Search results for: Infrastructure and Computer Network
3149 Project Selection Using Fuzzy Group Analytic Network Process
Authors: Hamed Rafiei, Masoud Rabbani
Abstract:
This paper deals with the project selection problem. Project selection problem is one of the problems arose firstly in the field of operations research following some production concepts from primary product mix problem. Afterward, introduction of managerial considerations into the project selection problem have emerged qualitative factors and criteria to be regarded as well as quantitative ones. To overcome both kinds of criteria, an analytic network process is developed in this paper enhanced with fuzzy sets theory to tackle the vagueness of experts- comments to evaluate the alternatives. Additionally, a modified version of Least-Square method through a non-linear programming model is augmented to the developed group decision making structure in order to elicit the final weights from comparison matrices. Finally, a case study is considered by which developed structure in this paper is validated. Moreover, a sensitivity analysis is performed to validate the response of the model with respect to the condition alteration.
Keywords: Analytic network process, Fuzzy sets theory, Nonlinear programming, Project selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17693148 Analysis of MAC Protocols with Correlation Receiver for OCDMA Networks - Part II
Authors: Shivaleela E. S., Shrikant S. Tangade
Abstract:
In this paper optical code-division multiple-access (OCDMA) packet network is considered, which offers inherent security in the access networks. Two types of random access protocols are proposed for packet transmission. In protocol 1, all distinct codes and in protocol 2, distinct codes as well as shifted versions of all these codes are used. O-CDMA network performance using optical orthogonal codes (OOCs) 1-D and two-dimensional (2-D) wavelength/time single-pulse-per-row (W/T SPR) codes are analyzed. The main advantage of using 2-D codes instead of onedimensional (1-D) codes is to reduce the errors due to multiple access interference among different users. In this paper, correlation receiver is considered in the analysis. Using analytical model, we compute and compare packet-success probability for 1-D and 2-D codes in an O-CDMA network and the analysis shows improved performance with 2-D codes as compared to 1-D codes.
Keywords: Optical code-division multiple-access, optical CDMA correlation receiver, wavelength/time optical CDMA codes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13943147 Automatic Road Network Recognition and Extraction for Urban Planning
Authors: D. B. L. Bong, K.C. Lai, A. Joseph
Abstract:
The uses of road map in daily activities are numerous but it is a hassle to construct and update a road map whenever there are changes. In Universiti Malaysia Sarawak, research on Automatic Road Extraction (ARE) was explored to solve the difficulties in updating road map. The research started with using Satellite Image (SI), or in short, the ARE-SI project. A Hybrid Simple Colour Space Segmentation & Edge Detection (Hybrid SCSS-EDGE) algorithm was developed to extract roads automatically from satellite-taken images. In order to extract the road network accurately, the satellite image must be analyzed prior to the extraction process. The characteristics of these elements are analyzed and consequently the relationships among them are determined. In this study, the road regions are extracted based on colour space elements and edge details of roads. Besides, edge detection method is applied to further filter out the non-road regions. The extracted road regions are validated by using a segmentation method. These results are valuable for building road map and detecting the changes of the existing road database. The proposed Hybrid Simple Colour Space Segmentation and Edge Detection (Hybrid SCSS-EDGE) algorithm can perform the tasks fully automatic, where the user only needs to input a high-resolution satellite image and wait for the result. Moreover, this system can work on complex road network and generate the extraction result in seconds.Keywords: Road Network Recognition, Colour Space, Edge Detection, Urban Planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29943146 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds
Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang
Abstract:
Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.
Keywords: Pose estimation, deep learning, point cloud, bin-picking, 3D computer vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18263145 Combinatorial Optimisation of Worm Propagationon an Unknown Network
Authors: Eric Filiol, Edouard Franc, Alessandro Gubbioli, Benoit Moquet, Guillaume Roblot
Abstract:
Worm propagation profiles have significantly changed since 2003-2004: sudden world outbreaks like Blaster or Slammer have progressively disappeared and slower but stealthier worms appeared since, most of them for botnets dissemination. Decreased worm virulence results in more difficult detection. In this paper, we describe a stealth worm propagation model which has been extensively simulated and analysed on a huge virtual network. The main features of this model is its ability to infect any Internet-like network in a few seconds, whatever may be its size while greatly limiting the reinfection attempt overhead of already infected hosts. The main simulation results shows that the combinatorial topology of routing may have a huge impact on the worm propagation and thus some servers play a more essential and significant role than others. The real-time capability to identify them may be essential to greatly hinder worm propagation.Keywords: Combinatorial worm, worm spreading, worm virulence, stealth worm, spreading simulation, vertex cover, networktopology, WAST simulator, SuWAST simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22033144 Prediction of Compressive Strength of SCC Containing Bottom Ash using Artificial Neural Networks
Authors: Yogesh Aggarwal, Paratibha Aggarwal
Abstract:
The paper presents a comparative performance of the models developed to predict 28 days compressive strengths using neural network techniques for data taken from literature (ANN-I) and data developed experimentally for SCC containing bottom ash as partial replacement of fine aggregates (ANN-II). The data used in the models are arranged in the format of six and eight input parameters that cover the contents of cement, sand, coarse aggregate, fly ash as partial replacement of cement, bottom ash as partial replacement of sand, water and water/powder ratio, superplasticizer dosage and an output parameter that is 28-days compressive strength and compressive strengths at 7 days, 28 days, 90 days and 365 days, respectively for ANN-I and ANN-II. The importance of different input parameters is also given for predicting the strengths at various ages using neural network. The model developed from literature data could be easily extended to the experimental data, with bottom ash as partial replacement of sand with some modifications.Keywords: Self compacting concrete, bottom ash, strength, prediction, neural network, importance factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22263143 Organizational Management Model based on Knowledge Management, Talent Management and Technology Management Framework “Gomak“
Authors: Nieto Bernal W., Luna Amaya C.
Abstract:
This paper aims to present a framework for the organizational knowledge management, which seeks to deploy a standardized structure for the integrated management of knowledge is a common language based on domains, processes and global indicators inspired by the COBIT framework 5 (ISACA, 2012), which supports the integration of three technologies, enterprise information architecture (EIA), the business process modeling (BPM) and service-oriented architecture (SOA). The Gomak Framework is a management platform that seeks to integrate the information technology infrastructure, the structure of applications, information infrastructure, and business logic and business model to support a sound strategy of organizational knowledge management, low process-based approach and concurrent engineering. Concurrent engineering (CE) is a systematic approach to integrated product development that respond to customer expectations, involving all perspectives in parallel, from the beginning of the product life cycle. (European Space Agency, 2000).Keywords: Business Process Modeling, Enterprise Information Architecture, Government and Knowledge Management, Service Oriented Architecture, Process Management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18483142 Game Theory Based Diligent Energy Utilization Algorithm for Routing in Wireless Sensor Network
Authors: X. Mercilin Raajini, R. Raja Kumar, P. Indumathi, V. Praveen
Abstract:
Many cluster based routing protocols have been proposed in the field of wireless sensor networks, in which a group of nodes are formed as clusters. A cluster head is selected from one among those nodes based on residual energy, coverage area, number of hops and that cluster-head will perform data gathering from various sensor nodes and forwards aggregated data to the base station or to a relay node (another cluster-head), which will forward the packet along with its own data packet to the base station. Here a Game Theory based Diligent Energy Utilization Algorithm (GTDEA) for routing is proposed. In GTDEA, the cluster head selection is done with the help of game theory, a decision making process, that selects a cluster-head based on three parameters such as residual energy (RE), Received Signal Strength Index (RSSI) and Packet Reception Rate (PRR). Finding a feasible path to the destination with minimum utilization of available energy improves the network lifetime and is achieved by the proposed approach. In GTDEA, the packets are forwarded to the base station using inter-cluster routing technique, which will further forward it to the base station. Simulation results reveal that GTDEA improves the network performance in terms of throughput, lifetime, and power consumption.Keywords: Cluster head, Energy utilization, Game Theory, LEACH, Sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19033141 Ranking Genes from DNA Microarray Data of Cervical Cancer by a local Tree Comparison
Authors: Frank Emmert-Streib, Matthias Dehmer, Jing Liu, Max Muhlhauser
Abstract:
The major objective of this paper is to introduce a new method to select genes from DNA microarray data. As criterion to select genes we suggest to measure the local changes in the correlation graph of each gene and to select those genes whose local changes are largest. More precisely, we calculate the correlation networks from DNA microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to tumor progression. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth. This indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.
Keywords: Graph similarity, generalized trees, graph alignment, DNA microarray data, cervical cancer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17533140 GSM-Based Approach for Indoor Localization
Authors: M.Stella, M. Russo, D. Begušić
Abstract:
Ability of accurate and reliable location estimation in indoor environment is the key issue in developing great number of context aware applications and Location Based Services (LBS). Today, the most viable solution for localization is the Received Signal Strength (RSS) fingerprinting based approach using wireless local area network (WLAN). This paper presents two RSS fingerprinting based approaches – first we employ widely used WLAN based positioning as a reference system and then investigate the possibility of using GSM signals for positioning. To compare them, we developed a positioning system in real world environment, where realistic RSS measurements were collected. Multi-Layer Perceptron (MLP) neural network was used as the approximation function that maps RSS fingerprints and locations. Experimental results indicate advantage of WLAN based approach in the sense of lower localization error compared to GSM based approach, but GSM signal coverage by far outreaches WLAN coverage and for some LBS services requiring less precise accuracy our results indicate that GSM positioning can also be a viable solution.Keywords: Indoor positioning, WLAN, GSM, RSS, location fingerprints, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27473139 Development of the Gas Safety Management System using an Intelligent Gasmeter with Wireless ZigBee Network
Authors: Gyou-tae Park, Young-gyu Kim, Jeong-rock Kwon, Yongwoo Lee, Hiesik Kim
Abstract:
The gas safety management system using an intelligent gas meter we proposed is to monitor flow and pressure of gas, earthquake, temperature, smoke and leak of methane. Then our system takes safety measures to protect a serious risk by the result of an event, to communicate with a wall-pad including a gateway by zigbee network in buildings and to report the event to user by the safety management program in a server. Also, the inner cutoff valve of an intelligent gas meter is operated if any event occurred or abnormal at each sensor.Keywords: micom gas-meter, gas safety, zigbee, ubiquitous
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19493138 An Effective Islanding Detection and Classification Method Using Neuro-Phase Space Technique
Authors: Aziah Khamis, H. Shareef
Abstract:
The purpose of planned islanding is to construct a power island during system disturbances which are commonly formed for maintenance purpose. However, in most of the cases island mode operation is not allowed. Therefore distributed generators (DGs) must sense the unplanned disconnection from the main grid. Passive technique is the most commonly used method for this purpose. However, it needs improvement in order to identify the islanding condition. In this paper an effective method for identification of islanding condition based on phase space and neural network techniques has been developed. The captured voltage waveforms at the coupling points of DGs are processed to extract the required features. For this purposed a method known as the phase space techniques is used. Based on extracted features, two neural network configuration namely radial basis function and probabilistic neural networks are trained to recognize the waveform class. According to the test result, the investigated technique can provide satisfactory identification of the islanding condition in the distribution system.Keywords: Classification, Islanding detection, Neural network, Phase space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21323137 A Learning Agent for Knowledge Extraction from an Active Semantic Network
Authors: Simon Thiel, Stavros Dalakakis, Dieter Roller
Abstract:
This paper outlines the development of a learning retrieval agent. Task of this agent is to extract knowledge of the Active Semantic Network in respect to user-requests. Based on a reinforcement learning approach, the agent learns to interpret the user-s intention. Especially, the learning algorithm focuses on the retrieval of complex long distant relations. Increasing its learnt knowledge with every request-result-evaluation sequence, the agent enhances his capability in finding the intended information.
Keywords: Reinforcement learning, learning retrieval agent, search in semantic networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14943136 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix
Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari
Abstract:
This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.
Keywords: Artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19583135 Web Service Architecture for Computer-Adaptive Testing on e-Learning
Authors: M. Phankokkruad, K. Woraratpanya
Abstract:
This paper proposes a Web service and serviceoriented architecture (SOA) for a computer-adaptive testing (CAT) process on e-learning systems. The proposed architecture is developed to solve an interoperability problem of the CAT process by using Web service. The proposed SOA and Web service define all services needed for the interactions between systems in order to deliver items and essential data from Web service to the CAT Webbased application. These services are implemented in a XML-based architecture, platform independence and interoperability between the Web service and CAT Web-based applications.Keywords: Web service, service-oriented architecture, computer-adaptive testing, e-learning, interoperability
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17343134 Minimization of Power Loss in Distribution Networks by Different Techniques
Authors: L.Ramesh, S.P.Chowdhury, S.Chowdhury, A.A.Natarajan, C.T.Gaunt
Abstract:
Accurate loss minimization is the critical component for efficient electrical distribution power flow .The contribution of this work presents loss minimization in power distribution system through feeder restructuring, incorporating DG and placement of capacitor. The study of this work was conducted on IEEE distribution network and India Electricity Board benchmark distribution system. The executed experimental result of Indian system is recommended to board and implement practically for regulated stable output.Keywords: Distribution system, Distributed Generation LossMinimization, Network Restructuring
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62363133 A Proposed Framework for Visualization to Teach Computer Science
Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin
Abstract:
Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.Keywords: Cognitive Load, Instructional Models, LearningStyles, Program Visualization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14573132 Coordinated Voltage Control using Multiple Regulators in Distribution System with Distributed Generators
Authors: R. Shivarudraswamy, D. N. Gaonkar
Abstract:
The continued interest in the use of distributed generation in recent years is leading to the growth in number of distributed generators connected to distribution networks. Steady state voltage rise resulting from the connection of these generators can be a major obstacle to their connection at lower voltage levels. The present electric distribution network is designed to keep the customer voltage within tolerance limit. This may require a reduction in connectable generation capacity, under utilization of appropriate generation sites. Thus distribution network operators need a proper voltage regulation method to allow the significant integration of distributed generation systems to existing network. In this work a voltage rise problem in a typical distribution system has been studied. A method for voltage regulation of distribution system with multiple DG system by coordinated operation distributed generator, capacitor and OLTC has been developed. A sensitivity based analysis has been carried out to determine the priority for individual generators in multiple DG environment. The effectiveness of the developed method has been evaluated under various cases through simulation results.
Keywords: Distributed generation, voltage control, sensitivity factor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25763131 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks
Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi
Abstract:
This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.
Keywords: Signature Recognition, Artificial Neural Network, Angle Features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24963130 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network
Authors: Jia Xin Low, Keng Wah Choo
Abstract:
This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11483129 FleGSens – Secure Area Monitoring Using Wireless Sensor Networks
Authors: Peter Rothenpieler, Daniela Kruger, Dennis Pfisterer, Stefan Fischer, Denise Dudek, Christian Haas, Martina Zitterbart
Abstract:
In the project FleGSens, a wireless sensor network (WSN) for the surveillance of critical areas and properties is currently developed which incorporates mechanisms to ensure information security. The intended prototype consists of 200 sensor nodes for monitoring a 500m long land strip. The system is focused on ensuring integrity and authenticity of generated alarms and availability in the presence of an attacker who may even compromise a limited number of sensor nodes. In this paper, two of the main protocols developed in the project are presented, a tracking protocol to provide secure detection of trespasses within the monitored area and a protocol for secure detection of node failures. Simulation results of networks containing 200 and 2000 nodes as well as the results of the first prototype comprising a network of 16 nodes are presented. The focus of the simulations and prototype are functional testing of the protocols and particularly demonstrating the impact and cost of several attacks.Keywords: Wireless Sensor Network, Security, Trespass Detection, Testbed.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19773128 Performance Comparison of Resource Allocation without Feedback in Wireless Body Area Networks by Various Pseudo Orthogonal Sequences
Authors: Ojin Kwon, Yong-Jin Yoon, Liu Xin, Zhang Hongbao
Abstract:
Wireless Body Area Network (WBAN) is a short-range wireless communication around human body for various applications such as wearable devices, entertainment, military, and especially medical devices. WBAN attracts the attention of continuous health monitoring system including diagnostic procedure, early detection of abnormal conditions, and prevention of emergency situations. Compared to cellular network, WBAN system is more difficult to control inter- and inner-cell interference due to the limited power, limited calculation capability, mobility of patient, and non-cooperation among WBANs. In this paper, we compare the performance of resource allocation scheme based on several Pseudo Orthogonal Codewords (POCs) to mitigate inter-WBAN interference. Previously, the POCs are widely exploited for a protocol sequence and optical orthogonal code. Each POCs have different properties of auto- and cross-correlation and spectral efficiency according to its construction of POCs. To identify different WBANs, several different pseudo orthogonal patterns based on POCs exploits for resource allocation of WBANs. By simulating these pseudo orthogonal resource allocations of WBANs on MATLAB, we obtain the performance of WBANs according to different POCs and can analyze and evaluate the suitability of POCs for the resource allocation in the WBANs system.Keywords: Wireless body area network, body sensor network, resource allocation without feedback, interference mitigation, pseudo orthogonal pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13433127 High Speed Video Transmission for Telemedicine using ATM Technology
Authors: J. P. Dubois, H. M. Chiu
Abstract:
In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.Keywords: ATM, multiplexing, queueing, telemedicine, VBR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17443126 Comparative Analysis of Sigmoidal Feedforward Artificial Neural Networks and Radial Basis Function Networks Approach for Localization in Wireless Sensor Networks
Authors: Ashish Payal, C. S. Rai, B. V. R. Reddy
Abstract:
With the increasing use and application of Wireless Sensor Networks (WSN), need has arisen to explore them in more effective and efficient manner. An important area which can bring efficiency to WSNs is the localization process, which refers to the estimation of the position of wireless sensor nodes in an ad hoc network setting, in reference to a coordinate system that may be internal or external to the network. In this paper, we have done comparison and analysed Sigmoidal Feedforward Artificial Neural Networks (SFFANNs) and Radial Basis Function (RBF) networks for developing localization framework in WSNs. The presented work utilizes the Received Signal Strength Indicator (RSSI), measured by static node on 100 x 100 m2 grid from three anchor nodes. The comprehensive evaluation of these approaches is done using MATLAB software. The simulation results effectively demonstrate that FFANNs based sensor motes will show better localization accuracy as compared to RBF.
Keywords: Localization, wireless sensor networks, artificial neural network, radial basis function, multi-layer perceptron, backpropagation, RSSI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15243125 Survey on Jamming Wireless Networks: Attacks and Prevention Strategies
Authors: S. Raja Ratna, R. Ravi
Abstract:
Wireless networks are built upon the open shared medium which makes easy for attackers to conduct malicious activities. Jamming is one of the most serious security threats to information economy and it must be dealt efficiently. Jammer prevents legitimate data to reach the receiver side and also it seriously degrades the network performance. The objective of this paper is to provide a general overview of jamming in wireless network. It covers relevant works, different jamming techniques, various types of jammers and typical prevention techniques. Challenges associated with comparing several anti-jamming techniques are also highlighted.Keywords: Channel, Cryptography, Frequency, Jamming, Legitimate, Security, Wavelength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31623124 Power System Voltage Control using LP and Artificial Neural Network
Authors: A. Sina, A. Aeenmehr, H. Mohamadian
Abstract:
Optimization and control of reactive power distribution in the power systems leads to the better operation of the reactive power resources. Reactive power control reduces considerably the power losses and effective loads and improves the power factor of the power systems. Another important reason of the reactive power control is improving the voltage profile of the power system. In this paper, voltage and reactive power control using Neural Network techniques have been applied to the 33 shines- Tehran Electric Company. In this suggested ANN, the voltages of PQ shines have been considered as the input of the ANN. Also, the generators voltages, tap transformers and shunt compensators have been considered as the output of ANN. Results of this techniques have been compared with the Linear Programming. Minimization of the transmission line power losses has been considered as the objective function of the linear programming technique. The comparison of the results of the ANN technique with the LP shows that the ANN technique improves the precision and reduces the computation time. ANN technique also has a simple structure and this causes to use the operator experience.Keywords: voltage control, linear programming, artificial neural network, power systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17613123 Investigations into Effect of Neural Network Predictive Control of UPFC for Improving Transient Stability Performance of Multimachine Power System
Authors: Sheela Tiwari, R. Naresh, R. Jha
Abstract:
The paper presents an investigation in to the effect of neural network predictive control of UPFC on the transient stability performance of a multimachine power system. The proposed controller consists of a neural network model of the test system. This model is used to predict the future control inputs using the damped Gauss-Newton method which employs ‘backtracking’ as the line search method for step selection. The benchmark 2 area, 4 machine system that mimics the behavior of large power systems is taken as the test system for the study and is subjected to three phase short circuit faults at different locations over a wide range of operating conditions. The simulation results clearly establish the robustness of the proposed controller to the fault location, an increase in the critical clearing time for the circuit breakers, and an improved damping of the power oscillations as compared to the conventional PI controller.
Keywords: Identification, Neural networks, Predictive control, Transient stability, UPFC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20803122 Impact of Liquidity Crunch on Interbank Network
Authors: I. Lucas, N. Schomberg, F-A. Couturier
Abstract:
Most empirical studies have analyzed how liquidity risks faced by individual institutions turn into systemic risk. Recent banking crisis has highlighted the importance of grasping and controlling the systemic risk, and the acceptance by Central Banks to ease their monetary policies for saving default or illiquid banks. This last point shows that banks would pay less attention to liquidity risk which, in turn, can become a new important channel of loss. The financial regulation focuses on the most important and “systemic” banks in the global network. However, to quantify the expected loss associated with liquidity risk, it is worth to analyze sensitivity to this channel for the various elements of the global bank network. A small bank is not considered as potentially systemic; however the interaction of small banks all together can become a systemic element. This paper analyzes the impact of medium and small banks interaction on a set of banks which is considered as the core of the network. The proposed method uses the structure of agent-based model in a two-class environment. In first class, the data from actual balance sheets of 22 large and systemic banks (such as BNP Paribas or Barclays) are collected. In second one, to model a network as closely as possible to actual interbank market, 578 fictitious banks smaller than the ones belonging to first class have been split into two groups of small and medium ones. All banks are active on the European interbank network and have deposit and market activity. A simulation of 12 three month periods representing a midterm time interval three years is projected. In each period, there is a set of behavioral descriptions: repayment of matured loans, liquidation of deposits, income from securities, collection of new deposits, new demands of credit, and securities sale. The last two actions are part of refunding process developed in this paper. To strengthen reliability of proposed model, random parameters dynamics are managed with stochastic equations as rates the variations of which are generated by Vasicek model. The Central Bank is considered as the lender of last resort which allows banks to borrow at REPO rate and some ejection conditions of banks from the system are introduced.
Liquidity crunch due to exogenous crisis is simulated in the first class and the loss impact on other bank classes is analyzed though aggregate values representing the aggregate of loans and/or the aggregate of borrowing between classes. It is mainly shown that the three groups of European interbank network do not have the same response, and that intermediate banks are the most sensitive to liquidity risk.
Keywords: Systemic Risk, Financial Contagion, Liquidity Risk, Interbank Market, Network Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20263121 Survey of Communication Technologies for IoT Deployments in Developing Regions
Authors: Namugenyi Ephrance Eunice, Julianne Sansa Otim, Marco Zennaro, Stephen D. Wolthusen
Abstract:
The Internet of Things (IoT) is a network of connected data processing devices, mechanical and digital machinery, items, animals, or people that may send data across a network without requiring human-to-human or human-to-computer interaction. Each component has sensors that can pick up on specific phenomena, as well as processing software and other technologies that can link to and communicate with other systems and/or devices over the Internet or other communication networks and exchange data with them. IoT is increasingly being used in fields other than consumer electronics, such as public safety, emergency response, industrial automation, autonomous vehicles, the Internet of Medical Things (IoMT), and general environmental monitoring. Consumer-based IoT applications, like smart home gadgets and wearables, are also becoming more prevalent. This paper presents the main IoT deployment areas for environmental monitoring in developing regions and the backhaul options suitable for them based on a couple of related works. The study includes an overview of existing IoT deployments, the underlying communication architectures, protocols, and technologies that support them. This overview shows that Low Power Wireless Area Networks (LPWANs) are very well suited for monitoring environment architectures designed for remote locations. LoRa technology, particularly the LoRaWAN protocol, has an advantage over other technologies due to its low power consumption, adaptability, and suitable communication range. The current challenges of various architectures are discussed in detail, with the major issue identified as obstruction of communication paths by buildings, trees, hills, etc.
Keywords: Communication technologies, environmental monitoring, Internet of Things, IoT, IoT deployment challenges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3933120 Numerical Methods versus Bjerksund and Stensland Approximations for American Options Pricing
Authors: Marasovic Branka, Aljinovic Zdravka, Poklepovic Tea
Abstract:
Numerical methods like binomial and trinomial trees and finite difference methods can be used to price a wide range of options contracts for which there are no known analytical solutions. American options are the most famous of that kind of options. Besides numerical methods, American options can be valued with the approximation formulas, like Bjerksund-Stensland formulas from 1993 and 2002. When the value of American option is approximated by Bjerksund-Stensland formulas, the computer time spent to carry out that calculation is very short. The computer time spent using numerical methods can vary from less than one second to several minutes or even hours. However to be able to conduct a comparative analysis of numerical methods and Bjerksund-Stensland formulas, we will limit computer calculation time of numerical method to less than one second. Therefore, we ask the question: Which method will be most accurate at nearly the same computer calculation time?
Keywords: Bjerksund and Stensland approximations, Computational analysis, Finance, Options pricing, Numerical methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6069