of genetic algorithm to optimize the BER as function of transmitter optics aperture.Keywords: Optical Satellite Communication, Genetic Algorithm, Transmitter Optics Aperture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19913805 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: Natural language processing, sentiment analysis, document analysis, multimodal sentiment analysis, deep learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20043804 A Design of Elliptic Curve Cryptography Processor Based on SM2 over GF(p)
Authors: Shiji Hu, Lei Li, Wanting Zhou, Daohong Yang
Abstract:
The data encryption is the foundation of today’s communication. On this basis, to improve the speed of data encryption and decryption is always an important goal for high-speed applications. This paper proposed an elliptic curve crypto processor architecture based on SM2 prime field. Regarding hardware implementation, we optimized the algorithms in different stages of the structure. For modulo operation on finite field, we proposed an optimized improvement of the Karatsuba-Ofman multiplication algorithm and shortened the critical path through the pipeline structure in the algorithm implementation. Based on SM2 recommended prime field, a fast modular reduction algorithm is used to reduce 512-bit data obtained from the multiplication unit. The radix-4 extended Euclidean algorithm was used to realize the conversion between the affine coordinate system and the Jacobi projective coordinate system. In the parallel scheduling point operations on elliptic curves, we proposed a three-level parallel structure of point addition and point double based on the Jacobian projective coordinate system. Combined with the scalar multiplication algorithm, we added mutual pre-operation to the point addition and double point operation to improve the efficiency of the scalar point multiplication. The proposed ECC hardware architecture was verified and implemented on Xilinx Virtex-7 and ZYNQ-7 platforms, and each 256-bit scalar multiplication operation took 0.275ms. The performance for handling scalar multiplication is 32 times that of CPU (dual-core ARM Cortex-A9).
Keywords: Elliptic curve cryptosystems, SM2, modular multiplication, point multiplication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573803 Authentic Learning for Computer Network with Mobile Device-Based Hands-On Labware
Authors: Kai Qian, Ming Yang, Minzhe Guo, Prabir Bhattacharya, Lixin Tao
Abstract:
Computer network courses are essential parts of college computer science curriculum and hands-on networking experience is well recognized as an effective approach to help students understand better about the network concepts, the layered architecture of network protocols, and the dynamics of the networks. However, existing networking labs are usually server-based and relatively cumbersome, which require a certain level of specialty and resource to set up and maintain the lab environment. Many universities/colleges lack the resources and build-ups in this field and have difficulty to provide students with hands-on practice labs. A new affordable and easily-adoptable approach to networking labs is desirable to enhance network teaching and learning. In addition, current network labs are short on providing hands-on practice for modern wireless and mobile network learning. With the prevalence of smart mobile devices, wireless and mobile network are permeating into various aspects of our information society. The emerging and modern mobile technology provides computer science students with more authentic learning experience opportunities especially in network learning. A mobile device based hands-on labware can provide an excellent ‘real world’ authentic learning environment for computer network especially for wireless network study. In this paper, we present our mobile device-based hands-on labware (series of lab module) for computer network learning which is guided by authentic learning principles to immerse students in a real world relevant learning environment. We have been using this labware in teaching computer network, mobile security, and wireless network classes. The student feedback shows that students can learn more when they have hands-on authentic learning experience.
Keywords: Mobile computing, android, network, labware.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20743802 Enhancing the Error-Correcting Performance of LDPC Codes through an Efficient Use of Decoding Iterations
Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah
Abstract:
The decoding of Low-Density Parity-Check (LDPC) codes is operated over a redundant structure known as the bipartite graph, meaning that the full set of bit nodes is not absolutely necessary for decoder convergence. In 2008, Soyjaudah and Catherine designed a recovery algorithm for LDPC codes based on this assumption and showed that the error-correcting performance of their codes outperformed conventional LDPC Codes. In this work, the use of the recovery algorithm is further explored to test the performance of LDPC codes while the number of iterations is progressively increased. For experiments conducted with small blocklengths of up to 800 bits and number of iterations of up to 2000, the results interestingly demonstrate that contrary to conventional wisdom, the error-correcting performance keeps increasing with increasing number of iterations.
Keywords: Error-correcting codes, information theory, low-density parity-check codes, sum-product algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17083801 Learning Factory for Changeability
Authors: Dennis Gossmann, Habil Peter Nyhuis
Abstract:
Amongst the consistently fluctuating conditions prevailing today, changeability represents a strategic key factor for a manufacturing company to achieve success on the international markets. In order to cope with turbulences and the increasing level of incalculability, not only the flexible design of production systems but in particular the employee as enabler of change provide the focus here. It is important to enable employees from manufacturing companies to participate actively in change events and in change decisions. To this end, the learning factory has been created, which is intended to serve the development of change-promoting competences and the sensitization of employees for the necessity of changes.Keywords: Changeability, human resources, learning factory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17233800 Queen-bee Algorithm for Energy Efficient Clusters in Wireless Sensor Networks
Authors: Z. Pooranian, A. Barati, A. Movaghar
Abstract:
Wireless sensor networks include small nodes which have sensing ability; calculation and connection extend themselves everywhere soon. Such networks have source limitation on connection, calculation and energy consumption. So, since the nodes have limited energy in sensor networks, the optimized energy consumption in these networks is of more importance and has created many challenges. The previous works have shown that by organizing the network nodes in a number of clusters, the energy consumption could be reduced considerably. So the lifetime of the network would be increased. In this paper, we used the Queen-bee algorithm to create energy efficient clusters in wireless sensor networks. The Queen-bee (QB) is similar to nature in that the queen-bee plays a major role in reproduction process. The QB is simulated with J-sim simulator. The results of the simulation showed that the clustering by the QB algorithm decreases the energy consumption with regard to the other existing algorithms and increases the lifetime of the network.Keywords: Queen-bee, sensor network, energy efficient, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19753799 Improving Load Frequency Control of Multi-Area Power System by Considering Uncertainty by Using Optimized Type 2 Fuzzy Pid Controller with the Harmony Search Algorithm
Authors: Mehrdad Mahmudizad, Roya Ahmadi Ahangar
Abstract:
This paper presents the method of designing the type 2 fuzzy PID controllers in order to solve the problem of Load Frequency Control (LFC). The Harmony Search (HS) algorithm is used to regulate the measurement factors and the effect of uncertainty of membership functions of Interval Type 2 Fuzzy Proportional Integral Differential (IT2FPID) controllers in order to reduce the frequency deviation resulted from the load oscillations. The simulation results implicitly show that the performance of the proposed IT2FPID LFC in terms of error, settling time and resistance against different load oscillations is more appropriate and preferred than PID and Type 1 Fuzzy Proportional Integral Differential (T1FPID) controllers.Keywords: Load Frequency Control, Fuzzy-PID controller, Type 2 fuzzy system, Harmony Search algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734