Search results for: pattern classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1939

Search results for: pattern classification

829 An Empirical Study Comparing Industry Segments as Regards Organisation Management in Open Innovation - Based on a Questionnaire of the Pharmaceutical Industry and IT Component Industry Segment

Authors: F. Isada, Y. Isada

Abstract:

The aim of this research is to clarify the difference by industry segment or product characteristics as regards organisation management for an open innovation to raise R&D performance. In particular, the trait of the pharmaceutical industry is defined in comparison with IT component industry segment. In considering open innovation, both inter-organisational relation and the management in an organisation are important issues. As methodology, a questionnaire was conducted. In conclusion, suitable organisation management according to the difference in industry segment or product characteristics became clear.

Keywords: Empirical study, industry segment, open innovation, product-development organisation pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1736
828 Investigation of Behavior on the Contact Surface of the Tire and Ground by CFD Simulation

Authors: M. F. Sung, Y.D. Kuan, R.J. Shyu, S.M. Lee

Abstract:

Tread design has evolved over the years to achieve the common tread pattern used in current vehicles. However, to meet safety and comfort requirements, tread design considers more than one design factor. Tread design must consider the grip and drainage, and the manner in which to reduce rolling noise, which is one of the main factors considered by manufacturers. The main objective of this study was the application the computational fluid dynamics (CFD) technique to simulate the contact surface of the tire and ground. The results demonstrated an air-Pumping and large pressure drop effect in the process of contact surface. The results also revealed that the pressure can be used to analyze sound pressure level (SPL).

Keywords: Air-pumping, computational fluid dynamics, sound pressure level, tire.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2377
827 Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures

Authors: Kahil Amar, Boukais Said, Kezmane Ali, Hamizi Mohand, Hannachi Naceur Eddine

Abstract:

The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method; we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will developed.

Keywords: Seismic performance, Pushover method, characterization of seismic motion, harmfulness of the seismic signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
826 Influence of Vortex Generator on Flow Behavior of Air Stream

Authors: Chakkapong Supasri, Tanongkiat Kiatsiriroat, Atipoang Nuntaphan

Abstract:

 

This research studied the influence of delta wing and delta winglet vortex generators on air flow characteristic. Normally, the vortex generator has been used for enhancing the heat transfer performance by promote the helical flow of air stream. The vortex generator was setup in the wind tunnel and the flow pattern of air stream passing the vortex generator was observed by using smoke generator. The Reynolds number of air stream was between 30,000 and 80,000. It is found that the delta winglet having 20mm fin height and 30 degree of air stream contact angle generates the maximum helical flow of air stream.

Keywords: Vortex generator, Flow behavior, Visual study, Delta wing, Delta winglet, Smoke generator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
825 Frontal EEG Asymmetry Based Classification of Emotional Valence using Common Spatial Patterns

Authors: Irene Winkler, Mark Jager, Vojkan Mihajlovic, Tsvetomira Tsoneva

Abstract:

In this work we evaluate the possibility of predicting the emotional state of a person based on the EEG. We investigate the problem of classifying valence from EEG signals during the presentation of affective pictures, utilizing the "frontal EEG asymmetry" phenomenon. To distinguish positive and negative emotions, we applied the Common Spatial Patterns algorithm. In contrast to our expectations, the affective pictures did not reliably elicit changes in frontal asymmetry. The classifying task thereby becomes very hard as reflected by the poor classifier performance. We suspect that the masking of the source of the brain activity related to emotions, coming mostly from deeper structures in the brain, and the insufficient emotional engagement are among main reasons why it is difficult to predict the emotional state of a person.

Keywords: Emotion, Valence, EEG, Common Spatial Patterns(CSP).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2611
824 A Web Text Mining Flexible Architecture

Authors: M. Castellano, G. Mastronardi, A. Aprile, G. Tarricone

Abstract:

Text Mining is an important step of Knowledge Discovery process. It is used to extract hidden information from notstructured o semi-structured data. This aspect is fundamental because much of the Web information is semi-structured due to the nested structure of HTML code, much of the Web information is linked, much of the Web information is redundant. Web Text Mining helps whole knowledge mining process to mining, extraction and integration of useful data, information and knowledge from Web page contents. In this paper, we present a Web Text Mining process able to discover knowledge in a distributed and heterogeneous multiorganization environment. The Web Text Mining process is based on flexible architecture and is implemented by four steps able to examine web content and to extract useful hidden information through mining techniques. Our Web Text Mining prototype starts from the recovery of Web job offers in which, through a Text Mining process, useful information for fast classification of the same are drawn out, these information are, essentially, job offer place and skills.

Keywords: Web text mining, flexible architecture, knowledgediscovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2665
823 A Novel Hybrid Mobile Agent Based Distributed Intrusion Detection System

Authors: Amir Vahid Dastjerdi, Kamalrulnizam Abu Bakar

Abstract:

The first generation of Mobile Agents based Intrusion Detection System just had two components namely data collection and single centralized analyzer. The disadvantage of this type of intrusion detection is if connection to the analyzer fails, the entire system will become useless. In this work, we propose novel hybrid model for Mobile Agent based Distributed Intrusion Detection System to overcome the current problem. The proposed model has new features such as robustness, capability of detecting intrusion against the IDS itself and capability of updating itself to detect new pattern of intrusions. In addition, our proposed model is also capable of tackling some of the weaknesses of centralized Intrusion Detection System models.

Keywords: Distributed Intrusion Detection System, Mobile Agents, Network Security.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
822 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
821 Automatic Microaneurysm Quantification for Diabetic Retinopathy Screening

Authors: A. Sopharak, B. Uyyanonvara, S. Barman

Abstract:

Microaneurysm is a key indicator of diabetic retinopathy that can potentially cause damage to retina. Early detection and automatic quantification are the keys to prevent further damage. In this paper, which focuses on automatic microaneurysm detection in images acquired through non-dilated pupils, we present a series of experiments on feature selection and automatic microaneurysm pixel classification. We found that the best feature set is a combination of 10 features: the pixel-s intensity of shade corrected image, the pixel hue, the standard deviation of shade corrected image, DoG4, the area of the candidate MA, the perimeter of the candidate MA, the eccentricity of the candidate MA, the circularity of the candidate MA, the mean intensity of the candidate MA on shade corrected image and the ratio of the major axis length and minor length of the candidate MA. The overall sensitivity, specificity, precision, and accuracy are 84.82%, 99.99%, 89.01%, and 99.99%, respectively.

Keywords: Diabetic retinopathy, microaneurysm, naive Bayes classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
820 Engine Power Effects on Support Interference

Authors: B.J.C. Horsten, L.L.M. Veldhuis

Abstract:

Renewed interest in propeller propulsion on aircraft configurations combined with higher propeller loads lead to the question how the effects of the propulsion on model support disturbances should be accounted for. In this paper, the determination of engine power effects on support interference of sting-mounted models is demonstrated by a measurement on a four-engine turboprop aircraft. CFD results on a more generic model are presented in order to clarify the possible mechanism behind engine power effects on support interference. The engine slipstream induces a local change in angle of sideslip at the model sting thereby influencing the sting near-field and far-field effects. Whether or not the net result of these changes in the disturbance pattern leads to a significant engine power effect depends on the configuration of the wind tunnel model and the test setup.

Keywords: CFD, engine power effects, measurements, support interference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
819 A Methodology to Analyze Technology Convergence: Patent-Citation Based Technology Input-Output Analysis

Authors: Jeeeun Kim, Sungjoo Lee

Abstract:

This research proposes a methodology for patent-citation-based technology input-output analysis by applying the patent information to input-output analysis developed for the dependencies among different industries. For this analysis, a technology relationship matrix and its components, as well as input and technology inducement coefficients, are constructed using patent information. Then, a technology inducement coefficient is calculated by normalizing the degree of citation from certain IPCs to the different IPCs (International patent classification) or to the same IPCs. Finally, we construct a Dependency Structure Matrix (DSM) based on the technology inducement coefficient to suggest a useful application for this methodology.

Keywords: Technology spillover effect, technology relationship, IO table, technology inducement coefficients, patent analysis, patent citation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
818 Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris

Authors: Piyush Samant, Ravinder Agarwal

Abstract:

Complementary and Alternative Medicine (CAM) techniques are quite popular and effective for chronic diseases. Iridology is more than 150 years old CAM technique which analyzes the patterns, tissue weakness, color, shape, structure, etc. for disease diagnosis. The objective of this paper is to validate the use of iridology for the diagnosis of the diabetes. The suggested model was applied in a systemic disease with ocular effects. 200 subject data of 100 each diabetic and non-diabetic were evaluated. Complete procedure was kept very simple and free from the involvement of any iridologist. From the normalized iris, the region of interest was cropped. All 63 features were extracted using statistical, texture analysis, and two-dimensional discrete wavelet transformation. A comparison of accuracies of six different classifiers has been presented. The result shows 89.66% accuracy by the random forest classifier.

Keywords: Complementary and alternative medicine, Iridology, iris, feature extraction, classification, disease prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
817 The Simulation and Experimental Investigation to Study the Strain Distribution Pattern during the Closed Die Forging Process

Authors: D. B. Gohil

Abstract:

Closed die forging is a very complex process, and measurement of actual forces for real material is difficult and time consuming. Hence, the modelling technique has taken the advantage of carrying out the experimentation with the proper model material which needs lesser forces and relatively low temperature. The results of experiments on the model material then may be correlated with the actual material by using the theory of similarity. There are several methods available to resolve the complexity involved in the closed die forging process. Finite Element Method (FEM) and Finite Difference Method (FDM) are relatively difficult as compared to the slab method. The slab method is very popular and very widely used by the people working on shop floor because it is relatively easy to apply and reasonably accurate for most of the common forging load requirement computations.

Keywords: Experimentation, forging, process modeling, strain distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
816 Performance Analysis of Artificial Neural Network with Decision Tree in Prediction of Diabetes Mellitus

Authors: J. K. Alhassan, B. Attah, S. Misra

Abstract:

Human beings have the ability to make logical decisions. Although human decision - making is often optimal, it is insufficient when huge amount of data is to be classified. Medical dataset is a vital ingredient used in predicting patient’s health condition. In other to have the best prediction, there calls for most suitable machine learning algorithms. This work compared the performance of Artificial Neural Network (ANN) and Decision Tree Algorithms (DTA) as regards to some performance metrics using diabetes data. WEKA software was used for the implementation of the algorithms. Multilayer Perceptron (MLP) and Radial Basis Function (RBF) were the two algorithms used for ANN, while RegTree and LADTree algorithms were the DTA models used. From the results obtained, DTA performed better than ANN. The Root Mean Squared Error (RMSE) of MLP is 0.3913 that of RBF is 0.3625, that of RepTree is 0.3174 and that of LADTree is 0.3206 respectively.

Keywords: Artificial neural network, classification, decision tree, diabetes mellitus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
815 Typological Study of Traditional Mosque Ornamentation in Malaysia – Prospect of Traditional Ornament in Urban Mosque

Authors: N. Utaberta, S. D. M. Sojak, M. Surat, A. I. Che-Ani, M.M. Tahir

Abstract:

Since the admission of Islam onto the Malay World in 16th century, the Malay culture began to grow in line with the teachings of Islam as a guide of life. Mosque become a symbol of Muslim communities, as well as the cultural values that have been adapted represent the maturity and readiness of Malay Muslim in manifest a lifestyle tradition into the community. Refinement of ornament that used to take from Hindu-Buddhist beliefs before were adopted and refined to the Islamic values based on the teachings of al-Quran and as-Sunnah delivered a certain message to convey a meaning to the observer. The main purpose of this paper is to analyze the typology and classification of ornaments in Malaysia-s traditional mosque as a channel to the community towards understanding of the identity and also the framework of design thinking in ornaments particularly to the urban mosques in Malaysia.

Keywords: Aesthetic, Malay Traditional Mosque, Ornamentation, Symbolism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6166
814 Shadow Detection for Increased Accuracy of Privacy Enhancing Methods in Video Surveillance Edge Devices

Authors: F. Matusek, G. Pujolle, R. Reda

Abstract:

Shadow detection is still considered as one of the potential challenges for intelligent automated video surveillance systems. A pre requisite for reliable and accurate detection and tracking is the correct shadow detection and classification. In such a landscape of conditions, privacy issues add more and more complexity and require reliable shadow detection. In this work the intertwining between security, accuracy, reliability and privacy is analyzed and, accordingly, a novel architecture for Privacy Enhancing Video Surveillance (PEVS) is introduced. Shadow detection and masking are dealt with through the combination of two different approaches simultaneously. This results in a unique privacy enhancement, without affecting security. Subsequently, the methodology was employed successfully in a large-scale wireless video surveillance system; privacy relevant information was stored and encrypted on the unit, without transferring it over an un-trusted network.

Keywords: Video Surveillance, Intelligent Video Surveillance, Physical Security, WSSU, Privacy, Shadow Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1343
813 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3911
812 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: AI, air quality prediction, neural networks, pattern recognition, PM-10.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 826
811 Generation of Sets of Synthetic Classifiers for the Evaluation of Abstract-Level Combination Methods

Authors: N. Greco, S. Impedovo, R.Modugno, G. Pirlo

Abstract:

This paper presents a new technique for generating sets of synthetic classifiers to evaluate abstract-level combination methods. The sets differ in terms of both recognition rates of the individual classifiers and degree of similarity. For this purpose, each abstract-level classifier is considered as a random variable producing one class label as the output for an input pattern. From the initial set of classifiers, new slightly different sets are generated by applying specific operators, which are defined at the purpose. Finally, the sets of synthetic classifiers have been used to estimate the performance of combination methods for abstract-level classifiers. The experimental results demonstrate the effectiveness of the proposed approach.

Keywords: Abstract-level Classifier, Dempster-Shafer Rule, Multi-expert Systems, Similarity Index, System Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1487
810 Investigation of the Tattooed Skin by OCT

Authors: Young Geun Kim, Tae Woo Lee, Changmin Yeo, Jung min Yoo, Yeo Jin Kang, Tack-Joong Kim, Byungjo Jung, Ji Hun Cha, Chan Hoi Hur, Dong-Sup Kim, Ki Jung Park, Han Sung Kim

Abstract:

The intention of this lessons is to assess the probability of optical coherence tomography (OCT) for biometric recognition. The OCT is the foundation on an optical signal acquisition and processing method and has the micrometer-resolution. In this study, we used the porcine skin for verifying the abovementioned means. The porcine tissue was sound acknowledged for structural and immunohistochemical similarity with human skin, so it could be suitable for pre-clinical trial as investigational specimen. For this reason, it was tattooed by the tattoo machine with the tattoo-pigment. We detected the pattern of the tattooed skin by the OCT according to needle speed. The result was consistent with the histology images. This result showed that the OCT was effective to examine the tattooed skin section noninvasively. It might be available to identify morphological changes inside the skin.

Keywords: mechanical skin damage, optical coherence tomography, tattooed skin

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
809 Involving Action Potential Morphology on a New Cellular Automata Model of Cardiac Action Potential Propagation

Authors: F. Pourhasanzade, S. H. Sabzpoushan

Abstract:

Computer modeling has played a unique role in understanding electrocardiography. Modeling and simulating cardiac action potential propagation is suitable for studying normal and pathological cardiac activation. This paper presents a 2-D Cellular Automata model for simulating action potential propagation in cardiac tissue. We demonstrate a novel algorithm in order to use minimum neighbors. This algorithm uses the summation of the excitability attributes of excited neighboring cells. We try to eliminate flat edges in the result patterns by inserting probability to the model. We also preserve the real shape of action potential by using linear curve fitting of one well known electrophysiological model.

Keywords: Cellular Automata, Action Potential Propagation, cardiac tissue, Isotropic Pattern, accurate shape of cardiac actionpotential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328
808 Change Detector Combination in Remotely Sensed Images Using Fuzzy Integral

Authors: H. Nemmour, Y. Chibani

Abstract:

Decision fusion is one of hot research topics in classification area, which aims to achieve the best possible performance for the task at hand. In this paper, we investigate the usefulness of this concept to improve change detection accuracy in remote sensing. Thereby, outputs of two fuzzy change detectors based respectively on simultaneous and comparative analysis of multitemporal data are fused by using fuzzy integral operators. This method fuses the objective evidences produced by the change detectors with respect to fuzzy measures that express the difference of performance between them. The proposed fusion framework is evaluated in comparison with some ordinary fuzzy aggregation operators. Experiments carried out on two SPOT images showed that the fuzzy integral was the best performing. It improves the change detection accuracy while attempting to equalize the accuracy rate in both change and no change classes.

Keywords: change detection, decision fusion, fuzzy logic, remote sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
807 Pay Differentials and Employee Retention in the State Colleges of Education in the South-South Zone, Nigeria

Authors: Emmanuel U. Ingwu

Abstract:

The study examined the influence of pay differentials on employee retention in the State Colleges of Education in the South-South Region of Nigeria. 275 subjects drawn from members of the wage negotiating teams in the Colleges were administered questionnaires constructed for study. Analysis of Variance revealed that the observed pay differentials significantly influenced retainership, f(5,269 = 6.223, P< 0.05). However, the Multiple Classification Analysis and Post-Hoc test indicated that employees in two of the Colleges with slightly lower and higher pay levels may probably remain with their employers while employees in other Colleges with the least and highest pay levels suggested quitting. Based on these observations, the influence of pay on employee retention seems inconclusive. Generally, employees in the colleges studied are dissatisfied with current pay levels. Management should confront these challenges by improving pay packages to encourage employees to remain and be dedicated to duty.

Keywords: Employee, Influence, Pay differentials, Retention.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2349
806 FCA-based Conceptual Knowledge Discovery in Folksonomy

Authors: Yu-Kyung Kang, Suk-Hyung Hwang, Kyoung-Mo Yang

Abstract:

The tagging data of (users, tags and resources) constitutes a folksonomy that is the user-driven and bottom-up approach to organizing and classifying information on the Web. Tagging data stored in the folksonomy include a lot of very useful information and knowledge. However, appropriate approach for analyzing tagging data and discovering hidden knowledge from them still remains one of the main problems on the folksonomy mining researches. In this paper, we have proposed a folksonomy data mining approach based on FCA for discovering hidden knowledge easily from folksonomy. Also we have demonstrated how our proposed approach can be applied in the collaborative tagging system through our experiment. Our proposed approach can be applied to some interesting areas such as social network analysis, semantic web mining and so on.

Keywords: Folksonomy data mining, formal concept analysis, collaborative tagging, conceptual knowledge discovery, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2028
805 Improved FP-growth Algorithm with Multiple Minimum Supports Using Maximum Constraints

Authors: Elsayeda M. Elgaml, Dina M. Ibrahim, Elsayed A. Sallam

Abstract:

Association rule mining is one of the most important fields of data mining and knowledge discovery. In this paper, we propose an efficient multiple support frequent pattern growth algorithm which we called “MSFP-growth” that enhancing the FPgrowth algorithm by making infrequent child node pruning step with multiple minimum support using maximum constrains. The algorithm is implemented, and it is compared with other common algorithms: Apriori-multiple minimum supports using maximum constraints and FP-growth. The experimental results show that the rule mining from the proposed algorithm are interesting and our algorithm achieved better performance than other algorithms without scarifying the accuracy. 

Keywords: Association Rules, FP-growth, Multiple minimum supports, Weka Tool

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
804 Quantitative Analysis of Weld Defect Images in Industrial Radiography Based Invariant Attributes

Authors: N. Nacereddine, M. Tridi, S. S. Belaïfa, M. Zelmat

Abstract:

For the characterization of the weld defect region in the radiographic image, looking for features which are invariant regarding the geometrical transformations (rotation, translation and scaling) proves to be necessary because the same defect can be seen from several angles according to the orientation and the distance from the welded framework to the radiation source. Thus, panoply of geometrical attributes satisfying the above conditions is proposed and which result from the calculation of the geometrical parameters (surface, perimeter, etc.) on the one hand and the calculation of the different order moments, on the other hand. Because the large range in values of the raw features and taking into account other considerations imposed by some classifiers, the scaling of these values to lie between 0 and 1 is indispensable. The principal component analysis technique is used in order to reduce the number of the attribute variables in the aim to give better performance to the further defect classification.

Keywords: Geometric parameters, invariant attributes, principal component analysis, weld defect image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
803 Measuring of Urban Sustainability in Town Planners Practice

Authors: J. Zagorskas, I. Veteikyte

Abstract:

Physical urban form is recognized to be the media for human transactions. It directly influences the travel demand of people in a specific urban area and the amount of energy used for transportation. Distorted, sprawling form often creates sustainability problems in urban areas. It is declared in EU strategic planning documents that compact urban form and mixed land use pattern must be given the main focus to achieve better sustainability in urban areas, but the methods to measure and compare these characteristics are still not clear. This paper presents the simple methods to measure the spatial characteristics of urban form by analyzing the location and distribution of objects in an urban environment. The extended CA (cellular automata) model is used to simulate urban development scenarios.

Keywords: Cellular automata (CA), Mixed used planning, Spatial analysis, Urban compactness, Geographic information systems (GIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2688
802 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: Contrast analysis, early fire detection, video smoke detection, video surveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1583
801 Application of Particle Swarm Optimization for Economic Load Dispatch and Loss Reduction

Authors: N. Phanthuna, J. Jaturacherdchaiskul, S. Lerdvanittip, S. Auchariyamet

Abstract:

This paper proposes a particle swarm optimization (PSO) technique to solve the economic load dispatch (ELD) problems. For the ELD problem in this work, the objective function is to minimize the total fuel cost of all generator units for a given daily load pattern while the main constraints are power balance and generation output of each units. Case study in the test system of 40-generation units with 6 load patterns is presented to demonstrate the performance of PSO in solving the ELD problem. It can be seen that the optimal solution given by PSO provides the minimum total cost of generation while satisfying all the constraints and benefiting greatly from saving in power loss reduction.

Keywords: Particle Swarm Optimization, Economic Load Dispatch, Loss Reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1899
800 The UAV Feasibility Trajectory Prediction Using Convolution Neural Networks

Authors: Marque Adrien, Delahaye Daniel, Marechal Pierre, Berry Isabelle

Abstract:

Wind direction and uncertainty are crucial in aircraft or unmanned aerial vehicle trajectories. By computing wind covariance matrices on each spatial grid point, these spatial grids can be defined as images with symmetric positive definite matrix elements. A data pre-processing step, a specific convolution, a specific max-pooling, and specific flatten layers are implemented to process such images. Then, the neural network is applied to spatial grids, whose elements are wind covariance matrices, to solve classification problems related to the feasibility of unmanned aerial vehicles based on wind direction and wind uncertainty.

Keywords: Wind direction, uncertainty level, Unmanned Aerial Vehicle, convolution neural network, SPD matrices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31