Search results for: Ant colony algorithm
2227 Computer Simulations of an Augmented Automatic Choosing Control Using Automatic Choosing Functions of Gradient Optimization Type
Authors: Toshinori Nawata
Abstract:
In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the automatic choosing functions of gradient optimization type for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by minimizing the Hamiltonian with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13782226 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40352225 Transform-Domain Rate-Distortion Optimization Accelerator for H.264/AVC Video Encoding
Authors: Mohammed Golam Sarwer, Lai Man Po, Kai Guo, Q.M. Jonathan Wu
Abstract:
In H.264/AVC video encoding, rate-distortion optimization for mode selection plays a significant role to achieve outstanding performance in compression efficiency and video quality. However, this mode selection process also makes the encoding process extremely complex, especially in the computation of the ratedistortion cost function, which includes the computations of the sum of squared difference (SSD) between the original and reconstructed image blocks and context-based entropy coding of the block. In this paper, a transform-domain rate-distortion optimization accelerator based on fast SSD (FSSD) and VLC-based rate estimation algorithm is proposed. This algorithm could significantly simplify the hardware architecture for the rate-distortion cost computation with only ignorable performance degradation. An efficient hardware structure for implementing the proposed transform-domain rate-distortion optimization accelerator is also proposed. Simulation results demonstrated that the proposed algorithm reduces about 47% of total encoding time with negligible degradation of coding performance. The proposed method can be easily applied to many mobile video application areas such as a digital camera and a DMB (Digital Multimedia Broadcasting) phone.Keywords: Context-adaptive variable length coding (CAVLC), H.264/AVC, rate-distortion optimization (RDO), sum of squareddifference (SSD).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16092224 Video Coding Algorithm for Video Sequences with Abrupt Luminance Change
Authors: Sang Hyun Kim
Abstract:
In this paper, a fast motion compensation algorithm is proposed that improves coding efficiency for video sequences with brightness variations. We also propose a cross entropy measure between histograms of two frames to detect brightness variations. The framewise brightness variation parameters, a multiplier and an offset field for image intensity, are estimated and compensated. Simulation results show that the proposed method yields a higher peak signal to noise ratio (PSNR) compared with the conventional method, with a greatly reduced computational load, when the video scene contains illumination changes.Keywords: Motion estimation, Fast motion compensation, Brightness variation compensation, Brightness change detection, Cross entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17702223 A Hybrid Machine Learning System for Stock Market Forecasting
Authors: Rohit Choudhry, Kumkum Garg
Abstract:
In this paper, we propose a hybrid machine learning system based on Genetic Algorithm (GA) and Support Vector Machines (SVM) for stock market prediction. A variety of indicators from the technical analysis field of study are used as input features. We also make use of the correlation between stock prices of different companies to forecast the price of a stock, making use of technical indicators of highly correlated stocks, not only the stock to be predicted. The genetic algorithm is used to select the set of most informative input features from among all the technical indicators. The results show that the hybrid GA-SVM system outperforms the stand alone SVM system.Keywords: Genetic Algorithms, Support Vector Machines, Stock Market Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93252222 UPFC Supplementary Controller Design Using Real-Coded Genetic Algorithm for Damping Low Frequency Oscillations in Power Systems
Authors: A.K. Baliarsingh, S. Panda, A.K. Mohanty, C. Ardil
Abstract:
This paper presents a systematic approach for designing Unified Power Flow Controller (UPFC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. Detailed investigations have been carried out considering the four alternatives UPFC based damping controller namely modulating index of series inverter (mB), modulating index of shunt inverter (mE), phase angle of series inverter (δB ) and phase angle of the shunt inverter (δE ). The design problem of the proposed controllers is formulated as an optimization problem and Real- Coded Genetic Algorithm (RCGA) is employed to optimize damping controller parameters. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.
Keywords: Power System Oscillations, Real-Coded Genetic Algorithm (RCGA), Flexible AC Transmission Systems (FACTS), Unified Power Flow Controller (UPFC), Damping Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20852221 Induction Motor Design with Limited Harmonic Currents Using Particle Swarm Optimization
Authors: C. Thanga Raj, S. P. Srivastava, Pramod Agarwal
Abstract:
This paper presents an optimal design of poly-phase induction motor using Quadratic Interpolation based Particle Swarm Optimization (QI-PSO). The optimization algorithm considers the efficiency, starting torque and temperature rise as objective function (which are considered separately) and ten performance related items including harmonic current as constraints. The QI-PSO algorithm was implemented on a test motor and the results are compared with the Simulated Annealing (SA) technique, Standard Particle Swarm Optimization (SPSO), and normal design. Some benchmark problems are used for validating QI-PSO. From the test results QI-PSO gave better results and more suitable to motor-s design optimization. Cµ code is used for implementing entire algorithms.
Keywords: Design, harmonics, induction motor, particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17942220 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: Citation networks, scientometric indicator, cross-field normalization, local cluster detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7292219 Transmission Expansion Planning Considering Network Adequacy and Investment Cost Limitation using Genetic Algorithm
Authors: M. Mahdavi, E. Mahdavi
Abstract:
In this research, STNEP is being studied considering network adequacy and limitation of investment cost by decimal codification genetic algorithm (DCGA). The goal is obtaining the maximum of network adequacy with lowest expansion cost for a specific investment. Finally, the proposed idea is applied to the Garvers 6-bus network. The results show that considering the network adequacy for solution of STNEP problem is caused that among of expansion plans for a determined investment, configuration which has relatively lower expansion cost and higher adequacy is proposed by GA based method. Finally, with respect to the curve of adequacy versus expansion cost it can be said that more optimal configurations for expansion of network are obtained with lower investment costs.
Keywords: TNEP, Network Adequacy, Investment Cost, GA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15192218 Novel GPU Approach in Predicting the Directional Trend of the S&P 500
Authors: A. J. Regan, F. J. Lidgey, M. Betteridge, P. Georgiou, C. Toumazou, K. Hayatleh, J. R. Dibble
Abstract:
Our goal is development of an algorithm capable of predicting the directional trend of the Standard and Poor’s 500 index (S&P 500). Extensive research has been published attempting to predict different financial markets using historical data testing on an in-sample and trend basis, with many authors employing excessively complex mathematical techniques. In reviewing and evaluating these in-sample methodologies, it became evident that this approach was unable to achieve sufficiently reliable prediction performance for commercial exploitation. For these reasons, we moved to an out-ofsample strategy based on linear regression analysis of an extensive set of financial data correlated with historical closing prices of the S&P 500. We are pleased to report a directional trend accuracy of greater than 55% for tomorrow (t+1) in predicting the S&P 500.
Keywords: Financial algorithm, GPU, S&P 500, stock market prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17402217 Development of the Algorithm for Detecting Falls during Daily Activity using 2 Tri-Axial Accelerometers
Authors: Ahyoung Jeon, Geunchul Park, Jung-Hoon Ro, Gye-rok Geon
Abstract:
Falls are the primary cause of accidents in people over the age of 65, and frequently lead to serious injuries. Since the early detection of falls is an important step to alert and protect the aging population, a variety of research on detecting falls was carried out including the use of accelerators, gyroscopes and tilt sensors. In exiting studies, falls were detected using an accelerometer with errors. In this study, the proposed method for detecting falls was to use two accelerometers to reject wrong falls detection. As falls are accompanied by the acceleration of gravity and rotational motion, the falls in this study were detected by using the z-axial acceleration differences between two sites. The falls were detected by calculating the difference between the analyses of accelerometers placed on two different positions on the chest of the subject. The parameters of the maximum difference of accelerations (diff_Z) and the integration of accelerations in a defined region (Sum_diff_Z) were used to form the fall detection algorithm. The falls and the activities of daily living (ADL) could be distinguished by using the proposed parameters without errors in spite of the impact and the change in the positions of the accelerometers. By comparing each of the axial accelerations, the directions of falls and the condition of the subject afterwards could be determined.In this study, by using two accelerometers without errors attached to two sites to detect falls, the usefulness of the proposed fall detection algorithm parameters, diff_Z and Sum_diff_Z, were confirmed.Keywords: Tri-axial accelerometer, fall detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20692216 String Matching using Inverted Lists
Authors: Chouvalit Khancome, Veera Boonjing
Abstract:
This paper proposes a new solution to string matching problem. This solution constructs an inverted list representing a string pattern to be searched for. It then uses a new algorithm to process an input string in a single pass. The preprocessing phase takes 1) time complexity O(m) 2) space complexity O(1) where m is the length of pattern. The searching phase time complexity takes 1) O(m+α ) in average case 2) O(n/m) in the best case and 3) O(n) in the worst case, where α is the number of comparing leading to mismatch and n is the length of input text.
Keywords: String matching, inverted list, inverted index, pattern, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15582215 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22302214 Using ε Value in Describe Regular Languages by Using Finite Automata, Operation on Languages and the Changing Algorithm Implementation
Authors: Abdulmajid Mukhtar Afat
Abstract:
This paper aims at introducing nondeterministic finite automata with ε value which is used to perform some operations on languages. a program is created to implement the algorithm that converts nondeterministic finite automata with ε value (ε-NFA) to deterministic finite automata (DFA).The program is written in c++ programming language. The program inputs are FA 5-tuples from text file and then classifies it into either DFA/NFA or ε -NFA. For DFA, the program will get the string w and decide whether it is accepted or rejected. The tracking path for an accepted string is saved by the program. In case of NFA or ε-NFA automation, the program changes the automation to DFA to enable tracking and to decide if the string w exists in the regular language or not.
Keywords: Finite automata, DFA, NFA, ε-NFA, Eclose, operations on languages.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8402213 Automatic Image Alignment and Stitching of Medical Images with Seam Blending
Authors: Abhinav Kumar, Raja Sekhar Bandaru, B Madhusudan Rao, Saket Kulkarni, Nilesh Ghatpande
Abstract:
This paper proposes an algorithm which automatically aligns and stitches the component medical images (fluoroscopic) with varying degrees of overlap into a single composite image. The alignment method is based on similarity measure between the component images. As applied here the technique is intensity based rather than feature based. It works well in domains where feature based methods have difficulty, yet more robust than traditional correlation. Component images are stitched together using the new triangular averaging based blending algorithm. The quality of the resultant image is tested for photometric inconsistencies and geometric misalignments. This method cannot correct rotational, scale and perspective artifacts.
Keywords: Histogram Matching, Image Alignment, ImageStitching, Medical Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37662212 Rapid Data Acquisition System for Complex Algorithm Testing in Plastic Molding Industry
Authors: A. Tellaeche, R. Arana
Abstract:
Injection molding is a very complicated process to monitor and control. With its high complexity and many process parameters, the optimization of these systems is a very challenging problem. To meet the requirements and costs demanded by the market, there has been an intense development and research with the aim to maintain the process under control. This paper outlines the latest advances in necessary algorithms for plastic injection process and monitoring, and also a flexible data acquisition system that allows rapid implementation of complex algorithms to assess their correct performance and can be integrated in the quality control process. This is the main topic of this paper. Finally, to demonstrate the performance achieved by this combination, a real case of use is presented.
Keywords: Plastic injection, machine learning, rapid complex algorithm prototyping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21252211 Teager-Huang Analysis Applied to Sonar Target Recognition
Authors: J.-C. Cexus, A.O. Boudraa
Abstract:
In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.
Keywords: Target recognition, Empirical mode decomposition, Teager-Kaiser energy operator, Features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22852210 Efficient Program Slicing Algorithms for Measuring Functional Cohesion and Parallelism
Authors: Jehad Al Dallal
Abstract:
Program slicing is the task of finding all statements in a program that directly or indirectly influence the value of a variable occurrence. The set of statements that can affect the value of a variable at some point in a program is called a program slice. In several software engineering applications, such as program debugging and measuring program cohesion and parallelism, several slices are computed at different program points. In this paper, algorithms are introduced to compute all backward and forward static slices of a computer program by traversing the program representation graph once. The program representation graph used in this paper is called Program Dependence Graph (PDG). We have conducted an experimental comparison study using 25 software modules to show the effectiveness of the introduced algorithm for computing all backward static slices over single-point slicing approaches in computing the parallelism and functional cohesion of program modules. The effectiveness of the algorithm is measured in terms of time execution and number of traversed PDG edges. The comparison study results indicate that using the introduced algorithm considerably saves the slicing time and effort required to measure module parallelism and functional cohesion.
Keywords: Backward slicing, cohesion measure, forward slicing, parallelism measure, program dependence graph, program slicing, static slicing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14532209 An Improved QRS Complex Detection for Online Medical Diagnosis
Authors: I. L. Ahmad, M. Mohamed, N. A. Ab. Ghani
Abstract:
This paper presents the work of signal discrimination specifically for Electrocardiogram (ECG) waveform. ECG signal is comprised of P, QRS, and T waves in each normal heart beat to describe the pattern of heart rhythms corresponds to a specific individual. Further medical diagnosis could be done to determine any heart related disease using ECG information. The emphasis on QRS Complex classification is further discussed to illustrate the importance of it. Pan-Tompkins Algorithm, a widely known technique has been adapted to realize the QRS Complex classification process. There are eight steps involved namely sampling, normalization, low pass filter, high pass filter (build a band pass filter), derivation, squaring, averaging and lastly is the QRS detection. The simulation results obtained is represented in a Graphical User Interface (GUI) developed using MATLAB.Keywords: ECG, Pan Tompkins Algorithm, QRS Complex, Simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25772208 Evolutionary Feature Selection for Text Documents using the SVM
Authors: Daniel I. Morariu, Lucian N. Vintan, Volker Tresp
Abstract:
Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector.Keywords: Feature Selection, Learning with Kernels, Support Vector Machine, Genetic Algorithm, and Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17082207 Improving RBF Networks Classification Performance by using K-Harmonic Means
Authors: Z. Zainuddin, W. K. Lye
Abstract:
In this paper, a clustering algorithm named KHarmonic means (KHM) was employed in the training of Radial Basis Function Networks (RBFNs). KHM organized the data in clusters and determined the centres of the basis function. The popular clustering algorithms, namely K-means (KM) and Fuzzy c-means (FCM), are highly dependent on the initial identification of elements that represent the cluster well. In KHM, the problem can be avoided. This leads to improvement in the classification performance when compared to other clustering algorithms. A comparison of the classification accuracy was performed between KM, FCM and KHM. The classification performance is based on the benchmark data sets: Iris Plant, Diabetes and Breast Cancer. RBFN training with the KHM algorithm shows better accuracy in classification problem.Keywords: Neural networks, Radial basis functions, Clusteringmethod, K-harmonic means.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18522206 Public Key Cryptosystem based on Number Theoretic Transforms
Authors: C. Porkodi, R. Arumuganathan
Abstract:
In this paper a Public Key Cryptosystem is proposed using the number theoretic transforms (NTT) over a ring of integer modulo a composite number. The key agreement is similar to ElGamal public key algorithm. The security of the system is based on solution of multivariate linear congruence equations and discrete logarithm problem. In the proposed cryptosystem only fixed numbers of multiplications are carried out (constant complexity) and hence the encryption and decryption can be done easily. At the same time, it is very difficult to attack the cryptosystem, since the cipher text is a sequence of integers which are interrelated. The system provides authentication also. Using Mathematica version 5.0 the proposed algorithm is justified with a numerical example.Keywords: Cryptography, decryption, discrete logarithm problem encryption, Integer Factorization problem, Key agreement, Number Theoretic Transform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16842205 Combined Source and Channel Coding for Image Transmission Using Enhanced Turbo Codes in AWGN and Rayleigh Channel
Authors: N. S. Pradeep, M. Balasingh Moses, V. Aarthi
Abstract:
Any signal transmitted over a channel is corrupted by noise and interference. A host of channel coding techniques has been proposed to alleviate the effect of such noise and interference. Among these Turbo codes are recommended, because of increased capacity at higher transmission rates and superior performance over convolutional codes. The multimedia elements which are associated with ample amount of data are best protected by Turbo codes. Turbo decoder employs Maximum A-posteriori Probability (MAP) and Soft Output Viterbi Decoding (SOVA) algorithms. Conventional Turbo coded systems employ Equal Error Protection (EEP) in which the protection of all the data in an information message is uniform. Some applications involve Unequal Error Protection (UEP) in which the level of protection is higher for important information bits than that of other bits. In this work, enhancement to the traditional Log MAP decoding algorithm is being done by using optimized scaling factors for both the decoders. The error correcting performance in presence of UEP in Additive White Gaussian Noise channel (AWGN) and Rayleigh fading are analyzed for the transmission of image with Discrete Cosine Transform (DCT) as source coding technique. This paper compares the performance of log MAP, Modified log MAP (MlogMAP) and Enhanced log MAP (ElogMAP) algorithms used for image transmission. The MlogMAP algorithm is found to be best for lower Eb/N0 values but for higher Eb/N0 ElogMAP performs better with optimized scaling factors. The performance comparison of AWGN with fading channel indicates the robustness of the proposed algorithm. According to the performance of three different message classes, class3 would be more protected than other two classes. From the performance analysis, it is observed that ElogMAP algorithm with UEP is best for transmission of an image compared to Log MAP and MlogMAP decoding algorithms.Keywords: AWGN, BER, DCT, Fading, MAP, UEP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16812204 The Optimal Placement of Capacitor in Order to Reduce Losses and the Profile of Distribution Network Voltage with GA, SA
Authors: Limouzade E., Joorabian M.
Abstract:
Most of the losses in a power system relate to the distribution sector which always has been considered. From the important factors which contribute to increase losses in the distribution system is the existence of radioactive flows. The most common way to compensate the radioactive power in the system is the power to use parallel capacitors. In addition to reducing the losses, the advantages of capacitor placement are the reduction of the losses in the release peak of network capacity and improving the voltage profile. The point which should be considered in capacitor placement is the optimal placement and specification of the amount of the capacitor in order to maximize the advantages of capacitor placement. In this paper, a new technique has been offered for the placement and the specification of the amount of the constant capacitors in the radius distribution network on the basis of Genetic Algorithm (GA). The existing optimal methods for capacitor placement are mostly including those which reduce the losses and voltage profile simultaneously. But the retaliation cost and load changes have not been considered as influential UN the target function .In this article, a holistic approach has been considered for the optimal response to this problem which includes all the parameters in the distribution network: The price of the phase voltage and load changes. So, a vast inquiry is required for all the possible responses. So, in this article, we use Genetic Algorithm (GA) as the most powerful method for optimal inquiry.Keywords: Genetic Algorithm (GA), capacitor placement, voltage profile, network losses, Simulating Annealing (SA), distribution network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15392203 A Constructive Proof of the General Brouwer Fixed Point Theorem and Related Computational Results in General Non-Convex sets
Authors: Menglong Su, Shaoyun Shi, Qing Xu
Abstract:
In this paper, by introducing twice continuously differentiable mappings, we develop an interior path following following method, which enables us to give a constructive proof of the general Brouwer fixed point theorem and thus to solve fixed point problems in a class of non-convex sets. Under suitable conditions, a smooth path can be proven to exist. This can lead to an implementable globally convergent algorithm. Several numerical examples are given to illustrate the results of this paper.
Keywords: interior path following method, general Brouwer fixed point theorem, non-convex sets, globally convergent algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14502202 Parametric Analysis and Optimal Design of Functionally Graded Plates Using Particle Swarm Optimization Algorithm and a Hybrid Meshless Method
Authors: Foad Nazari, Seyed Mahmood Hosseini, Mohammad Hossein Abolbashari, Mohammad Hassan Abolbashari
Abstract:
The present study is concerned with the optimal design of functionally graded plates using particle swarm optimization (PSO) algorithm. In this study, meshless local Petrov-Galerkin (MLPG) method is employed to obtain the functionally graded (FG) plate’s natural frequencies. Effects of two parameters including thickness to height ratio and volume fraction index on the natural frequencies and total mass of plate are studied by using the MLPG results. Then the first natural frequency of the plate, for different conditions where MLPG data are not available, is predicted by an artificial neural network (ANN) approach which is trained by back-error propagation (BEP) technique. The ANN results show that the predicted data are in good agreement with the actual one. To maximize the first natural frequency and minimize the mass of FG plate simultaneously, the weighted sum optimization approach and PSO algorithm are used. However, the proposed optimization process of this study can provide the designers of FG plates with useful data.Keywords: Optimal design, natural frequency, FG plate, hybrid meshless method, MLPG method, ANN approach, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14362201 Numerical Optimization within Vector of Parameters Estimation in Volatility Models
Authors: J. Arneric, A. Rozga
Abstract:
In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).Keywords: Heteroscedasticity, Log-likelihood Maximization, Quasi-Newton iteration procedure, Volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26562200 Burst on Hurst Algorithm for Detecting Activity Patterns in Networks of Cortical Neurons
Authors: G. Stillo, L. Bonzano, M. Chiappalone, A. Vato, F. Davide, S. Martinoia
Abstract:
Electrophysiological signals were recorded from primary cultures of dissociated rat cortical neurons coupled to Micro-Electrode Arrays (MEAs). The neuronal discharge patterns may change under varying physiological and pathological conditions. For this reason, we developed a new burst detection method able to identify bursts with peculiar features in different experimental conditions (i.e. spontaneous activity and under the effect of specific drugs). The main feature of our algorithm (i.e. Burst On Hurst), based on the auto-similarity or fractal property of the recorded signal, is the independence from the chosen spike detection method since it works directly on the raw data.
Keywords: Burst detection, cortical neuronal networks, Micro-Electrode Array (MEA), wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15612199 Parallel Block Backward Differentiation Formulas for Solving Ordinary Differential Equations
Authors: Khairil Iskandar Othman, Zarina Bibi Ibrahim, Mohamed Suleiman
Abstract:
A parallel block method based on Backward Differentiation Formulas (BDF) is developed for the parallel solution of stiff Ordinary Differential Equations (ODEs). Most common methods for solving stiff systems of ODEs are based on implicit formulae and solved using Newton iteration which requires repeated solution of systems of linear equations with coefficient matrix, I - hβJ . Here, J is the Jacobian matrix of the problem. In this paper, the matrix operations is paralleled in order to reduce the cost of the iterations. Numerical results are given to compare the speedup and efficiency of parallel algorithm and that of sequential algorithm.Keywords: Backward Differentiation Formula, block, ordinarydifferential equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20152198 2D and 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems
Authors: Choon Ki Ahn, Jung Hun Park, Wook Hyun Kwon
Abstract:
CEMTool is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present new 2D & 3D finite element method (FEM) packages for CEMTool. We discuss the detailed structures and the important features of pre-processor, solver, and post-processor of CEMTool 2D & 3D FEM packages. In contrast to the existing MATLAB PDE Toolbox, our proposed FEM packages can deal with the combination of the reserved words. Also, we can control the mesh in a very effective way. With the introduction of new mesh generation algorithm and fast solving technique, our FEM packages can guarantee the shorter computational time than MATLAB PDE Toolbox. Consequently, with our new FEM packages, we can overcome some disadvantages or limitations of the existing MATLAB PDE Toolbox.Keywords: CEMTool, Finite element method (FEM), Numericalanalysis, Partial differential equation (PDE)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3800