Search results for: Modified Cubic B-Spline Differential Quadrature Method
8101 Pricing European Options under Jump Diffusion Models with Fast L-stable Padé Scheme
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. Modeling option pricing by Black-School models with jumps guarantees to consider the market movement. However, only numerical methods can solve this model. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, the exponential time differencing (ETD) method is applied for solving partial integrodifferential equations arising in pricing European options under Merton’s and Kou’s jump-diffusion models. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). A partial fraction form of Pad`e schemes is used to overcome the complexity of inverting polynomial of matrices. These two tools guarantee to get efficient and accurate numerical solutions. We construct a parallel and easy to implement a version of the numerical scheme. Numerical experiments are given to show how fast and accurate is our scheme.Keywords: Integral differential equations, L-stable methods, pricing European options, Jump–diffusion model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4998100 Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet
Authors: Talbi Mourad, Salhi Lotfi, Chérif Adnen
Abstract:
In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.
Keywords: Enhancement, spectral subtraction, SNR, discrete wavelet packet transform, spectral entropy Histogram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19928099 The Method of Evaluation Artery Diameter from Ultrasound Video
Authors: U. Rubins, Z. Marcinkevics, K.Volceka
Abstract:
The cardiovascular system has become the most important subject of clinical research, particularly measurement of arterial blood flow. Therefore correct determination of arterial diameter is crucial. We propose a novel, semi-automatic method for artery lumen detection. The method is based on Gaussian probability function. Usability of our proposed method was assessed by analyzing ultrasound B-mode CFA video sequences acquired from eleven healthy volunteers. The correlation coefficient between the manual and semi-automatic measurement of arterial diameter was 0.996. Our proposed method for detecting artery boundary is novel and accurate enough for the measurement of artery diameter.Keywords: Ultrasound, boundary detection, artery diameter, curve fitting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15938098 Control of Building Ventilation with CO2 Gas Sensors Based on Doped Magnesium Ferrite Nanoparticles for the Development of Construction and Infrastructure Industry
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
To develop construction and infrastructure industry, sensors are highly desired to control building ventilation. Zinc doped magnesium ferrite nanoparticles (Z@MFO) (Zn = 0.0, 0.2, 0.3, 0.4) were prepared in this paper. Structural analyses confirmed the formation of spinel cubic nanostructures. X-Ray diffraction (XRD) data represent high reactive surface area due to small average particle size about 15 nm, which efficiently influences the gas sensing mechanism. The gas sensing property of Z@MFO for several gases was obtained by measuring the resistance as a function of different factors, such as composition and response time in air and in presence of gas. The sensitivity of spinel ferrite to CO2 at room temperature has been compared. The Z@MFO nano-structure exhibited high sensitivity represented good response time of (~1 min) to CO2, demonstrated that the material can be used in the field of gas sensors with high sensitivity and good selectivity at room temperature to control building ventilation. CO2 gas sensors play a vital role in ensuring the safety, comfort, and sustainability of modern building environments.
Keywords: MgFe2O4 nanoparticles, synthesis, gas sensing properties, X ray differentiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028097 Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder
Authors: Konstantinos Sotiriadis, Michael Tupý, Nikol Žižková, Vít Petránek
Abstract:
The acid attack on cement mortars modified with rubber aggregates and EVA polymer binder was studied. Mortar specimens were prepared using a type CEM I 42.5 Portland cement and siliceous sand, as well as by substituting 25% of sand with shredded used automobile tires, and by adding EVA polymer in two percentages (5% and 10% of cement mass). Some specimens were only air cured, at laboratory conditions, and their compressive strength and water absorption were determined. The rest specimens were stored in acid solutions (HCl, H2SO4, HNO3) after 28 days of initial curing, and stored at laboratory temperature. Compressive strength tests, mass measurements and visual inspection took place for 28 days. Compressive strength and water absorption of the air-cured specimens were significantly decreased when rubber aggregates are used. The addition of EVA polymer further reduced water absorption, while had no important impact on strength. Compressive strength values were affected in a greater extent by hydrochloric acid solution, followed by sulfate and nitric acid solutions. The addition of EVA polymer decreased compressive strength loss for the specimens with rubber aggregates stored in hydrochloric and nitric acid solutions. The specimens without polymer binder showed similar mass loss, which was higher in sulfate acid solution followed by hydrochloric and nitric acid solutions. The use of EVA polymer delayed mass loss, while its content did not affect it significantly.
Keywords: Acid attack, mortar, EVA polymer, rubber aggregates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21588096 Generalized Chebyshev Collocation Method
Authors: Junghan Kim, Wonkyu Chung, Sunyoung Bu, Philsu Kim
Abstract:
In this paper, we introduce a generalized Chebyshev collocation method (GCCM) based on the generalized Chebyshev polynomials for solving stiff systems. For employing a technique of the embedded Runge-Kutta method used in explicit schemes, the property of the generalized Chebyshev polynomials is used, in which the nodes for the higher degree polynomial are overlapped with those for the lower degree polynomial. The constructed algorithm controls both the error and the time step size simultaneously and further the errors at each integration step are embedded in the algorithm itself, which provides the efficiency of the computational cost. For the assessment of the effectiveness, numerical results obtained by the proposed method and the Radau IIA are presented and compared.
Keywords: Generalized Chebyshev Collocation method, Generalized Chebyshev Polynomial, Initial value problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26408095 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition
Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami
Abstract:
As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.
Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16908094 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22278093 Generation of Numerical Data for the Facilitation of the Personalized Hyperthermic Treatment of Cancer with An Interstital Antenna Array Using the Method of Symmetrical Components
Authors: Prodromos E. Atlamazoglou
Abstract:
The method of moments combined with the method of symmetrical components is used for the analysis of interstitial hyperthermia applicators. The basis and testing functions are both piecewise sinusoids, qualifying our technique as a Galerkin one. The dielectric coatings are modeled by equivalent volume polarization currents, which are simply related to the conduction current distribution, avoiding in that way the introduction of additional unknowns or numerical integrations. The results of our method for a four dipole circular array, are in agreement with those already published in literature for a same hyperthermia configuration. Apart from being accurate, our approach is more general, more computationally efficient and takes into account the coupling between the antennas.Keywords: Hyperthermia, integral equations, insulated antennas, method of symmetrical components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6948092 Extend Three-wave Method for the (3+1)-Dimensional Soliton Equation
Authors: Somayeh Arbabi Mohammad-Abadi, Maliheh Najafi
Abstract:
In this paper, we study (3+1)-dimensional Soliton equation. We employ the Hirota-s bilinear method to obtain the bilinear form of (3+1)-dimensional Soliton equation. Then by the idea of extended three-wave method, some exact soliton solutions including breather type solutions are presented.
Keywords: Three-wave method, (3+1)-dimensional Soliton equation, Hirota's bilinear form.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15598091 Application of Four-electrode Method to Analysis Resistance Characteristics of Conductive Concrete
Authors: Chun-Yao Lee, Siang-Ren Wang
Abstract:
The purpose of this paper is to discuss the influence of resistance characteristic on the high conductive concrete considering the various voltage and environment. The four-electrode method is applied to the tailor-made high conductive concrete with appropriate proportion. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored. The result based on the methods reveals that resistivity is less affected by the temperature factor, and the four-electrode method would be an applicable measurement method on a site inspection.Keywords: Conductive concrete, Resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16048090 Cadmium Filter Cake of a Hydrometallurgical Zinc Smelter as a New Source for the Biological Synthesis of CdS Quantum Dots
Authors: Mehran Bakhshi, Mohammad Raouf Hosseini, Mohammadhosein Rahimi
Abstract:
The cadmium sulfide nanoparticles were synthesized from the nickel-cadmium cake of a hydrometallurgical zinc producing plant and sodium sulfide as Cd2+ and S-2 sources, respectively. Also, the synthesis process was performed by using the secretions of Bacillus licheniformis as bio-surfactant. Initially, in order to obtain a cadmium rich solution, two following steps were carried out: 1) Alkaline leaching for the removal of zinc oxide from the cake, and 2) acidic leaching to dissolve cadmium from the remained solid residue. Afterward, the obtained CdSO4 solution was used for the nanoparticle biosynthesis. Nanoparticles were characterized by the energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) to confirm the formation of CdS crystals with cubic structure. Also, transmission electron microscopy (TEM) was applied to determine the particle sizes which were in 2-10 nm range. Moreover, the presence of the protein containing bio-surfactants was approved by using infrared analysis (FTIR). In addition, the absorbance below 400 nm confirms quantum particles’ size. Finally, it was shown that valuable CdS quantum dots could be obtained from the industrial waste products via environment-friendly biological approaches.Keywords: Biosynthesis, cadmium cake, cadmium sulfide, nanoparticle, zinc smelter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15358089 Improvement of MLLR Speaker Adaptation Using a Novel Method
Authors: Ing-Jr Ding
Abstract:
This paper presents a technical speaker adaptation method called WMLLR, which is based on maximum likelihood linear regression (MLLR). In MLLR, a linear regression-based transform which adapted the HMM mean vectors was calculated to maximize the likelihood of adaptation data. In this paper, the prior knowledge of the initial model is adequately incorporated into the adaptation. A series of speaker adaptation experiments are carried out at a 30 famous city names database to investigate the efficiency of the proposed method. Experimental results show that the WMLLR method outperforms the conventional MLLR method, especially when only few utterances from a new speaker are available for adaptation.Keywords: hidden Markov model, maximum likelihood linearregression, speech recognition, speaker adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18428088 Homogeneous and Heterogeneous Catalysis: Teachings of the Thermal Energy and Power Engineering Course
Authors: Junjie Chen
Abstract:
It is usually difficult for students to understand some basic theories in learning thermal energy and power engineering course. A new teaching method was proposed that we should introduce the comparison research method of those theories to help them being understood. “Homogeneous and heterogeneous catalysis” teaching is analyzed as an example by comparison research method.
Keywords: Homogeneous catalysis, heterogeneous catalysis, thermal energy and power engineering, teaching method, comparison research method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55848087 A Fully Implicit Finite-Difference Solution to One Dimensional Coupled Nonlinear Burgers’ Equations
Authors: Vineet K. Srivastava, Mukesh K. Awasthi, Mohammad Tamsir
Abstract:
A fully implicit finite-difference method has been proposed for the numerical solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh points. The method forms a system of nonlinear difference equations which is to be solved at each iteration. Newton’s iterative method has been implemented to solve this nonlinear assembled system of equations. The linear system has been solved by Gauss elimination method with partial pivoting algorithm at each iteration of Newton’s method. Three test examples have been carried out to illustrate the accuracy of the method. Computed solutions obtained by proposed scheme have been compared with analytical solutions and those already available in the literature by finding L2 and L∞ errors.
Keywords: Burgers’ equation, Implicit Finite-difference method, Newton’s method, Gauss elimination with partial pivoting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 59458086 On a Pitch Duration Technique for Prosody Control
Authors: JongKuk Kim, HernSoo Hahn, Uei-Joong Yoo, MyungJin Bae
Abstract:
In this paper, we propose a method of alter duration in frequency domain that control prosody in real time after pitch alteration. If there has a method to alteration duration freely among prosody information, that may used in several fields such as speech impediment person's pronunciation proof reading or language study. The pitch alteration method used control prosody altered by PSOLA synthesis method which is in time domain processing method. However, the duration of pitch alteration speech is changed by the frequency domain. In this paper, we altered the duration with the method of duration alteration by Fast Fourier Transformation in frequency domain. Consequently, the intelligibility of the pitch and duration are controlled has a slight decrease than the case when only pitch is changed, but the proposed algorithm obtained the higher MOS score about naturalness.Keywords: PSOLA, Pitch Alteration, Duration Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16858085 On the Solution of Fully Fuzzy Linear Systems
Authors: Hsuan-Ku Liu
Abstract:
A linear system is called a fully fuzzy linear system (FFLS) if quantities in this system are all fuzzy numbers. For the FFLS, we investigate its solution and develop a new approximate method for solving the FFLS. Observing the numerical results, we find that our method is accurate than the iterative Jacobi and Gauss- Seidel methods on approximating the solution of FFLS.
Keywords: Fully fuzzy linear equations, iterative method, homotopy perturbation method, approximate solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17468084 Continuity of Defuzzification and Its Application to Fuzzy Control
Authors: Takashi Mitsuishi, Kiyoshi Sawada, Yasunari Shidama
Abstract:
The mathematical framework for studying of a fuzzy approximate reasoning is presented in this paper. Two important defuzzification methods (Area defuzzification and Height defuzzification) besides the center of gravity method which is the best well known defuzzification method are described. The continuity of the defuzzification methods and its application to a fuzzy feedback control are discussed.
Keywords: Fuzzy approximate reasoning, defuzzification, area method, height method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16768083 Thermophoresis Particle Precipitate on Heated Surfaces
Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak
Abstract:
This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favorable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.
Keywords: Thermophoresis, porous medium, variable surface heat flux.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22538082 Method Development and Validation for the Determination of Cefixime in Pure and Commercial Dosage Forms by Specrophotometry
Authors: S. N. H. Azmi, B. Iqbal, J. K. Al Mamari, K. A. Al Hattali, W. N. Al Hadhrami
Abstract:
A simple, accurate and precise direct spectrophotometric method has been developed for the determination of cefixime in tablets and capsules. The method is based on the reaction of cefixime with a mixture of potassium iodide and potassium iodate to form yellow coloured product in ethanol-distilled water medium at room temperature which absorbed maximally at 352 nm. The factors affecting the reaction product were carefully studied and optimized. The validation parameters based on International Conference on Harmonisation (ICH, USA) guidelines were followed. The effect of common excipients used as additives has been tested and the tolerance limit was calculated for the determination of cefixime. Beer’s law is obeyed in the concentration range of 4 – 24 ug mL-1 with apparent molar absorptivity of 1.52 × 104 L mol-1cm-1 and Sandell’s sensitivity of 0.033 ug/cm2/ 0.001 absorbance unit. The limits of detection and quantitation for the proposed method are 0.32 and 1.06 ug mL-1, respectively. The proposed method has been successfully applied for the determination of cefixime in pharmaceutical formulations. The results obtained by the proposed method were statistically compared with the reference method using t- and F- values and found no significant difference between the two methods. The proposed method can be used as an alternate method for routine quality control analysis of cefixime in pharmaceutical formulations.
Keywords: Spectrophotometry, cefixime, validation, pharmaceutical formulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31638081 Growth and Characterization of L-Asparagine (LAS) Crystal Admixture of Paranitrophenol (PNP): A NLO Material
Authors: Grace Sahaya Sheba, P. Omegala Priyakumari, M. Gunasekaran
Abstract:
L-asparagine admixture Paranitrophenol (LAPNP) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 12mm×5 mm×3mm have been obtained in 15 days. The grown crystals were Brown color and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV–visible absorption spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz–Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied
Keywords: Characterization, Microhardnes, Non-linear optical materials, Solution growth, Spectroscopy, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29988080 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.
Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy, micro Raman spectroscopy, UV-Visible absorption spectroscopy, Photoluminescence spectroscopy, Field Effect Scanning Electron Microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42788079 Advanced Neural Network Learning Applied to Pulping Modeling
Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14098078 The BGMRES Method for Generalized Sylvester Matrix Equation AXB − X = C and Preconditioning
Authors: Azita Tajaddini, Ramleh Shamsi
Abstract:
In this paper, we present the block generalized minimal residual (BGMRES) method in order to solve the generalized Sylvester matrix equation. However, this method may not be converged in some problems. We construct a polynomial preconditioner based on BGMRES which shows why polynomial preconditioner is superior to some block solvers. Finally, numerical experiments report the effectiveness of this method.Keywords: Linear matrix equation, Block GMRES, matrix Krylov subspace, polynomial preconditioner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8748077 A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis
Authors: Mandana Kariminejad, Ali Ghaffari
Abstract:
Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.Keywords: Tumor, immunotherapy, fuzzy controller, Genetic algorithm, mathematical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10858076 Modal Approach for Decoupling Damage Cost Dependencies in Building Stories
Authors: Haj Najafi Leila, Tehranizadeh Mohsen
Abstract:
Dependencies between diverse factors involved in probabilistic seismic loss evaluation are recognized to be an imperative issue in acquiring accurate loss estimates. Dependencies among component damage costs could be taken into account considering two partial distinct states of independent or perfectly-dependent for component damage states; however, in our best knowledge, there is no available procedure to take account of loss dependencies in story level. This paper attempts to present a method called "modal cost superposition method" for decoupling story damage costs subjected to earthquake ground motions dealt with closed form differential equations between damage cost and engineering demand parameters which should be solved in complex system considering all stories' cost equations by the means of the introduced "substituted matrixes of mass and stiffness". Costs are treated as probabilistic variables with definite statistic factors of median and standard deviation amounts and a presumed probability distribution. To supplement the proposed procedure and also to display straightforwardness of its application, one benchmark study has been conducted. Acceptable compatibility has been proven for the estimated damage costs evaluated by the new proposed modal and also frequently used stochastic approaches for entire building; however, in story level, insufficiency of employing modification factor for incorporating occurrence probability dependencies between stories has been revealed due to discrepant amounts of dependency between damage costs of different stories. Also, more dependency contribution in occurrence probability of loss could be concluded regarding more compatibility of loss results in higher stories than the lower ones, whereas reduction in incorporation portion of cost modes provides acceptable level of accuracy and gets away from time consuming calculations including some limited number of cost modes in high mode situation.
Keywords: Dependency, story-cost, cost modes, engineering demand parameter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10188075 Rainfall–Runoff Simulation Using WetSpa Model in Golestan Dam Basin, Iran
Authors: M. R. Dahmardeh Ghaleno, M. Nohtani, S. Khaledi
Abstract:
Flood simulation and prediction is one of the most active research areas in surface water management. WetSpa is a distributed, continuous, and physical model with daily or hourly time step that explains precipitation, runoff, and evapotranspiration processes for both simple and complex contexts. This model uses a modified rational method for runoff calculation. In this model, runoff is routed along the flow path using Diffusion-Wave equation which depends on the slope, velocity, and flow route characteristics. Golestan Dam Basin is located in Golestan province in Iran and it is passing over coordinates 55° 16´ 50" to 56° 4´ 25" E and 37° 19´ 39" to 37° 49´ 28"N. The area of the catchment is about 224 km2, and elevations in the catchment range from 414 to 2856 m at the outlet, with average slope of 29.78%. Results of the simulations show a good agreement between calculated and measured hydrographs at the outlet of the basin. Drawing upon Nash-Sutcliffe model efficiency coefficient for calibration periodic model estimated daily hydrographs and maximum flow rate with an accuracy up to 59% and 80.18%, respectively.
Keywords: Watershed simulation, WetSpa, stream flow, flood prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10328074 Performance Evaluation of Refinement Method for Wideband Two-Beams Formation
Authors: C. Bunsanit
Abstract:
This paper presents the refinement method for two beams formation of wideband smart antenna. The refinement method for weighting coefficients is based on Fully Spatial Signal Processing by taking Inverse Discrete Fourier Transform (IDFT), and its simulation results are presented using MATLAB. The radiation pattern is created by multiplying the incoming signal with real weights and then summing them together. These real weighting coefficients are computed by IDFT method; however, the range of weight values is relatively wide. Therefore, for reducing this range, the refinement method is used. The radiation pattern concerns with five input parameters to control. These parameters are maximum weighting coefficient, wideband signal, direction of mainbeam, beamwidth, and maximum of minor lobe level. Comparison of the obtained simulation results between using refinement method and taking only IDFT shows that the refinement method works well for wideband two beams formation.
Keywords: Fully spatial signal processing, beam forming, refinement method, smart antenna, weighting coefficient, wideband.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10798073 A Finite Element Method Simulation for Rocket Motor Material Selection
Authors: T. Kritsana, P. Sawitri, P. Teeratas
Abstract:
This article aims to study the effect of pressure on rocket motor case by Finite Element Method simulation to select optimal material in rocket motor manufacturing process. In this study, cylindrical tubes with outside diameter of 122 mm and thickness of 3 mm are used for simulation. Defined rocket motor case materials are AISI4130, AISI1026, AISI1045, AL2024 and AL7075. Internal pressure used for the simulation is 22 MPa.
The result from Finite Element Method shows that at a pressure of 22 MPa rocket motor case produced by AISI4130, AISI1045 and AL7075 can be used. A comparison of the result between AISI4130, AISI1045 and AL7075 shows that AISI4130 has minimum principal stress and confirm the results of Finite Element Method by the used of calculation method found that, the results from Finite Element Method has good reliability.
Keywords: Rocket motor case, Finite Element Method, principal Stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25468072 An Improved Tie Force Method for Progressive Collapse Resistance of Precast Concrete Cross Wall Structures
Authors: M. Tohidi, J. Yang, C. Baniotopoulos
Abstract:
Progressive collapse of buildings typically occurs when abnormal loading conditions cause local damages, which leads to a chain reaction of failure and ultimately catastrophic collapse. The tie force (TF) method is one of the main design approaches for progressive collapse. As the TF method is a simplified method, further investigations on the reliability of the method is necessary. This study aims to develop an improved TF method to design the cross wall structures for progressive collapse. To this end, the pullout behavior of strands in grout was firstly analyzed; and then, by considering the tie force-slip relationship in the friction stage together with the catenary action mechanism, a comprehensive analytical method was developed. The reliability of this approach is verified by the experimental results of concrete block pullout tests and full scale floor-to-floor joints tests undertaken by Portland Cement Association (PCA). Discrepancies in the tie force between the analytical results and codified specifications have suggested the deficiency of TF method, hence an improved model based on the analytical results has been proposed to address this concern.
Keywords: Cross wall, progressive collapse, ties force method, catenary, analytical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688