Search results for: Blood Mass Flow Rate
4347 Low Power Approach for Decimation Filter Hardware Realization
Authors: Kar Foo Chong, Pradeep K. Gopalakrishnan, T. Hui Teo
Abstract:
There are multiple ways to implement a decimator filter. This paper addresses usage of CIC (cascaded-integrator-comb) filter and HB (half band) filter as the decimator filter to reduce the frequency sample rate by factor of 64 and detail of the implementation step to realize this design in hardware. Low power design approach for CIC filter and half band filter will be discussed. The filter design is implemented through MATLAB system modeling, ASIC (application specific integrated circuit) design flow and verified using a FPGA (field programmable gate array) board and MATLAB analysis.Keywords: CIC filter, decimation filter, half-band filter, lowpower.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24054346 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.
Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21664345 Magnetohydrodynamic Free Convection in a Square Cavity Heated from Below and Cooled from Other Walls
Authors: S. Jani, M. Mahmoodi, M. Amini
Abstract:
Magnetohydrodynamic free convection fluid flow and heat transfer in a square cavity filled with an electric conductive fluid with Prandtl number of 0.7 has been investigated numerically. The horizontal bottom wall of the cavity was kept at Th while the side and the top walls of the cavity were maintained at a constant temperature Tc with Th>Tc. The governing equations written in terms of the primitive variables were solved numerically using the finite volume method while the SIMPLER algorithm was used to couple the velocity and pressure fields. Using the developed code, a parametric study was performed, and the effects of the Rayleigh number and the Hartman number on the fluid flow and heat transfer inside the cavity were investigated. The obtained results showed that temperature distribution and flow pattern inside the cavity depended on both strength of the magnetic field and Rayleigh number. For all cases two counter rotating eddies were formed inside the cavity. The magnetic field decreased the intensity of free convection and flow velocity. Also it was found that for higher Rayleigh numbers a relatively stronger magnetic field was needed to decrease the heat transfer through free convection.
Keywords: Free Convection, Magnetic Field, Square Cavity, Numerical Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23204344 Effect of the Ethanolic Leaf Extract of Ficus exasperata on Biochemical Indices of Albino Mice Experimentally Infected with Plasmodium berghei (NK 65)
Authors: Lebari B. Gboeloh
Abstract:
Ficus exasperata is a plant used in the traditional management of malaria in south-south Nigeria. An investigation into the effects of the ethanolic extract of the leaf of the plant on some biochemical indices in albino mice infected with Plasmodium berghei (NK 65) was conducted. 48 mice with weight range of 13-23 g were grouped into six (A, B, C, D, E, and F). Each group contained 8 mice. Groups A, B, C, D and E were infected with blood containing the parasite. Group F was not infected and served as the normal control. On the 6th day after infection, 4 mice from each group were sacrificed and blood samples are collected for investigation. The remaining mice in each group were treated. Mice in Groups A, B and C were administered orally with 200, 300 and 500 mg/kg body weight of Ficus exasperata respectively for six days. Group D was not treated while Group F was given distilled water. Group E was treated with 5 mg/kg body weight of chloroquine. On the 6th day post treatment, these mice were sacrificed and blood samples were collected for biochemical analysis. The results indicated that on the 6th day post inoculation, the levels of aspartate aminotransferase (AST), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) in all the mice infected with the parasite were significantly (p < 0.05) elevated. However, on the 6th day post administration of extract, the increased levels of AST, ALP and ALT were significantly (p < 0.05) reduced in groups administered with 300 and 500 mg/kg body weight of the extract compared with groups D and F. The reduction in the levels of these enzymes is an indication that F. exasperata have no hepatotoxic effect on the mice at the dose levels administered.
Keywords: Ficus exasperata, albino mice, Plasmodium berghei, biochemical parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10314343 Variable Rate Superorthogonal Turbo Code with the OVSF Code Tree
Authors: Insah Bhurtah, P. Clarel Catherine, K. M. Sunjiv Soyjaudah
Abstract:
When using modern Code Division Multiple Access (CDMA) in mobile communications, the user must be able to vary the transmission rate of users to allocate bandwidth efficiently. In this work, Orthogonal Variable Spreading Factor (OVSF) codes are used with the same principles applied in a low-rate superorthogonal turbo code due to their variable-length properties. The introduced system is the Variable Rate Superorthogonal Turbo Code (VRSTC) where puncturing is not performed on the encoder’s final output but rather before selecting the output to achieve higher rates. Due to bandwidth expansion, the codes outperform an ordinary turbo code in the AWGN channel. Simulations results show decreased performance compared to those obtained with the employment of Walsh-Hadamard codes. However, with OVSF codes, the VRSTC system keeps the orthogonality of codewords whilst producing variable rate codes contrary to Walsh-Hadamard codes where puncturing is usually performed on the final output.
Keywords: CDMA, MAP Decoding, OVSF, Superorthogonal Turbo Code.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21804342 Roles of Aquatic Plants on Erosion Relief of Stream Bed
Authors: Jin-Hong Kim
Abstract:
Roles of the vegetation to mitigate the erosion of the stream bed or to facilitate the deposition of the fine sediments by the species of the aquatic plants were presented. Field investigation on the estimation of the change of the bed level and the estimation of the flow characteristics were performed. The results showed that Phragmites japonica has the mitigation function of 0.3m-0.4m of the erosion in the range of higher than 1.0m/s of flow velocity at the vegetated region. Phragmites communis has the mitigation function of 0.2m-0.3m of the erosion in the range of higher than 0.7m/s of flow velocity at the vegetated region. Salix gracilistyla has greater role than Phragmites japonica and Phragmites communis to sustain the stable channel. It has the mitigation function of 0.4m-0.5m of the erosion in the range of higher than 1.4m/s of flow velocity. Miscanthus sacchariflorus has a weak role compared with that of Phragmites japonica and Salix gracilistyla, but it has still function for sustaining the stable bed. From these results, the vegetation has effective roles to mitigate the erosion or to facilitate the deposition of the stream bed.Keywords: Aquatic plants, Phragmites japonica, Phragmites communis, Miscanthus sacchariflorus, Salix gracilistyla.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16254341 Free Convection in a MHD Porous Cavity with using Lattice Boltzmann Method
Authors: H.A. Ashorynejad, M. Farhadi, K.Sedighi, A.Hasanpour
Abstract:
We report the results of an lattice Boltzmann simulation of magnetohydrodynamic damping of sidewall convection in a rectangular enclosure filled with a porous medium. In particular we investigate the suppression of convection when a steady magnetic field is applied in the vertical direction. The left and right vertical walls of the cavity are kept at constant but different temperatures while both the top and bottom horizontal walls are insulated. The effects of the controlling parameters involved in the heat transfer and hydrodynamic characteristics are studied in detail. The heat and mass transfer mechanisms and the flow characteristics inside the enclosure depended strongly on the strength of the magnetic field and Darcy number. The average Nusselt number decreases with rising values of the Hartmann number while this increases with increasing values of the Darcy number.Keywords: Lattice Boltzmann method , Natural convection , Magnetohydrodynamic , Porous medium
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20134340 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure
Authors: M. Battira, R. Bessaih
Abstract:
We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15604339 A Review of Pharmacological Prevention of Peri-and Post-Procedural Myocardial Injury after Percutaneous Coronary Intervention
Authors: Syed Dawood Md. Taimur, Md. Hasanur Rahman, Syeda Fahmida Afrin, Farzana Islam
Abstract:
The concept of myocardial injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. In recent years, percutaneous coronary intervention (PCI) has become a well-established technique for the treatment of coronary artery disease. PCI improves symptoms in patients with coronary artery disease and it has been increasing safety of procedures. However, peri- and post-procedural myocardial injury, including angiographical slow coronary flow, microvascular embolization, and elevated levels of cardiac enzyme, such as creatine kinase and troponin-T and -I, has also been reported even in elective cases. Furthermore, myocardial reperfusion injury at the beginning of myocardial reperfusion, which causes tissue damage and cardiac dysfunction, may occur in cases of acute coronary syndrome. Because patients with myocardial injury is related to larger myocardial infarction and have a worse long-term prognosis than those without myocardial injury, it is important to prevent myocardial injury during and/or after PCI in patients with coronary artery disease. To date, many studies have demonstrated that adjunctive pharmacological treatment suppresses myocardial injury and increases coronary blood flow during PCI procedures. In this review, we highlight the usefulness of pharmacological treatment in combination with PCI in attenuating myocardial injury in patients with coronary artery disease.
Keywords: Coronary artery disease, Percutaneous coronary intervention, Myocardial injury, Pharmacology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23394338 Selection and Design of an Axial Flow Fan
Authors: D. Almazo, C. Rodríguez, M. Toledo
Abstract:
This work presents a methodology for the selection and design of propeller oriented to the experimental verification of theoretical results. The problem of propeller selection and design usually present itself in the following manner: a certain air volume and static pressure are required for a certain system. Once the necessity of fan design on a theoretical basis has been recognized, it is possible to determinate the dimensions for a fan unit so that it will perform in accordance with a certain set of specifications. The same procedures in this work then can be applied in other propeller selection.Keywords: airfoil, axial flow, blade, fan, hub, mathematical algorithm, propeller design, simulation, wheel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136054337 Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillance
Authors: Sepehr Aslani, Homayoun Mahdavi-Nasab
Abstract:
Automated motion detection and tracking is a challenging task in traffic surveillance. In this paper, a system is developed to gather useful information from stationary cameras for detecting moving objects in digital videos. The moving detection and tracking system is developed based on optical flow estimation together with application and combination of various relevant computer vision and image processing techniques to enhance the process. To remove noises, median filter is used and the unwanted objects are removed by applying thresholding algorithms in morphological operations. Also the object type restrictions are set using blob analysis. The results show that the proposed system successfully detects and tracks moving objects in urban videos.
Keywords: Optical flow estimation, moving object detection, tracking, morphological operation, blob analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101644336 Hepatitis B Virus Infection among Egyptian Children Vaccinated during Infancy
Authors: Iman I. Salama, Samia M. Sami, Somaia I. Salama, Zeinab N. Said, Thanaa M. Rabah, Aida M. Abdel-Mohsin
Abstract:
This is a national community based project to evaluate effectiveness of HBV vaccination program in prevention of infection. HBV markers were tested in the sera of 3600 vaccinated children. Infected children were followed up for 1 year. Prevalence of HBV infection was 0.39 % (0.28% positive for anti-HBc, 0.03% positive for HBsAg and 0.08% positive for both). One year later, 50% of positive anti-HBc children turned negative with sustained positivity for positive HBsAg cases. HBV infection was significantly higher at age above 9 years (0.6%) compared to 0.2% at age 3-9 years and 0% at younger age (P<0.05). Logistic analysis revealed that predictors for HBV infection were history of blood transfusion, regular medical injection, and family history of either HBV infection or drug abuse (adjusted odds ratios 6.2, 5.6, 7.6 & 19.1 respectively). HBV vaccination program produced adequate protection. Adherence to infection control measures and safe blood transfusion are recommended.
Keywords: Children, Egypt, HBV Infection, HBV Vaccine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27244335 Hematologic Inflammatory Markers and Inflammation-Related Hepatokines in Pediatric Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity in children particularly draws attention, because it may threaten the individual’s future life due to many chronic diseases it may lead to. Most of these diseases including obesity itself altogether are related to inflammation. For this reason, inflammation-related parameters gain importance. Within this context, complete blood cell counts, ratios or indices derived from these counts have recently found some platform to be used as inflammatory markers. So far, mostly adipokines were investigated within the field of obesity. Metabolic inflammation is closely associated with cellular dysfunction. In this study, hematologic inflammatory markers and cytokines produced predominantly by the liver (fibroblast growth factor-21 (FGF-21) and fetuin A) were investigated in pediatric obesity. Two groups were constituted from 76 obese children based on World Health Organization criteria. Group 1 was composed of children, whose age- and sex-adjusted body mass index (BMI) percentiles were between 95 and 99. Group 2 consists of children, who are above 99th percentile. The first and the latter groups were defined as obese (OB) and morbid obese (MO). Anthropometric measurements of the children were performed. Informed consent forms and the approval of the institutional ethics committee were obtained. Blood cell counts and ratios were determined by automated hematology analyzer. The related ratios and indexes were calculated. Statistical evaluation of the data was performed by SPSS program. There was no statistically significant difference in terms of neutrophil-to lymphocyte ratio, monocyte-to-high density lipoprotein cholesterol ratio and platelet-to-lymphocyte ratio between the groups. Mean platelet volume and platelet distribution width values were decreased (p < 0.05), total platelet count, red cell distribution width (RDW) and systemic immune inflammation index values were increased (p < 0.01) in MO group. Both hepatokines were increased in the same group, however increases were not statistically significant. In this group, also a strong correlation was calculated between FGF-21 and RDW when controlled by age, hematocrit, iron and ferritin (r = 0.425; p < 0.01). In conclusion, the association between RDW, a hematologic inflammatory marker, and FGF-21, an inflammation-related hepatokine, found in MO group is an important finding discriminating between OB and MO children. This association is even more powerful when controlled by age and iron-related parameters.
Keywords: Childhood obesity, fetuin A, fibroblast growth factor-21, hematologic markers, red cell distribution width.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7054334 Analysis of Short Bearing in Turbulent Regime Considering Micropolar Lubrication
Authors: S. S. Gautam, S. Samanta
Abstract:
The aim of the paper work is to investigate and predict the static performance of journal bearing in turbulent flow condition considering micropolar lubrication. The Reynolds equation has been modified considering turbulent micropolar lubrication and is solved for steady state operations. The Constantinescu-s turbulence model is adopted using the coefficients. The analysis has been done for a parallel and inertia less flow. Load capacity and friction factor have been evaluated for various operating parameters.Keywords: hydrodynamic bearing, micropolar lubrication, coupling number, characteristic length, perturbation analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19714333 On the Analysis and a Few Optimization Issues of a New iCIM 3000 System at an Academic-Research Oriented Institution
Authors: D. R. Delgado Sobrino, R. Holubek, R. Ružarovský
Abstract:
In the past years, the world has witnessed significant work in the field of Manufacturing. Special efforts have been made in the implementation of new technologies, management and control systems, among many others which have all evolved the field. Closely following all this, due to the scope of new projects and the need of turning the existing flexible ideas into more autonomous and intelligent ones, i.e.: moving toward a more intelligent manufacturing, the present paper emerges with the main aim of contributing to the analysis and a few customization issues of a new iCIM 3000 system at the IPSAM. In this process, special emphasis in made on the material flow problem. For this, besides offering a description and analysis of the system and its main parts, also some tips on how to define other possible alternative material flow scenarios and a partial analysis of the combinatorial nature of the problem are offered as well. All this is done with the intentions of relating it with the use of simulation tools, for which these have been briefly addressed with a special focus on the Witness simulation package. For a better comprehension, the previous elements are supported by a few figures and expressions which would help obtaining necessary data. Such data and others will be used in the future, when simulating the scenarios in the search of the best material flow configurations.
Keywords: Flexible/Intelligent assembly/disassembly cell (F/IA/DC), Flexible/Intelligent Manufacturing Systems/Cell (F/IMS/C), Material Flow Optimization/Combinations/Design (MFO/C/D).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20784332 Computational Analysis of Hemodynamic Effects on Aneurysm Coil Bundle
Authors: Woowon Jeong, Kyehan Rhee
Abstract:
Recurrence of aneurysm rupture can be attributed to coil migration and compaction. In order to verify the effects of hemodynamics on coil compaction and migration, we analyze the forces and displacements on the coil bundle using a computational method. Lateral aneurysms partially filled coils are modeled, and blood flow fields and coil deformations are simulated considering fluid and solid interaction. Effects of aneurysm neck size and parent vessel geometry are also investigated. The results showed that coil deformation was larger in the aneurysms with a wider neck. Parent vessel geometry and aneurysm neck size also affected mean pressure force profiles on the coil surface. Pressure forces were higher in wide neck models with curved parent vessel geometry. Simulation results showed that coils in the wide neck aneurysm with a curved parent vessel may be displaced and compacted more easily.Keywords: Hemodynamics, Aneurysm, Coil compaction, Fluid Structure Interaction (FSI)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20874331 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process
Authors: Vinod Kumar, Jatinder Kumar
Abstract:
The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.Keywords: Stress, MRR, Flow, Ultrasonic Machining
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28144330 The Effect of Randomly Distributed Polypropylene Fibers Borogypsum Fly Ash and Cement on Freezing-Thawing Durability of a Fine-Grained Soil
Authors: Ahmet Şahin Zaimoğlu
Abstract:
A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6, 12, and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20% BG, 0-20% FA, 0- 0.25% PP and 0-3% of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.Keywords: Additive materials, Freezing-thawing, Optimization, Reinforced soil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17414329 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength, and corrosion resistance. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: Hardness, RSM, sputtering, TiN XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15864328 Study on Mixed Convection Heat Transfer in Vertical Ducts with Radiation Effects
Authors: G. Rajamohan, N. Ramesh, P. Kumar
Abstract:
Experiments have been performed to investigate the radiation effects on mixed convection heat transfer for thermally developing airflow in vertical ducts with two differentially heated isothermal walls and two adiabatic walls. The investigation covers the Reynolds number Re = 800 to Re = 2900, heat flux varied from 256 W/m2 to 863 W/m2, hot wall temperature ranges from 27°C to 100 °C, aspect ratios 1 & 0.5 and the emissivity of internal walls are 0.05 and 0.85. In the present study, combined flow visualization was conducted to observe the flow patterns. The effect of surface temperature along the walls was studied to investigate the local Nusselt number variation within the duct. The result shows that flow condition and radiation significantly affect the total Nusselt number and tends to reduce the buoyancy condition.
Keywords: Mixed convection, vertical duct, thermally developing and radiation effects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27614327 Preliminary Tests on the Buffer Tank for the Vented Liquid Nitrogen Flow of an SRF Module
Authors: Ming-Hsun Tsai, Ming-Chyuan Lin, Fu-Tsai Chung, Ling-Jhen Chen, Yu-Hang Lin, Meng-Shu Yeh, Lee-Long Han
Abstract:
Since 2005, an SRF module of CESR type serves as the accelerating cavity at the Taiwan Light Source in the National Synchrotron Radiation Research Center. A 500-MHz niobium cavity is immersed in liquid helium inside this SRF module. To reduce heat load, the liquid helium vessel is thermally shielded by liquid-nitrogen-cooled copper layer, and the beam chambers are also anchored with pipes of the liquid nitrogen flow in middle of the liquid helium vessel and the vacuum vessel. A strong correlation of the movement of the cavity-s frequency tuner with the temperature variation of parts cooled with liquid nitrogen was observed. A previous study on a spare SRF module with the niobium cavity cooled by liquid nitrogen instead of liquid helium, satisfactory suppression of the thermal oscillation was achieved by attaching a temporary buffer tank for the vented shielding nitrogen flow from the SRF module. In this study, a home-made buffer tank is designed and integrated to the spare SRF module with cavity cooled by liquid helium. Design, construction, integration, and preliminary test results of this buffer tank are presented.Keywords: Cryogenics, flow control, oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19524326 Extraction of Fetal Heart Rate and Fetal Heart Rate Variability from Mother's ECG Signal
Authors: Khaldon Lweesy, Luay Fraiwan, Christoph Maier, Hartmut Dickhaus
Abstract:
This paper describes a new method for extracting the fetal heart rate (fHR) and the fetal heart rate variability (fHRV) signal non-invasively using abdominal maternal electrocardiogram (mECG) recordings. The extraction is based on the fundamental frequency (Fourier-s) theorem. The fundamental frequency of the mother-s electrocardiogram signal (fo-m) is calculated directly from the abdominal signal. The heart rate of the fetus is usually higher than that of the mother; as a result, the fundamental frequency of the fetal-s electrocardiogram signal (fo-f) is higher than that of the mother-s (fo-f > fo-m). Notch filters to suppress mother-s higher harmonics were designed; then a bandpass filter to target fo-f and reject fo-m is implemented. Although the bandpass filter will pass some other frequencies (harmonics), we have shown in this study that those harmonics are actually carried on fo-f, and thus have no impact on the evaluation of the beat-to-beat changes (RR intervals). The oscillations of the time-domain extracted signal represent the RR intervals. We have also shown in this study that zero-to-zero evaluation of the periods is more accurate than the peak-to-peak evaluation. This method is evaluated both on simulated signals and on different abdominal recordings obtained at different gestational ages.
Keywords: Aabdominal ECG, fetal heart rate variability, frequency harmonics, fundamental frequency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26784325 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage
Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing
Abstract:
The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.
Keywords: Lunar samples, gas disturbance, storage device, characteristic analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10434324 Dynamic Response of Strain Rate Dependent Glass/Epoxy Composite Beams Using Finite Difference Method
Authors: M. M. Shokrieh, A. Karamnejad
Abstract:
This paper deals with a numerical analysis of the transient response of composite beams with strain rate dependent mechanical properties by use of a finite difference method. The equations of motion based on Timoshenko beam theory are derived. The geometric nonlinearity effects are taken into account with von Kármán large deflection theory. The finite difference method in conjunction with Newmark average acceleration method is applied to solve the differential equations. A modified progressive damage model which accounts for strain rate effects is developed based on the material property degradation rules and modified Hashin-type failure criteria and added to the finite difference model. The components of the model are implemented into a computer code in Mathematica 6. Glass/epoxy laminated composite beams with constant and strain rate dependent mechanical properties under dynamic load are analyzed. Effects of strain rate on dynamic response of the beam for various stacking sequences, load and boundary conditions are investigated.Keywords: Composite beam, Finite difference method, Progressive damage modeling, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19954323 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization
Authors: Roman Major, Klaudia Trembecka-Wojciga, Juergen Markus Lackner, Boguslaw Major
Abstract:
The future and the development of science is therefore seen in interdisciplinary areas such as biomedical engineering. Selfassembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as microstructure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.Keywords: Bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18464322 Using HABIT to Establish the Chemicals Analysis Methodology for Maanshan Nuclear Power Plant
Authors: J. R. Wang, S. W. Chen, Y. Chiang, W. S. Hsu, J. H. Yang, Y. S. Tseng, C. Shih
Abstract:
In this research, the HABIT analysis methodology was established for Maanshan nuclear power plant (NPP). The Final Safety Analysis Report (FSAR), reports, and other data were used in this study. To evaluate the control room habitability under the CO2 storage burst, the HABIT methodology was used to perform this analysis. The HABIT result was below the R.G. 1.78 failure criteria. This indicates that Maanshan NPP habitability can be maintained. Additionally, the sensitivity study of the parameters (wind speed, atmospheric stability classification, air temperature, and control room intake flow rate) was also performed in this research.
Keywords: PWR, HABIT, habitability, Maanshan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9134321 Heart-Rate Resistance Electrocardiogram Identification Based on Slope-Oriented Neural Networks
Authors: Tsu-Wang Shen, Shan-Chun Chang, Chih-Hsien Wang, Te-Chao Fang
Abstract:
For electrocardiogram (ECG) biometrics system, it is a tedious process to pre-install user’s high-intensity heart rate (HR) templates in ECG biometric systems. Based on only resting enrollment templates, it is a challenge to identify human by using ECG with the high-intensity HR caused from exercises and stress. This research provides a heartbeat segment method with slope-oriented neural networks against the ECG morphology changes due to high intensity HRs. The method has overall system accuracy at 97.73% which includes six levels of HR intensities. A cumulative match characteristic curve is also used to compare with other traditional ECG biometric methods.Keywords: High-intensity heart rate, heart rate resistant, ECG human identification, decision based artificial neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16674320 Corrosion Behaviour of Hypereutectic Al-Si Automotive Alloy in Different pH Environment
Authors: M. Al Nur, M. S. Kaiser
Abstract:
Corrosion behaviour of hypereutectic Al-19Si automotive alloy in different pH=1, 3, 5, 7, 9, 11, and 13 environments was carried out using conventional gravimetric measurements and was complemented by resistivity, optical micrograph, scanning electron microscopy (SEM) and X-ray analyzer (EDX) investigations. Gravimetric analysis confirmed that the highest corrosion rate is shown at pH 13 followed by pH 1. Minimum corrosion occurs in the pH range of 3.0 to 11 due to establishment of passive layer on the surface. The highest corrosion rate at pH 13 is due to the presence of sodium hydroxide in the solution which dissolves the surface oxide film at a steady rate. At pH 1, it can be attributed that the presence of aggressive chloride ions serves to pick up the damage of the passive films at localized regions. With varying exposure periods by both, the environment complies with the normal corrosion rate profile that is an initial steep rise followed by a nearly constant value of corrosion rate. Resistivity increases in case of pH 1 solution for the higher pit formation and decreases at pH 13 due to formation of thin film. The SEM image of corroded samples immersed in pH 1 solution clearly shows pores on the surface and in pH 13 solution, and the corrosion layer seems more compact and homogenous and not porous.
Keywords: Al-Si alloy, corrosion, pH, resistivity, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10254319 Comparison of Regime Transition between Ellipsoidal and Spherical Particle Assemblies in a Model Shear Cell
Authors: M. Hossain, H. P. Zhu, A. B. Yu
Abstract:
This paper presents a numerical investigation of regime transition of flow of ellipsoidal particles and a comparison with that of spherical particle assembly. Particle assemblies constituting spherical and ellipsoidal particle of 2.5:1 aspect ratio are examined at separate instances in similar flow conditions in a shear cell model that is numerically developed based on the discrete element method. Correlations among elastically scaled stress, kinetically scaled stress, coordination number and volume fraction are investigated, and show important similarities and differences for the spherical and ellipsoidal particle assemblies. In particular, volume fractions at points of regime transition are identified for both types of particles. It is found that compared with spherical particle assembly, ellipsoidal particle assembly has higher volume fraction for the quasistatic to intermediate regime transition and lower volume fraction for the intermediate to inertial regime transition. Finally, the relationship between coordination number and volume fraction shows strikingly distinct features for the two cases, suggesting that different from spherical particles, the effect of the shear rate on the coordination number is not significant for ellipsoidal particles. This work provides a glimpse of currently running work on one of the most attractive scopes of research in this field and has a wide prospect in understanding rheology of more complex shaped particles in light of the strong basis of simpler spherical particle rheology.Keywords: Discrete element method, granular rheology, non-spherical particles, regime transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15154318 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam
Authors: S. Golmohammadi, M. Noorian Bidgoli
Abstract:
Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the Rock Quality Designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and Stress Reduction Factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has been attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the Rock Engineering System (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.
Keywords: Q-system, Rock Engineering System, statistical analysis, rock mass, tunnel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 304