Search results for: Financial Decision Support Systems
6031 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.
Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22176030 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: Time-series, features engineering methods for forecasting, energy demand forecasting, Azure machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12906029 Long-Range Dependence of Financial Time Series Data
Authors: Chatchai Pesee
Abstract:
This paper examines long-range dependence or longmemory of financial time series on the exchange rate data by the fractional Brownian motion (fBm). The principle of spectral density function in Section 2 is used to find the range of Hurst parameter (H) of the fBm. If 0< H <1/2, then it has a short-range dependence (SRD). It simulates long-memory or long-range dependence (LRD) if 1/2< H <1. The curve of exchange rate data is fBm because of the specific appearance of the Hurst parameter (H). Furthermore, some of the definitions of the fBm, long-range dependence and selfsimilarity are reviewed in Section II as well. Our results indicate that there exists a long-memory or a long-range dependence (LRD) for the exchange rate data in section III. Long-range dependence of the exchange rate data and estimation of the Hurst parameter (H) are discussed in Section IV, while a conclusion is discussed in Section V.Keywords: Fractional Brownian motion, long-rangedependence, memory, short-range dependence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18846028 Automatic Authentication of Handwritten Documents via Low Density Pixel Measurements
Authors: Abhijit Mitra, Pranab Kumar Banerjee, C. Ardil
Abstract:
We introduce an effective approach for automatic offline au- thentication of handwritten samples where the forgeries are skillfully done, i.e., the true and forgery sample appearances are almost alike. Subtle details of temporal information used in online verification are not available offline and are also hard to recover robustly. Thus the spatial dynamic information like the pen-tip pressure characteristics are considered, emphasizing on the extraction of low density pixels. The points result from the ballistic rhythm of a genuine signature which a forgery, however skillful that may be, always lacks. Ten effective features, including these low density points and den- sity ratio, are proposed to make the distinction between a true and a forgery sample. An adaptive decision criteria is also derived for better verification judgements.Keywords: Handwritten document verification, Skilled forgeries, Low density pixels, Adaptive decision boundary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17156027 Social Semantic Web-Based Analytics Approach to Support Lifelong Learning
Authors: Khaled Halimi, Hassina Seridi-Bouchelaghem
Abstract:
The purpose of this paper is to describe how learning analytics approaches based on social semantic web techniques can be applied to enhance the lifelong learning experiences in a connectivist perspective. For this reason, a prototype of a system called SoLearn (Social Learning Environment) that supports this approach. We observed and studied literature related to lifelong learning systems, social semantic web and ontologies, connectivism theory, learning analytics approaches and reviewed implemented systems based on these fields to extract and draw conclusions about necessary features for enhancing the lifelong learning process. The semantic analytics of learning can be used for viewing, studying and analysing the massive data generated by learners, which helps them to understand through recommendations, charts and figures their learning and behaviour, and to detect where they have weaknesses or limitations. This paper emphasises that implementing a learning analytics approach based on social semantic web representations can enhance the learning process. From one hand, the analysis process leverages the meaning expressed by semantics presented in the ontology (relationships between concepts). From the other hand, the analysis process exploits the discovery of new knowledge by means of inferring mechanism of the semantic web.
Keywords: Connectivism, data visualization, informal learning, learning analytics, semantic web, social web.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8136026 Comparison of Domain and Hydrophobicity Features for the Prediction of Protein-Protein Interactions using Support Vector Machines
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
The protein domain structure has been widely used as the most informative sequence feature to computationally predict protein-protein interactions. However, in a recent study, a research group has reported a very high accuracy of 94% using hydrophobicity feature. Therefore, in this study we compare and verify the usefulness of protein domain structure and hydrophobicity properties as the sequence features. Using the Support Vector Machines (SVM) as the learning system, our results indicate that both features achieved accuracy of nearly 80%. Furthermore, domains structure had receiver operating characteristic (ROC) score of 0.8480 with running time of 34 seconds, while hydrophobicity had ROC score of 0.8159 with running time of 20,571 seconds (5.7 hours). These results indicate that protein-protein interaction can be predicted from domain structure with reliable accuracy and acceptable running time.
Keywords: Bioinformatics, protein-protein interactions, support vector machines, protein features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19196025 Journey to Cybercrime and Crime Opportunity: Quantitative Analysis of Cyber Offender Spatial Decision Making
Authors: Sinchul Back, Sun Ho Kim, Jennifer LaPrade, Ilju Seong
Abstract:
Due to the advantage of using the Internet, cybercriminals can reach target(s) without border controls. Prior research on criminology and crime science has largely been void of empirical studies on journey-to-cybercrime and crime opportunity. Thus, the purpose of this study is to understand more about cyber offender spatial decision making associated with crime opportunity factors (i.e., co-offending, offender-stranger). Data utilized in this study were derived from 306 U.S. Federal court cases of cybercrime. The findings of this study indicated that there was a positive relationship between co-offending and journey-to-cybercrime, whereas there was no link between offender-stranger and journey-to-cybercrime. Also, the results showed that there was no relationship between cybercriminal sex, age, and journey-to-cybercrime. The policy implications and limitations of this study are discussed.
Keywords: Co-offending, crime opportunity, journey-to-cybercrime, offender-stranger.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7366024 Enhanced Disk-Based Databases Towards Improved Hybrid In-Memory Systems
Authors: Samuel Kaspi, Sitalakshmi Venkatraman
Abstract:
In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable inmemory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of diskbased database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of inmemory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.
Keywords: Concurrency control, disk-based databases, inmemory systems, enhanced memory access (EMA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20386023 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization
Authors: Tomoaki Hashimoto
Abstract:
Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints, random dither quantization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11556022 Factors Determining the Women Empowerment through Microfinance: An Empirical Study in Sri Lanka
Authors: Y. Rathiranee, D. M. Semasinghe
Abstract:
This study attempts to identify the factors influencing on women empowerment of rural area in Sri Lanka through micro finance services. Data were collected from one hundred (100) rural women involving self-employment activities through a questionnaire using direct personal interviews. Judgment and Convenience Random sampling technique was used to select the sample size from three Divisional Secretariat divisions of Kandawalai, Poonakari and Karachchi in Kilinochchi District. The factor analysis was performed on fourteen (14) variables for screening and reducing the variables to identify the influencing factors on empowerment. Multiple regression analysis was used to identify the relationship between the three empowerment factors and the impact of micro finance on overall empowerment of rural women. The result of this study summarized the variables into three factors namely decision making, freedom to mobility and family support and which are positively associated with empowerment. In addition to this the value of adjusted R2 is 0.248 indicates that all the variables extracted can be explained 24.8% of the variation in the women empowerment through microfinance. Independent variables of these three factors have positive correlation with women empowerment as well as significant values at 5 percent level.Keywords: Influencing factors, Micro finance, rural women and women empowerment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39586021 Effects of LED Lighting on Visual Comfort with Respect to the Reading Task
Authors: Ayşe Nihan Avcı, İpek Memikoğlu
Abstract:
Lighting systems in interior architecture need to be designed according to the function of the space, the type of task within the space, user comfort and needs. Desired and comfortable lighting levels increase task efficiency. When natural lighting is inadequate in a space, artificial lighting is additionally used to support the level of light. With the technological developments, the characteristics of light are being researched comprehensively and several business segments have focused on its qualitative and quantitative characteristics. These studies have increased awareness and usage of artificial lighting systems and researchers have investigated the effects of lighting on physical and psychological aspects of human in various ways. The aim of this study is to research the effects of illuminance levels of LED lighting on user visual comfort. Eighty participants from the Department of Interior Architecture of Çankaya University participated in three lighting scenarios consisting of 200 lux, 500 lux and 800 lux that are created with LED lighting. Each lighting scenario is evaluated according to six visual comfort criteria in which a reading task is performed. The results of the study indicated that LED lighting with three different illuminance levels affect visual comfort in different ways. The results are limited to the participants and questions that are attended and used in this study.
Keywords: Illuminance levels, LED lighting, reading task, visual comfort criteria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11536020 Addressing Scalability Issues of Named Entity Recognition Using Multi-Class Support Vector Machines
Authors: Mona Soliman Habib
Abstract:
This paper explores the scalability issues associated with solving the Named Entity Recognition (NER) problem using Support Vector Machines (SVM) and high-dimensional features. The performance results of a set of experiments conducted using binary and multi-class SVM with increasing training data sizes are examined. The NER domain chosen for these experiments is the biomedical publications domain, especially selected due to its importance and inherent challenges. A simple machine learning approach is used that eliminates prior language knowledge such as part-of-speech or noun phrase tagging thereby allowing for its applicability across languages. No domain-specific knowledge is included. The accuracy measures achieved are comparable to those obtained using more complex approaches, which constitutes a motivation to investigate ways to improve the scalability of multiclass SVM in order to make the solution more practical and useable. Improving training time of multi-class SVM would make support vector machines a more viable and practical machine learning solution for real-world problems with large datasets. An initial prototype results in great improvement of the training time at the expense of memory requirements.Keywords: Named entity recognition, support vector machines, language independence, bioinformatics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16906019 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels along the Jeddah Coast, Saudi Arabia
Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati
Abstract:
Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.
Keywords: Tides, Prediction, Support Vector Machines, Genetic Algorithm, Back-Propagation Neural Network, Risk, Hazards.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23846018 A Collaborative Platform for Multilingual Ontology Development
Authors: Ahmed Tawfik, Fausto Giunchiglia, Vincenzo Maltese
Abstract:
Ontologies provide a common understanding of a specific domain of interest that can be communicated between people and used as background knowledge for automated reasoning in a wide range of applications. In this paper, we address the design of multilingual ontologies following well-defined knowledge engineering methodologies with the support of novel collaborative development approaches. In particular, we present a collaborative platform which allows ontologies to be developed incrementally in multiple languages. This is made possible via an appropriate mapping between language independent concepts and one lexicalization per language (or a lexical gap in case such lexicalization does not exist). The collaborative platform has been designed to support the development of the Universal Knowledge Core, a multilingual ontology currently in English, Italian, Chinese, Mongolian, Hindi and Bangladeshi. Its design follows a workflow-based development methodology that models resources as a set of collaborative objects and assigns customizable workflows to build and maintain each collaborative object in a community driven manner, with extensive support of modern web 2.0 social and collaborative features.
Keywords: Knowledge Diversity, Knowledge Representation, Ontology Development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22046017 Strategic Management Accounting: Implementation and Control
Authors: Alireza Azimi Sani
Abstract:
This paper discusses the design characteristics management accounting systems should have to be useful for strategic planning and control and provides brief introductions to strategic variance analysis, profit-linked performance measurement models and balanced scorecard. It shows two multi-period, multiproduct models are specified, can be related to Porter's strategy framework and cost and revenue drivers, and can be used to support strategic planning, control and cost management.
Keywords: Accounting, balanced scorecard, profit-linked, strategic management, variance analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50216016 Smart Side View Mirror Camera for Real Time System
Authors: Nunziata Ivana Guarneri, Arcangelo Bruna, Giuseppe Spampinato, Antonio Buemi
Abstract:
In the last decade, automotive companies have invested a lot in terms of innovation about many aspects regarding the automatic driver assistance systems. One innovation regards the usage of a smart camera placed on the car’s side mirror for monitoring the back and lateral road situation. A common road scenario is the overtaking of the preceding car and, in this case, a brief distraction or a loss of concentration can lead the driver to undertake this action, even if there is an already overtaking vehicle, leading to serious accidents. A valid support for a secure drive can be a smart camera system, which is able to automatically analyze the road scenario and consequentially to warn the driver when another vehicle is overtaking. This paper describes a method for monitoring the side view of a vehicle by using camera optical flow motion vectors. The proposed solution detects the presence of incoming vehicles, assesses their distance from the host car, and warns the driver through different levels of alert according to the estimated distance. Due to the low complexity and computational cost, the proposed system ensures real time performances.
Keywords: Camera calibration, ego motion, kalman filters, object tracking, real time systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9016015 Neuro-Hybrid Models for Automotive System Identification
Authors: Ventura Assuncao
Abstract:
In automotive systems almost all steps concerning the calibration of several control systems, e.g., low idle governor or boost pressure governor, are made with the vehicle because the timeto- production and cost requirements on the projects do not allow for the vehicle analysis necessary to build reliable models. Here is presented a procedure using parametric and NN (neural network) models that enables the generation of vehicle system models based on normal ECU engine control unit) vehicle measurements. These models are locally valid and permit pre and follow-up calibrations so that, only the final calibrations have to be done with the vehicle.Keywords: Automotive systems, neuro-hybrid models, demodulator, nonlinear systems, identification, and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15706014 Forecasting Rainfall in Thailand: A Case Study of Nakhon Ratchasima Province
Authors: N. Sopipan
Abstract:
In this paper, we study the rainfall using a time series for weather stations in Nakhon Ratchasima province in Thailand by various statistical methods to enable us to analyse the behaviour of rainfall in the study areas. Time-series analysis is an important tool in modelling and forecasting rainfall. The ARIMA and Holt-Winter models were built on the basis of exponential smoothing. All the models proved to be adequate. Therefore it is possible to give information that can help decision makers establish strategies for the proper planning of agriculture, drainage systems and other water resource applications in Nakhon Ratchasima province. We obtained the best performance from forecasting with the ARIMA Model(1,0,1)(1,0,1)12.
Keywords: ARIMA Models, Exponential Smoothing, Holt- Winter model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26826013 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise
Authors: J. P. Dubois, Omar M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18136012 Evolutionary Query Optimization for Heterogeneous Distributed Database Systems
Authors: Reza Ghaemi, Amin Milani Fard, Hamid Tabatabaee, Mahdi Sadeghizadeh
Abstract:
Due to new distributed database applications such as huge deductive database systems, the search complexity is constantly increasing and we need better algorithms to speedup traditional relational database queries. An optimal dynamic programming method for such high dimensional queries has the big disadvantage of its exponential order and thus we are interested in semi-optimal but faster approaches. In this work we present a multi-agent based mechanism to meet this demand and also compare the result with some commonly used query optimization algorithms.Keywords: Information retrieval systems, list fusion methods, document score, multi-agent systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34246011 RoboWeedSupport-Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/H
Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Mads Dyrmann, Robert Poulsen
Abstract:
For the past three years, the Danish project, RoboWeedSupport, has sought to bridge the gap between the potential herbicide savings using a decision support system and the required weed inspections. In order to automate the weed inspections it is desired to generate a map of the weed species present within the field, to generate the map images must be captured with samples covering the field. This paper investigates the economical cost of performing this data collection based on a camera system mounted on a all-terain vehicle (ATV) able to drive and collect data at up to 50 km/h while still maintaining a image quality sufficient for identifying newly emerged grass weeds. The economical estimates are based on approximately 100 hectares recorded at three different locations in Denmark. With an average image density of 99 images per hectare the ATV had an capacity of 28 ha per hour, which is estimated to cost 6.6 EUR/ha. Alternatively relying on a boom solution for an existing tracktor it was estimated that a cost of 2.4 EUR/ha is obtainable under equal conditions.Keywords: Weed mapping, integrated weed management, weed recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14656010 Unified Structured Process for Health Analytics
Authors: Supunmali Ahangama, Danny Chiang Choon Poo
Abstract:
Health analytics (HA) is used in healthcare systems for effective decision making, management and planning of healthcare and related activities. However, user resistances, unique position of medical data content and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. Success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose a HA process model with features from rational unified process (RUP) model and agile methodology.
Keywords: Agile methodology, health analytics, unified process model, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23306009 Computation of Probability Coefficients using Binary Decision Diagram and their Application in Test Vector Generation
Authors: Ashutosh Kumar Singh, Anand Mohan
Abstract:
This paper deals with efficient computation of probability coefficients which offers computational simplicity as compared to spectral coefficients. It eliminates the need of inner product evaluations in determination of signature of a combinational circuit realizing given Boolean function. The method for computation of probability coefficients using transform matrix, fast transform method and using BDD is given. Theoretical relations for achievable computational advantage in terms of required additions in computing all 2n probability coefficients of n variable function have been developed. It is shown that for n ≥ 5, only 50% additions are needed to compute all probability coefficients as compared to spectral coefficients. The fault detection techniques based on spectral signature can be used with probability signature also to offer computational advantage.Keywords: Binary Decision Diagrams, Spectral Coefficients, Fault detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14656008 Scenario and Decision Analysis for Solar Energy in Egypt by 2035 Using Dynamic Bayesian Network
Authors: Rawaa H. El-Bidweihy, Hisham M. Abdelsalam, Ihab A. El-Khodary
Abstract:
Bayesian networks are now considered to be a promising tool in the field of energy with different applications. In this study, the aim was to indicate the states of a previous constructed Bayesian network related to the solar energy in Egypt and the factors affecting its market share, depending on the followed data distribution type for each factor, and using either the Z-distribution approach or the Chebyshev’s inequality theorem. Later on, the separate and the conditional probabilities of the states of each factor in the Bayesian network were derived, either from the collected and scrapped historical data or from estimations and past studies. Results showed that we could use the constructed model for scenario and decision analysis concerning forecasting the total percentage of the market share of the solar energy in Egypt by 2035 and using it as a stable renewable source for generating any type of energy needed. Also, it proved that whenever the use of the solar energy increases, the total costs decreases. Furthermore, we have identified different scenarios, such as the best, worst, 50/50, and most likely one, in terms of the expected changes in the percentage of the solar energy market share. The best scenario showed an 85% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market, while the worst scenario showed only a 24% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market. Furthermore, we applied policy analysis to check the effect of changing the controllable (decision) variable’s states acting as different scenarios, to show how it would affect the target nodes in the model. Additionally, the best environmental and economical scenarios were developed to show how other factors are expected to be, in order to affect the model positively. Additional evidence and derived probabilities were added for the weather dynamic nodes whose states depend on time, during the process of converting the Bayesian network into a dynamic Bayesian network.
Keywords: Bayesian network, Chebyshev, decision variable, dynamic Bayesian network, Z-distribution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5046007 A Performance Model for Designing Network in Reverse Logistic
Authors: S. Dhib, S. A. Addouche, T. Loukil, A. Elmhamedi
Abstract:
In this paper, a reverse supply chain network is investigated for a decision making. This decision is surrounded by complex flows of returned products, due to the increasing quantity, the type of returned products and the variety of recovery option products (reuse, recycling, and refurbishment). The most important problem in the reverse logistic network (RLN) is to orient returned products to the suitable type of recovery option. However, returned products orientations from collect sources to the recovery disposition have not well considered in performance model. In this study, we propose a performance model for designing a network configuration on reverse logistics. Conceptual and analytical models are developed with taking into account operational, economic and environmental factors on designing network.Keywords: Reverse logistics, Network design, Performance model, Open loop configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20656006 A Dual Method for Solving General Convex Quadratic Programs
Authors: Belkacem Brahmi, Mohand Ouamer Bibi
Abstract:
In this paper, we present a new method for solving quadratic programming problems, not strictly convex. Constraints of the problem are linear equalities and inequalities, with bounded variables. The suggested method combines the active-set strategies and support methods. The algorithm of the method and numerical experiments are presented, while comparing our approach with the active set method on randomly generated problems.
Keywords: Convex quadratic programming, dual support methods, active set methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18946005 Transformer Top-Oil Temperature Modeling and Simulation
Authors: T. C. B. N. Assunção, J. L. Silvino, P. Resende
Abstract:
The winding hot-spot temperature is one of the most critical parameters that affect the useful life of the power transformers. The winding hot-spot temperature can be calculated as function of the top-oil temperature that can estimated by using the ambient temperature and transformer loading measured data. This paper proposes the estimation of the top-oil temperature by using a method based on Least Squares Support Vector Machines approach. The estimated top-oil temperature is compared with measured data of a power transformer in operation. The results are also compared with methods based on the IEEE Standard C57.91-1995/2000 and Artificial Neural Networks. It is shown that the Least Squares Support Vector Machines approach presents better performance than the methods based in the IEEE Standard C57.91-1995/2000 and artificial neural networks.Keywords: Artificial Neural Networks, Hot-spot Temperature, Least Squares Support Vector, Top-oil Temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24916004 A Neutral Set Approach for Applying TOPSIS in Maintenance Strategy Selection
Authors: C. Ardil
Abstract:
This paper introduces the concept of neutral sets (NSs) and explores various operations on NSs, along with their associated properties. The foundation of the Neutral Set framework lies in ontological neutrality and the principles of logic, including the Law of Non-Contradiction. By encompassing components for possibility, indeterminacy, and necessity, the NS framework provides a flexible representation of truth, uncertainty, and necessity, accommodating diverse ontological perspectives without presupposing specific existential commitments. The inclusion of Possibility acknowledges the spectrum of potential states or propositions, promoting neutrality by accommodating various viewpoints. Indeterminacy reflects the inherent uncertainty in understanding reality, refraining from making definitive ontological commitments in uncertain situations. Necessity captures propositions that must hold true under all circumstances, aligning with the principle of logical consistency and implicitly supporting the Law of Non-Contradiction. Subsequently, a neutral set-TOPSIS approach is applied in the maintenance strategy selection problem, demonstrating the practical applicability of the NS framework. The paper further explores uncertainty relations and presents the fundamental preliminaries of NS theory, emphasizing its role in fostering ontological neutrality and logical coherence in reasoning.
Keywords: Uncertainty sets, neutral sets, maintenance strategy selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, distance function, multiple attribute, decision making, selection method, uncertainty, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176003 Fast Lines at Theme Parks
Authors: G. Hernandez-Maskivker, G. Ryan, M. Blazey, M. Pàmies
Abstract:
Waiting times and queues are a daily problem for theme parks. Fast lines or priority queues appear as a solution for a specific segment of customers, that is, tourists who are willing to pay to avoid waiting. This paper analyzes the fast line system and explores the factors that affect the decision to purchase a fast line pass. A greater understanding of these factors may help companies to design appropriate products and services. This conceptual paper was based on a literature review in marketing and consumer behavior. Additional research was identified in related disciplines such as leisure studies, psychology, and sociology. A conceptual framework of the factors influencing the decision to purchase a fast line pass is presented.
Keywords: Tourist behavior, fast lines, theme park, willing to pay.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 44786002 Delay-Dependent H∞ Performance Analysis for Markovian Jump Systems with Time-Varying Delays
Authors: Yucai Ding, Hong Zhu, Shouming Zhong, Yuping Zhang
Abstract:
This paper considers H∞ performance for Markovian jump systems with Time-varying delays. The systems under consideration involve disturbance signal, Markovian switching and timevarying delays. By using a new Lyapunov-Krasovskii functional and a convex optimization approach, a delay-dependent stability condition in terms of linear matrix inequality (LMI) is addressed, which guarantee asymptotical stability in mean square and a prescribed H∞ performance index for the considered systems. Two numerical examples are given to illustrate the effectiveness and the less conservatism of the proposed main results. All these results are expected to be of use in the study of stochastic systems with time-varying delays.
Keywords: H∞ performance, Markovian switching, Delaydependent stability, Linear matrix inequality (LMI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616