Search results for: heterogeneous photocatalyst.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 294

Search results for: heterogeneous photocatalyst.

204 Heterogeneous-Resolution and Multi-Source Terrain Builder for CesiumJS WebGL Virtual Globe

Authors: Umberto Di Staso, Marco Soave, Alessio Giori, Federico Prandi, Raffaele De Amicis

Abstract:

The increasing availability of information about earth surface elevation (Digital Elevation Models DEM) generated from different sources (remote sensing, Aerial Images, Lidar) poses the question about how to integrate and make available to the most than possible audience this huge amount of data. In order to exploit the potential of 3D elevation representation the quality of data management plays a fundamental role. Due to the high acquisition costs and the huge amount of generated data, highresolution terrain surveys tend to be small or medium sized and available on limited portion of earth. Here comes the need to merge large-scale height maps that typically are made available for free at worldwide level, with very specific high resolute datasets. One the other hand, the third dimension increases the user experience and the data representation quality, unlocking new possibilities in data analysis for civil protection, real estate, urban planning, environment monitoring, etc. The open-source 3D virtual globes, which are trending topics in Geovisual Analytics, aim at improving the visualization of geographical data provided by standard web services or with proprietary formats. Typically, 3D Virtual globes like do not offer an open-source tool that allows the generation of a terrain elevation data structure starting from heterogeneous-resolution terrain datasets. This paper describes a technological solution aimed to set up a so-called “Terrain Builder”. This tool is able to merge heterogeneous-resolution datasets, and to provide a multi-resolution worldwide terrain services fully compatible with CesiumJS and therefore accessible via web using traditional browser without any additional plug-in.

Keywords: Terrain builder, WebGL, virtual globe, CesiumJS, tiled map service, TMS, height-map, regular grid, Geovisual analytics, DTM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
203 The Contribution of Diet and Lifestyle Factors in the Prevalence of Irritable Bowel Syndrome

Authors: Alexander Dao, Oscar Wambuguh

Abstract:

Irritable Bowel Syndrome (IBS) is a heterogeneous functional bowel disease that is characterized by chronic visceral abdominal pain and abnormal bowel function and habits. Its multifactorial pathophysiology and mechanisms are still largely a mystery to the contemporary biomedical community, although there are many hypotheses to try to explain IBS’s presumed physiological, psychosocial, genetic, and environmental etiologies. IBS’s symptomatic presentation is varied and divided into four major subtypes: IBS-C, IBS-D, IBS-M, and IBS-U. Given its diverse presentation and unclear mechanisms, diagnosis is done through a combination of positive identification utilizing the “Rome IV Irritable Bowel Syndrome Criteria'' (Rome IV) diagnostic criteria while also excluding other potential conditions with similar symptoms. Treatment of IBS is focused on the management of symptoms using an assortment of pharmaceuticals, lifestyle changes, and dietary changes, with future potential in microbial treatment and psychotherapy as other therapy methods. Its chronic, heterogeneous nature and disruptive gastrointestinal (GI) symptoms are negatively impactful on patients’ daily lives, health systems, and society. However, with a better understanding of the gaps in knowledge and technological advances in IBS’s pathophysiology, management, and treatment options, there is optimism for the millions of people worldwide who are suffering from the debilitating effects of IBS.

Keywords: Irritable bowel syndrome, lifestyle, diet, functional gastrointestinal disorder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199
202 Ferroelectric Relaxor Behaviour in Some Lead- Free Compositions and their Potential Applications as Photocatalyst to Hydrogen Production

Authors: A. Kerfah, K. Taïbi, S. Omeiri, M. Trari.

Abstract:

New lead-free ferroelectric relaxor ceramics were prepared by conventional solid-state synthesis in the BaTiO3-Bi2O3- Y2O3 systems. Some of these ceramics present a ferroelectric relaxor with transition temperature close to room temperature. These new materials are very interesting for applications and can replace leadbased ceramic to prevent the toxic pollutions during the preparation state. In the other hand, the energy band diagram shows the potentiality of these compounds for the solar energy conversion. Thus, some compositions have been tested successfully for H2 production upon visible light. The best activity occurs in alkaline media with a rate evolution of about 0.15 mL g-1 mn-1 and a quantum yield of 1% under polychromatic light.

Keywords: Ferroelectric, Hydrogen production, Lead-free, Photocatalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
201 On One Mathematical Model for Filtration of Weakly Compressible Chemical Compound in the Porous Heterogeneous 3D Medium. Part I: Model Construction with the Aid of the Ollendorff Approach

Authors: Sharif E. Guseynov, Jekaterina V. Aleksejeva, Janis S. Rimshans

Abstract:

A filtering problem of almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain is studied. In this work general approaches to the solution of twodimensional filtering problems in ananisotropic, inhomogeneous and multilayered medium are developed, and on the basis of the obtained results mathematical models are constructed (according to Ollendorff method) for studying the certain engineering and technical problem of filtering the almost incompressible liquid chemical compound in the porous inhomogeneous 3D domain. For some of the formulated mathematical problems with additional requirements for the structure of the porous inhomogeneous medium, namely, its isotropy, spatial periodicity of its permeability coefficient, solution algorithms are proposed. Continuation of the current work titled ”On one mathematical model for filtration of weakly compressible chemical compound in the porous heterogeneous 3D medium. Part II: Determination of the reference directions of anisotropy and permeabilities on these directions” will be prepared in the shortest terms by the authors.

Keywords: Porous media, filtering, permeability, elliptic PDE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
200 SIP-Based QoS Management Architecture for IP Multimedia Subsystems over IP Access Networks

Authors: Umber Iqbal, Shaleeza Sohail, Muhammad Younas Javed

Abstract:

True integration of multimedia services over wired or wireless networks increase the productivity and effectiveness in today-s networks. IP Multimedia Subsystems are Next Generation Network architecture to provide the multimedia services over fixed or mobile networks. This paper proposes an extended SIP-based QoS Management architecture for IMS services over underlying IP access networks. To guarantee the end-to-end QoS for IMS services in interconnection backbone, SIP based proxy Modules are introduced to support the QoS provisioning and to reduce the handoff disruption time over IP access networks. In our approach these SIP Modules implement the combination of Diffserv and MPLS QoS mechanisms to assure the guaranteed QoS for real-time multimedia services. To guarantee QoS over access networks, SIP Modules make QoS resource reservations in advance to provide best QoS to IMS users over heterogeneous networks. To obtain more reliable multimedia services, our approach allows the use of SCTP protocol over SIP instead of UDP due to its multi-streaming feature. This architecture enables QoS provisioning for IMS roaming users to differentiate IMS network from other common IP networks for transmission of realtime multimedia services. To validate our approach simulation models are developed on short scale basis. The results show that our approach yields comparable performance for efficient delivery of IMS services over heterogeneous IP access networks.

Keywords: SIP-Based QoS Management Architecture, IPMultimedia Subsystems, IP Access Networks

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2622
199 Load Balancing in Heterogeneous P2P Systems using Mobile Agents

Authors: Neeraj Nehra, R. B. Patel, V. K. Bhat

Abstract:

Use of the Internet and the World-Wide-Web (WWW) has become widespread in recent years and mobile agent technology has proliferated at an equally rapid rate. In this scenario load balancing becomes important for P2P systems. Beside P2P systems can be highly heterogeneous, i.e., they may consists of peers that range from old desktops to powerful servers connected to internet through high-bandwidth lines. There are various loads balancing policies came into picture. Primitive one is Message Passing Interface (MPI). Its wide availability and portability make it an attractive choice; however the communication requirements are sometimes inefficient when implementing the primitives provided by MPI. In this scenario we use the concept of mobile agent because Mobile agent (MA) based approach have the merits of high flexibility, efficiency, low network traffic, less communication latency as well as highly asynchronous. In this study we present decentralized load balancing scheme using mobile agent technology in which when a node is overloaded, task migrates to less utilized nodes so as to share the workload. However, the decision of which nodes receive migrating task is made in real-time by defining certain load balancing policies. These policies are executed on PMADE (A Platform for Mobile Agent Distribution and Execution) in decentralized manner using JuxtaNet and various load balancing metrics are discussed.

Keywords: Mobile Agents, Agent host, Agent Submitter, PMADE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
198 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: Heterogeneous catalysis, photodegradation, reactive oxygen species, TiO2 nanowires.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
197 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO2 Nanoparticles

Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir

Abstract:

In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO2 and Ag-TiO2 in slurry form, the photocatalytic degradation was studied by measuring the Chemical Oxygen Demand (COD) parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO2 nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.

Keywords: Photocatalyst, Ag-doped, TiO2, produced water, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 516
196 A Comprehensive CFD Model for Sugar-Cane Bagasse Heterogeneous Combustion in a Grate Boiler System

Authors: Daniel J. O. Ferreira, Juan H. Sosa-Arnao, Bruno C. Moreira, Leonardo P. Rangel, Song W. Park

Abstract:

The comprehensive CFD models have been used to represent and study the heterogeneous combustion of biomass. In the present work, the operation of a global flue gas circuit in the sugarcane bagasse combustion, from wind boxes below primary air grate supply, passing by bagasse insertion in swirl burners and boiler furnace, to boiler bank outlet is simulated. It uses five different meshes representing each part of this system located in sequence: wind boxes and grate, boiler furnace, swirl burners, superheaters and boiler bank. The model considers turbulence using standard k-ε, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller- Naumann model. The results showed good agreement with expected behavior found in literature and equipment design. The more detailed results view in separated parts of flue gas system allows observing some flow behaviors that cannot be represented by usual simplifications like bagasse supply under homogeneous axial and rotational vectors and others that can be represented using new considerations like the representation of 26 thousand grate orifices by 144 rectangular inlets.

Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, sugar-cane bagasse grate boiler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2726
195 Structure and Magnetic Properties of Nanocomposite Fe2O3/TiO2 Catalysts Fabricated by Heterogeneous Precipitation

Authors: Jana P. Vejpravova, Daniel Niznansky, Vaclav Vales, Barbara Bittova, Vaclav Tyrpekl, Stanislav Danis, Vaclav Holy, Stephen Doyle

Abstract:

The aim of our work is to study phase composition, particle size and magnetic response of Fe2O3/TiO2 nanocomposites with respect to the final annealing temperature. Those nanomaterials are considered as smart catalysts, separable from a liquid/gaseous phase by applied magnetic field. The starting product was obtained by an ecologically acceptable route, based on heterogeneous precipitation of the TiO2 on modified g-Fe2O3 nanocrystals dispersed in water. The precursor was subsequently annealed on air at temperatures ranging from 200 oC to 900 oC. The samples were investigated by synchrotron X-ray powder diffraction (S-PXRD), magnetic measurements and Mössbauer spectroscopy. As evidenced by S-PXRD and Mössbauer spectroscopy, increasing the annealing temperature causes evolution of the phase composition from anatase/maghemite to rutile/hematite, finally above 700 oC the pseudobrookite (Fe2TiO5) also forms. The apparent particle size of the various Fe2O3/TiO2 phases has been determined from the highquality S-PXRD data by using two different approaches: the Rietveld refinement and the Debye method. Magnetic response of the samples is discussed in considering the phase composition and the particle size.

Keywords: X-ray diffraction, profile analysis, Mössbauer spectroscopy, magnetic properties, TiO2, Fe2O3, Fe2TiO5

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
194 Effect of Moisture Content Compaction in the Geometry Definition of Earth Dams

Authors: Julian B. García, Virginie Q. R. Pinto, André P. Assis

Abstract:

This paper presents numerical flow and slope stability simulations in three typical sections of earth dams built in tropical regions, two homogeneous with different slope inclinations, and the other one heterogeneous with impermeable core. The geotechnical material parameters used in this work were obtained from a lab testing of physical characterization, compaction, consolidation, variable load permeability and saturated triaxial type CD for compacted soil samples with standard proctor energy at optimum moisture content (23%), optimum moisture content + 2% and optimum moisture content +5%. The objective is to analyze the general behavior of earth dams built in rainy regions where optimum moisture is exceeded. The factor of safety is satisfactory for the three sections compacted in all moisture content during the stages of operation and end of construction. On The other hand, the rapid drawdown condition is the critical phase for homogeneus dams configuration, the factor of safety obtained were unsatisfactory. In general, the heterogeneous dam behavior is more efficient due to the fact that the slopes are made up of gravel, which favors the dissipation of pore pressures during the rapid drawdown. For the critical phase, the slopes should have lower inclinations of the upstream and downstream slopes to guarantee stability, although it increases the costs.

Keywords: Earth dams, flow, moisture content, slope stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 926
193 Photocatalytic Cleaning Performance of Air Filters for a Binary Mixture

Authors: Lexuan Zhong, Chang-Seo Lee, Fariborz Haghighat, Stuart Batterman, John C. Little

Abstract:

Ultraviolet photocatalytic oxidation (UV-PCO) technology has been recommended as a green approach to health indoor environment when it is integrated into mechanical ventilation systems for inorganic and organic compounds removal as well as energy saving due to less outdoor air intakes. Although much research has been devoted to UV-PCO, limited information is available on the UV-PCO behavior tested by the mixtures in literature. This project investigated UV-PCO performance and by-product generation using a single and a mixture of acetone and MEK at 100 ppb each in a single-pass duct system in an effort to obtain knowledge associated with competitive photochemical reactions involved in. The experiments were performed at 20 % RH, 22 °C, and a gas flow rate of 128 m3/h (75 cfm). Results show that acetone and MEK mutually reduced each other’s PCO removal efficiency, particularly negative removal efficiency for acetone. These findings were different from previous observation of facilitatory effects on the adsorption of acetone and MEK on photocatalyst surfaces.

Keywords: By-products, inhibitory effect, mixture, photocatalytic oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2057
192 Evaluation of Prevalence of the Types of Thyroid Disorders Using Ultrasound and Pathology of One Humped Camel in Iran (Camelus dromedarius)

Authors: M. Yadegari

Abstract:

The thyroid gland is the largest classic endocrine organ that effects many organs of the body and plays a significant role in the process of Metabolism in animals. The aim of this study was to investigate the prevalence of thyroid disorders diagnosed by ultrasound and microscopic Lesions of the thyroid during the slaughter of apparently healthy One Humped Camels (Camelus dromedarius) in Iran. Randomly, 520 male camels (With an age range of 4 to 8 years), were studied in 2012 to 2013. The Camels’ thyroid glands were evaluated by sonographic examination. In both longitudinal and transverse view and then tissue sections were provide and stained with H & E and finally examined by light microscopy. The results obtained indicated the following: hyperplastic goiter (21%), degenerative changes (12%), follicular cysts (8%), follicular atrophy (4%), nodular hyperplasia (3%), adenoma (1%), carcinoma (1%) and simple goiter colloid (1%). Ultrasound evaluation of thyroid gland in adenoma and carcinoma showed enlargement and irregular of the gland, decreased echogenicity, and the heterogeneous thyroid parenchyma. Also, in follicular cysts were observed in the enlarged gland with no echo structures of different sizes and decreased echogenicity as a local or general. In nodular hyperplasia, increase echogenicity and heterogeneous parenchymal were seen. These findings suggest the use of sonography and pathology as a screening test in the diagnosis of complications of thyroid disorders.

Keywords: One humped camel, pathology, sonography, thyroid gland.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2609
191 Photocatalytic and Sonophotocatalytic Degradation of Reactive Red 120 using Dye Sensitized TiO2 under Visible Light

Authors: S.K.Kavitha, P.N.Palanisamy

Abstract:

The accelerated sonophotocatalytic degradation of Reactive Red (RR) 120 dye under visible light using dye sensitized TiO2 activated by ultrasound has been carried out. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation contributes degradation through cavitation leading to the splitting of H2O2 produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen (1O2) and superoxide (O2 -●) radicals in the presence of oxygen. The increase in the amount of reactive radical species which induce faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst are responsible for the synergy observed under sonication. A comparative study of photocatalysis and sonophotocatalysis using TiO2, Hombikat UV 100 and ZnO was also carried out.

Keywords: Photocatalysis, Reactive Red 120, Sonophotocatalysis, Sonolysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3423
190 Microwave-Assisted Fabrication of Visible-Light Activated BiOBr-Nanoplate Photocatalyst

Authors: Meichen Lee, Michael K. H. Leung

Abstract:

In recent years, visible-light activated photocatalysis has become a major field of intense researches for the higher efficiency of solar energy utilizations. Many attempts have been made on the modification of wide band gap semiconductors, while more and more efforts emphasize on cost-effective synthesis of visible-light activated catalysts. In this work, BiOBr nanoplates with band gap of visible-light range are synthesized through a promising microwave solvothermal method. The treatment time period and temperature dependent BiOBr nanosheets of various particle sizes are investigated through SEM. BiOBr synthesized under the condition of 160°C for 60 mins shows the most uniform particle sizes around 311 nm and the highest surface-to-volume ratio on account of its smallest average particle sizes compared with others. It exhibits the best photocatalytic behavior among all samples in RhB degradation.

Keywords: Microwave solvothermal process, nanoplates, solar energy, visible-light photocatalysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1001
189 Photo Catalytic Oxidation Degradation of Volatile Organic Compound with Nano-TiO2/LDPE Composite Film

Authors: Kowit Suwannahong, Wipada Sanongra, Jittiporn Kruenate, Sarun Phibanchon, Siriuma Jawjit, Wipawee Khamwichit

Abstract:

The photocatalytic activity efficiency of TiO2 for the degradation of Toluene in photoreactor can be enhanced by nano- TiO2/LDPE composite film. Since the amount of TiO2 affected the efficiency of the photocatalytic activity, this work was mainly concentrated on the effort to embed the high amount of TiO2 in the Polyethylene matrix. The developed photocatalyst was characterized by XRD, UV-Vis spectrophotometer and SEM. The SEM images revealed the high homogeneity of the deposition of TiO2 on the polyethylene matrix. The XRD patterns interpreted that TiO2 embedded in the PE matrix exhibited mainly in anatase form. In addition, the photocatalytic results show that the toluene removal efficiencies of 30±5%, 49±4%, 68±5%, 42±6% and 33±5% were obtained when using the catalyst loading at 0%, 10%, 15%, 25% and 50% (wt. cat./wt. film), respectively.

Keywords: Photocatalytic oxidation, Toluene, nano-TiO2/LDPE composite film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2594
188 Intelligent Solutions for Umbrella Systems in Telecommunication Supervision Systems

Authors: K. P. Csányi, L. T. Kóczy, D. Tikk

Abstract:

This paper indicate the importance of telecommunications supervision systems (TSS), integrating heterogeneous TSS into single system thru umbrella systems, introduces the structure, features, requirements of TSS and TSS related intelligent solutions.

Keywords: Telecommunication, telecommunication supervisionsystems, umbrella systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
187 Congo Red Photocatalytic Decolourization using Modified Titanium

Authors: A. López–Vásquez, D. Santamaría, M. Tibatá, C. Gómez

Abstract:

A study concerning the photocatalytic decolourization of Congo red (CR) dye, over artificial UV irradiation is presented. Photocatalysts based on a commercial titanium dioxide (TiO2) modified with transition metals (Ni, Cu and Zn) were used. The dopage method used was wet impregnation. A TiO2 sample without salt was subjected to the same hydrothermal treatment to be used as reference. Congo red solutions to several pH conditions (natural and basic) were used to evaluate photocatalytic performance of each doped catalysts. Photodecolourization percentage was measured spectrofotrometically after 3 h of treatment to 499 nm as response variable. Kinetics investigations of photodegradation indicated that reactions obey to Langmuir-Hinshelwood model and pseudo–first order law. The rate constant studies of photocatalytic decolourization reactions for Zn–TiO2 and Cu–TiO2 photocatalysts indicated that in all cases the rate constant of the reaction was higher than that of TiO2 undoped. These results show that nature of the metal modifying the TiO2 influence on the efficiency of the photocatalyst evaluated in process. Ni does not present an additional effect compared with TiO2, while Zn enhances the photoactivity due to its electronic properties.

Keywords: Congo red, Dopage, Photodecolourization, Titanium dioxide.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167
186 Considerations for Effectively Using Probability of Failure as a Means of Slope Design Appraisal for Homogeneous and Heterogeneous Rock Masses

Authors: Neil Bar, Andrew Heweston

Abstract:

Probability of failure (PF) often appears alongside factor of safety (FS) in design acceptance criteria for rock slope, underground excavation and open pit mine designs. However, the design acceptance criteria generally provide no guidance relating to how PF should be calculated for homogeneous and heterogeneous rock masses, or what qualifies a ‘reasonable’ PF assessment for a given slope design. Observational and kinematic methods were widely used in the 1990s until advances in computing permitted the routine use of numerical modelling. In the 2000s and early 2010s, PF in numerical models was generally calculated using the point estimate method. More recently, some limit equilibrium analysis software offer statistical parameter inputs along with Monte-Carlo or Latin-Hypercube sampling methods to automatically calculate PF. Factors including rock type and density, weathering and alteration, intact rock strength, rock mass quality and shear strength, the location and orientation of geologic structure, shear strength of geologic structure and groundwater pore pressure influence the stability of rock slopes. Significant engineering and geological judgment, interpretation and data interpolation is usually applied in determining these factors and amalgamating them into a geotechnical model which can then be analysed. Most factors are estimated ‘approximately’ or with allowances for some variability rather than ‘exactly’. When it comes to numerical modelling, some of these factors are then treated deterministically (i.e. as exact values), while others have probabilistic inputs based on the user’s discretion and understanding of the problem being analysed. This paper discusses the importance of understanding the key aspects of slope design for homogeneous and heterogeneous rock masses and how they can be translated into reasonable PF assessments where the data permits. A case study from a large open pit gold mine in a complex geological setting in Western Australia is presented to illustrate how PF can be calculated using different methods and obtain markedly different results. Ultimately sound engineering judgement and logic is often required to decipher the true meaning and significance (if any) of some PF results.

Keywords: Probability of failure, point estimate method, Monte-Carlo simulations, sensitivity analysis, slope stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1197
185 Computational Identification of Bacterial Communities

Authors: Eleftheria Tzamali, Panayiota Poirazi, Ioannis G. Tollis, Martin Reczko

Abstract:

Stable bacterial polymorphism on a single limiting resource may appear if between the evolved strains metabolic interactions take place that allow the exchange of essential nutrients [8]. Towards an attempt to predict the possible outcome of longrunning evolution experiments, a network based on the metabolic capabilities of homogeneous populations of every single gene knockout strain (nodes) of the bacterium E. coli is reconstructed. Potential metabolic interactions (edges) are allowed only between strains of different metabolic capabilities. Bacterial communities are determined by finding cliques in this network. Growth of the emerged hypothetical bacterial communities is simulated by extending the metabolic flux balance analysis model of Varma et al [2] to embody heterogeneous cell population growth in a mutual environment. Results from aerobic growth on 10 different carbon sources are presented. The upper bounds of the diversity that can emerge from single-cloned populations of E. coli such as the number of strains that appears to metabolically differ from most strains (highly connected nodes), the maximum clique size as well as the number of all the possible communities are determined. Certain single gene deletions are identified to consistently participate in our hypothetical bacterial communities under most environmental conditions implying a pattern of growth-condition- invariant strains with similar metabolic effects. Moreover, evaluation of all the hypothetical bacterial communities under growth on pyruvate reveals heterogeneous populations that can exhibit superior growth performance when compared to the performance of the homogeneous wild-type population.

Keywords: Bacterial polymorphism, clique identification, dynamic FBA, evolution, metabolic interactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
184 An Approach to Correlate the Statistical-Based Lorenz Method, as a Way of Measuring Heterogeneity, with Kozeny-Carman Equation

Authors: H. Khanfari, M. Johari Fard

Abstract:

Dealing with carbonate reservoirs can be mind-boggling for the reservoir engineers due to various digenetic processes that cause a variety of properties through the reservoir. A good estimation of the reservoir heterogeneity which is defined as the quality of variation in rock properties with location in a reservoir or formation, can better help modeling the reservoir and thus can offer better understanding of the behavior of that reservoir. Most of reservoirs are heterogeneous formations whose mineralogy, organic content, natural fractures, and other properties vary from place to place. Over years, reservoir engineers have tried to establish methods to describe the heterogeneity, because heterogeneity is important in modeling the reservoir flow and in well testing. Geological methods are used to describe the variations in the rock properties because of the similarities of environments in which different beds have deposited in. To illustrate the heterogeneity of a reservoir vertically, two methods are generally used in petroleum work: Dykstra-Parsons permeability variations (V) and Lorenz coefficient (L) that are reviewed briefly in this paper. The concept of Lorenz is based on statistics and has been used in petroleum from that point of view. In this paper, we correlated the statistical-based Lorenz method to a petroleum concept, i.e. Kozeny-Carman equation and derived the straight line plot of Lorenz graph for a homogeneous system. Finally, we applied the two methods on a heterogeneous field in South Iran and discussed each, separately, with numbers and figures. As expected, these methods show great departure from homogeneity. Therefore, for future investment, the reservoir needs to be treated carefully.

Keywords: Carbonate reservoirs, heterogeneity, homogeneous system, Dykstra-Parsons permeability variations (V), Lorenz coefficient (L).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1790
183 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems do not scale well on cluster containing multiple Central Processing Units (multi-CPUs cluster) or cluster containing multiple Graphics Processing Units (multi-GPUs cluster). For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration, instead of two for standard CG (Conjugate Gradient). The standard and pipelined CG methods need the vector entries generated by current GPU and other GPUs for matrix-vector product. So the communication between GPUs becomes a major performance bottleneck on miltiGPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: Conjugate Gradient, GPU, parallel programming, pipelined algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 371
182 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst

Authors: D. Mowla, N. Rasti, P. Keshavarz

Abstract:

Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.

Keywords: Biodiesel, renewable fuel, transesterification, waste cooking oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
181 A CT-based Monte Carlo Dose Calculations for Proton Therapy Using a New Interface Program

Authors: A. Esmaili Torshabi, A. Terakawa, K. Ishii, H. Yamazaki, S. Matsuyama, Y. Kikuchi, M. Nakhostin, H. Sabet, A. Ishizaki, W. Yamashita, T. Togashi, J. Arikawa, H. Akiyama, K. Koyata

Abstract:

The purpose of this study is to introduce a new interface program to calculate a dose distribution with Monte Carlo method in complex heterogeneous systems such as organs or tissues in proton therapy. This interface program was developed under MATLAB software and includes a friendly graphical user interface with several tools such as image properties adjustment or results display. Quadtree decomposition technique was used as an image segmentation algorithm to create optimum geometries from Computed Tomography (CT) images for dose calculations of proton beam. The result of the mentioned technique is a number of nonoverlapped squares with different sizes in every image. By this way the resolution of image segmentation is high enough in and near heterogeneous areas to preserve the precision of dose calculations and is low enough in homogeneous areas to reduce the number of cells directly. Furthermore a cell reduction algorithm can be used to combine neighboring cells with the same material. The validation of this method has been done in two ways; first, in comparison with experimental data obtained with 80 MeV proton beam in Cyclotron and Radioisotope Center (CYRIC) in Tohoku University and second, in comparison with data based on polybinary tissue calibration method, performed in CYRIC. These results are presented in this paper. This program can read the output file of Monte Carlo code while region of interest is selected manually, and give a plot of dose distribution of proton beam superimposed onto the CT images.

Keywords: Monte Carlo, CT images, Quadtree decomposition, Interface program, Proton beam

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
180 Spatial Indeterminacy: Destabilization of Dichotomies in Modern and Contemporary Architecture

Authors: Adrian Lo

Abstract:

Since the advent of modern architecture, notions of free plan and transparency have proliferated well into current trends. The movement’s notion of a spatially homogeneous, open and limitless ‘free plan’ contrasts with the spatially heterogeneous ‘series of rooms’ defined by load bearing walls, which in turn triggered new notions of transparency created by vast expanses of glazed walls. Similarly, transparency was also dichotomized as something that was physical or optical, as well as something conceptual, akin to spatial organization. As opposed to merely accepting the duality and possible incompatibility of these dichotomies, this paper seeks to ask how can space be both literally and phenomenally transparent, as well as exhibit both homogeneous and heterogeneous qualities? This paper explores this potential destabilization or blurring of spatial phenomena by dissecting the transparent layers and volumes of a series of selected case studies to investigate how different architects have devised strategies of spatial ambiguity and interpenetration. Projects by Peter Eisenman, Sou Fujimoto, and SANAA will be discussed and analyzed to show how the superimposition of geometries and spaces achieve different conditions of layering, transparency, and interstitiality. Their particular buildings will be explored to reveal various innovative kinds of spatial interpenetration produced through the articulate relations of the elements of architecture, which challenge conventional perceptions of interior and exterior whereby visual homogeneity blurs with spatial heterogeneity. The results show how spatial conceptions such as interpenetration and transparency have the ability to subvert not only inside-outside dialectics, but could also produce multiple degrees of interiority within complex and indeterminate spatial dimensions in constant flux as well as present alternative forms of social interaction.

Keywords: interpenetration, literal and phenomenal transparency, spatial heterogeneity, visual homogeneity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
179 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto γ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Catalytic combustion of methane is imperative due to stability of methane at low temperature. Methane (CH4), therefore, remains unconverted in vehicle exhausts thereby causing greenhouse gas GHG emission problem. In this study, heterogeneous catalysts of palladium with bio-char (2 wt% Pd/Bc) and Al2O3 (2wt% Pd/ Al2O3) supports were prepared by incipient wetness impregnation and then subsequently tested for catalytic combustion of CH4. Support-porous heterogeneous catalytic combustion (HCC) material were selected based on factors such as surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. Sustainable and renewable support-material of bio-mass char derived from palm shell waste material was compared with those from the conventional support-porous materials. Kinetic rate of reaction was determined for combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc). Material characterization was done using TGA, SEM, and BET surface area. The performance test was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. The methane porous-HCC conversion was carried out using online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature was 2wt% Pd/Bc>calcined 2wt% Pd/ Al2O3> 2wt% Pd/ Al2O3>calcined 2wt% Pd/Bc. Hence agro waste material can successfully be utilized as an inexpensive catalyst support material for enhanced CH4 catalytic combustion.

Keywords: Catalytic-combustion, Environmental, Support-bio-char material, Sustainable, Renewable material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6040
178 Some Issues with Extension of an HPC Cluster

Authors: Pil Seong Park

Abstract:

Homemade HPC clusters are widely used in many small labs, because they are easy to build and cost-effective. Even though incremental growth is an advantage of clusters, it results in heterogeneous systems anyhow. Instead of adding new nodes to the cluster, we can extend clusters to include some other Internet servers working independently on the same LAN, so that we can make use of their idle times, especially during the night. However extension across a firewall raises some security problems with NFS. In this paper, we propose a method to solve such a problem using SSH tunneling, and suggest a modified structure of the cluster that implements it.

Keywords: Extension of HPC clusters, Security, NFS, SSH tunneling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1898
177 Analysis of a Secondary Autothermal Reformer Using a Thermodynamic POX Model

Authors: Akbar Zamaniyan, Alireza Behroozsarand, Hadi Ebrahimi

Abstract:

Partial oxidation (POX) of light hydrocarbons (e.g. methane) is occurred in the first part of the autothermal reformer (ATR). The results of the detailed modeling of the reformer based on the thermodynamic model of the POX and 1D heterogeneous catalytic model for the fixed bed section are considered here. According to the results, the overall performance of the ATR can be improved by changing the important feed parameters.

Keywords: Autothermal Reformer, Partial Oxidation, Mathematical Modeling, Process Simulation, Syngas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
176 Developing Cu-Mesoporous TiO2 Cooperated with Ozone Assistance and Online- Regeneration System for Acid Odor Removal in All Weather

Authors: Yuchih Lin, Chung-Liang Chang, Hong-Yi Cao, Sheng-Hsuan Hsiao

Abstract:

Cu-mesoporous TiO2 is developed for removal acid odor cooperated with ozone assistance and online- regeneration system with/without UV irradiation (all weather) in study. The results showed that Cu-mesoporous TiO2 present the desirable adsorption efficiency of acid odor without UV irradiation, due to the larger surface area, pore sizeand the additional absorption ability provided by Cu. In the photocatalysis process, the material structure also benefits Cu-mesoporous TiO2 to perform the more outstanding efficiency on degrading acid odor. Cu also postponed the recombination of electron-hole pairs excited from TiO2 to enhance photodegradation ability. Cu-mesoporous TiO2 could gain the conspicuous increase on photocatalysis ability from ozone assistance, but without any benefit on adsorption. In addition, the online regeneration procedure could process the used Cu-mesoporous TiO2 to reinstate the adsorption ability and maintain the photodegradtion performance, depended on scrubbing, desorping acid odor and reducing Cu to metal state.

Keywords: mesoporous material, photocatalyst, adsorption, regeneration usage, photocatalytic ozonation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
175 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent

Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yang Yue, Tianqi Yue

Abstract:

In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.

Keywords: Heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 486