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Abstract—In this work we evaluate the possibility of predicting
the emotional state of a person based on the EEG. We investigate
the problem of classifying valence from EEG signals during
the presentation of affective pictures, utilizing the ”frontal EEG
asymmetry” phenomenon. To distinguish positive and negative
emotions, we applied the Common Spatial Patterns algorithm.
In contrast to our expectations, the affective pictures did not
reliably elicit changes in frontal asymmetry. The classifying task
thereby becomes very hard as reflected by the poor classifier
performance. We suspect that the masking of the source of the
brain activity related to emotions, coming mostly from deeper
structures in the brain, and the insufficient emotional engagement
are among main reasons why it is difficult to predict the emotional
state of a person.

Index Terms—Emotion, Valence, EEG, Common Spatial Pat-
terns (CSP).

I. INTRODUCTION

MOTIVATED by a range of possible applications in the
field of human-computer interaction, research on emo-

tion recognition from facial expressions, speech and physio-
logical signals receives increasing attention. Many application
areas can benefit from emotion recognition systems, ranging
from applications that track the user’s affective states and give
corresponding feedback (e.g., automatic tutoring applications)
to personalized photo or music selection applications. Further-
more, they can be useful in exploring reactions to advertise-
ments, for monitoring emotional states in the healthcare area
or in detecting which product aspects cause frustration.

The correlates of emotion in human EEG have been discov-
ered more than two decades ago. In particular, the phenomenon
of ”frontal EEG asymmetry” has played a prominent role
in the emotion research. According to Davidson’s influential
approach/withdraw motivational model of emotion [1] left
frontal activity indicates a positive or approach-related emo-
tion, whereas higher right frontal activity indicates a negative
or withdrawal-related emotion. The degree of activation is
inferred from the spectral power in the alpha band (8-12 Hz),
with lower values in alpha power being associated with a
higher degree of activity.

In the review of over 70 published studies Coan and
Allen [2] examined the relationship between emotion and
asymmetries in EEG over the frontal cortex. They suggest
that asymmetrical cortical activations are ubiquitous and can
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be observed with different emotion elicitation procedures
(e.g. films, pictures, voluntary emotional facial expression,
emotional recall). However, in the affective picture studies
the conclusions are adverse. The correlation hypothesis is
confirmed in some of the studies [3], [4], but some of them
failed to produce the expected results [5], [6].

Despite the knowledge acquired on neuronal correlates of
emotions, only a few studies tried to derive the emotional state
of a person from the EEG. As summarized by Chanel et al. [7],
most of these studies obtained only moderate results. However,
the usability of EEG in emotion recognition was recently
demonstrated by the same authors who obtained classification
accuracies for two-class problems of around 70%, suggesting
that classification of emotion using EEG is possible. Emotions
had been elicited by emotional recall and classification was
based on time-frequency features and the common information
contained in each pair of electrodes.

The goal of this study is to investigate the possibility
of formulating a method able to distinguish positive and
negative emotions from EEG signals based on asymmetrical
cortical activations. We have chosen to elicited emotions using
affective pictures. The onset of affective responses in such a
setup can be carefully controlled and variations of affective
responses during picture presentation can occur only to a small
extent.

In the development of the classifier, we applied the Common
Spatial Pattern (CSP) algorithm. CSP is well suited for detect-
ing spatial spectral power differences as demonstrated by nu-
merous Brain-Computer-Interface (BCI) approaches focused
on motor imaginary phenomena [8], [9]. The classification per-
formance of the CSP algorithm was compared to a simpler one
based on training Linear Discriminant Analysis (LDA) on the
alpha power measured at several scalp locations. Furthermore,
to test the state-of-the-art results in correlating emotions with
EEG asymmetry, inter- and intra-subject statistical analysis
was performed. Our aim was to show relative left hemispheric
activation for positively valenced pictures and relative right
hemispheric activation for negatively valenced ones, and to
better understand the phenomena of distinct hemispheric acti-
vation.

II. DATA ACQUISITION

Nine healthy, right-handed, male subjects with normal or
corrected-to-normal vision participated in this study (23-27
years old). All the subjects signed an informed consent before
participating. They received a small bonus in the form of a
gift certificate for their participation.
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Our method of choice for emotion elicitation was through
picture presentation. Because the International Affective Pic-
ture System (IAPS) is only available for non-profit research
purposes, we selected 48 positive, 48 negative and 16 neutral
pictures from a Philips-intern picture database, that contains
pictures similar to ones included in the IAPS set. Pictures had
been rated on a five-point arousal, pleasant and unpleasant
scale by eighty-six subjects. The content of the pictures was
similar to the general IAPS picture content, i.e. the pictures
depicted among others erotic scenes, happy families, cute
animals, sports, objects, mutilated bodies and torture scenes.

The experiment began with a baseline EEG measurement
(2 minutes eyes open, 2 minutes eyes closed), followed by
picture presentation in a random order. A single experiment
trial consisted of the following: A small fixation cross was
presented in the middle of the screen for 3s, followed by
the presentation of a picture for 6s. After the picture offset,
participants were asked to rate the valence and arousal di-
mensions using computerized self-assessment manikin (SAM)
scale [10]. Upon the completion of SAM ratings, the next trial
started after a randomly determined interval of 1-3 s.

EEG was recorded continuously from 32 sintered Ag/AgCl
electrodes positioned according to the international 10-20-
system using a Biosemi Active II system. All channels were
recorded using Cz as a reference; impedance was kept below
5kΩ. The actual sampling rate was 2048Hz, decimated off-line
to a 200Hz and high-pass filtered at 1Hz.

III. DATA ANALYSIS

Single 9s long epochs (3s before and 6s after picture onset)
were extracted. For artifact reduction, we visually inspected
all epochs and manually excluded epochs with excessive eye
movements, blinks or muscle artifacts from further analysis.
The mean rejection rate was 19%. Spectral power was esti-
mated by Welch’s averaged, modified periodogram method.
We used FFT windows containing 256 sample points with
an overlap of 50%, resulting in a frequency resolution of
≈1Hz. Because fixed frequency bands can blur the relation-
ship between cognitive performance and alpha power [11],
individual alpha frequency (IAF) was assessed as the peak
frequency in the alpha range during the 2-min eyes-closed
baseline measurement. The alpha band was defined as 2 Hz on
either side of this value ([IAF - 2, IAF + 2]). For maximizing
differences in cortical responses to the pictures, we only
explored the positive and negative picture category and omitted
the neutral category from our analysis.

A. Statistical Analysis

To confirm that the allocation of images to positive, neu-
tral and negative categories was appropriate, SAM ratings
for valence and arousal were subjected to repeated-measure
analyses of variance (ANOVA). Greenhouse-Geisser Epsilon
corrections were applied to correct for unequal covariances
when appropriate.

To estimate the degree of asymmetry in brain regions, we
analyzed the data in a within-subject design. For each subject,
estimates of the alpha power during the 6s picture presentation

Fig. 1. EEG electrode positions according to the international 10-20-system,
including the four clusters depicting hemispheric frontal and parietal brain
activity used in computing asymmetry indices.

were computed and averaged across the trials of each stimulus
category. Electrodes were collapsed into electrode clusters as
shown in Figure 1, resulting in frontal and parietal means
for each hemisphere. Alpha asymmetry indices were then
computed by subtracting the natural logarithm of left-sided
alpha power from the natural logarithm of right-sided alpha
power (Asymmetry Index = ln[right alpha] - ln[left alpha]).
Assuming an inverse relationship between alpha power and
cortical activation, a more positive asymmetry index reflects
a greater relative left hemispheric activity. Finally, asymmetry
indices for positive vs. negative pictures were subjected to
paired t-tests for both the frontal and the parietal region,
respectively.

We also examined whether the asymmetry index reflects
emotional response on a single-trial basis. We computed the
asymmetry index for each trial in the frontal region and tested
for differences between the positive and the negative condition
with an independent two-sample t-test. We conducted t-tests
for each subject separately, as well as over the asymmetry
indices from all subjects.

B. Classification

To develop a classifier that is able to distinguish emotional
valence on a single-trial basis, we built upon the results
from the state-of-the-art research on EEG asymmetry. Initially,
we designed a simple linear discriminant analysis (LDA)
classifier. We trained the classifier on the log alpha power
in the 4 regional means depicted in Figure 1. Classification
errors were estimated by repeating a 5-fold cross-validation 5
times.

In the second stage we tried to tailor the classification such
that it utilizes the spatial distribution of EEG signals. We
focused on designing a linear combination of signals coming
from different electrodes, incorporating their relevance for the
classification task. In that way we incorporated the modu-
lations of the alpha rhythm originating at different cortical
regions of the left or right hemisphere. Hence, we cover the
fact that EEG scalp potentials are spatially smeared, i.e., that
with increasing distance from the relevant brain areas, the
recorded signal will be increasingly contaminated by cortical
activity unrelated to the emotional response.

To weight the electrodes in a manner that maximizes the
spatial spectral power differences of the classes we decided
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to use Common Spatial Patterns (CSP) [8], [9]. CSP is a
supervised method for the design of specific spatial filters
onto which high-dimensional, band-pass filtered EEG data is
projected. These filters provide weighting of the electrodes
and maximize the variance of the spatially filtered signal in
one condition (e.g., positive valence), while minimizing it in
the other condition (e.g. negative valence). Since the variance
of a band-pass filtered signal is equal to the band-power, the
variance of the spatially filtered signal may then give features
useful for discrimination. For a mathematical discussion on
CSP see Appendix A.

To test the proposed method, the EEG signals were first
band-pass filtered to match the individual alpha band. A 5-fold
cross-validation was then repeated 5 times. In each run, 4 CSP
filters were obtained from the training folds using the whole 6s
segments of picture presentation. Classification performance
was estimated on the test fold.

IV. RESULTS

A. Statistical Analysis

Behavioral results confirmed that the allocation of images
to positive, neutral and negative categories was as expected.
The statistical analysis on SAM-ratings for all 3 experimental
conditions across subjects revealed a highly significant effect
for valence (F (1.04, 8.27) = 52.9, p < 0.001) and arousal
(F (2, 16) = 28.4, p < 0.001). Positive pictures were rated
significantly higher on valence than neutral and negative
pictures. Valence ratings for neutral pictures were significantly
higher than negative pictures. Arousal ratings were signifi-
cantly higher for both negative and positive as compared to
neutral pictures. Negative pictures induced higher arousal than
positive pictures (all post-hoc paired t-tests, p < 0.05).

The statistical analysis on frontal EEG asymmetry in a
within-subject design did not reveal any differences between
the affective classes. Asymmetry indices in the parietal and
frontal area for positive and negative stimuli are depicted in
Figure 2. A paired t-test found significant differences neither
in the frontal nor in the parietal region. Independent t-tests
over the frontal asymmetry indices calculated per trial revealed
significant differences only for subject 1 and subject 4. For
subject 1, positive pictures induced a significantly higher left
hemispheric activity. The opposite effect was observed for
subject 4.

To gain a better understanding on the influence of positive
and negative pictures on different brain regions, we visualized
signed r2-values of the alpha power at each electrode for
each subject separately. r2 is the squared version of the point
biserial correlation coefficient r. It describes the proportion of
the total variance in the class labels that is accounted for by a
single feature, e.g., alpha power at one electrode. Scalp topo
plots for subject 1 to 4 are shown in Figure 3. However, we
could not infer any regular pattern.

B. Classification

Table I shows the classification errors of both algorithms
for each subject as calculated by cross-validation (5 fold
cross-validation, repeated 5 times) and the total number of

Fig. 2. Means of evoked alpha asymmetries (± within-subject standard errors
as proposed by Loftus and Masson [12]). Higher asymmetry scores indicate
a greater relative left hemispheric activity.

Subject 1 Subject 2 .

Subject 3 Subject 4 .

Fig. 3. The signed r2 -values of the difference in alpha power between the
positive and the negative affective condition in subjects 1 - 4. High signed r2

-values correspond to a higher alpha power for positive pictures compared to
negative pictures.

TABLE I
THE CLASSIFICATION ERROR (%) AS CALCULATED BY

CROSS-VALIDATION (5 FOLD CROSS-VALIDATION, 5 TIMES REPEATED).

subject nb trials Classification error [%]
Alpha power CSP

1 77 40.0 ± 4.4 53.2 ± 8.1
2 86 44.9 ± 2.4 44.0 ± 4.8
3 75 49.0 ± 2.0 55.5 ± 7.7
4 77 39.7 ± 2.0 40.0 ± 7.0
5 56 37.1 ± 2.9 37.9 ± 5.0
6 93 47.7 ± 5.3 35.3 ± 6.0
7 78 42.8 ± 4.9 48.2 ± 4.8
8 82 42.2 ± 3.6 48.5 ± 5.9
9 83 53.7 ± 3.7 43.9 ± 4.2

mean 78.6 44.1 ± 5.2 46.9 ± 6.8

trials available for classification. Note that the cross-validation
procedure tends to underestimate the standard deviation of the
classification error as the trials are not independent.

Training a LDA on features derived from the alpha power
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at different electrodes was not successful. An indication
for better-than chance performance was only found for two
subjects with a classification error below 40% (subjects 4
and 5). CSP did not show significantly better results than
when using simpler algorithm based on spectral features.
Classification errors below 40% were achieved for only two
subjects (subjects 5 and 6). For other subjects the classification
rates were very close to chance level.

V. DISCUSSION

The outcome of our study is that the CSP method based on
”frontal EEG asymmetry” model is not suitable for classifying
the emotional valence elicited by affective pictures. Other
studies did not find frontal EEG asymmetry during affective
picture presentation [5], [6], suggesting that the correlation of
frontal EEG asymmetry with emotional valence is weak.

Inconsistent results for frontal asymmetry have been fre-
quently linked to reliability problems. For estimation of indi-
vidual asymmetry metrics, resting EEG is typically recorded
for at least 4 min. Still, Huster et al. [3] could derive reliable
asymmetry indices during the presentation of affective pictures
from 60 s of artifact free data. The reliability problem stresses
the fact that, even if intra-subject differences in frontal EEG
asymmetry can be detected, they may not be detectable on a
short-term basis.

Due to the fact that significant differences in asymmetry
were not found and scalp maps showed very small differences
between classes, the poor classification performance is not
very surprising. Relevant question is why CSP, which has been
successfully applied to the discrimination of motor imagery
tasks for Brain-Computer-Interface systems, did not yield
good results in distinguishing emotional valence. Differences
between the classes as revealed by r2 scalp plots are on
average slightly higher for motor imagery tasks (see e.g., [13]).
These differences follow a physiologically explainable pattern
in motor imagery tasks where CSP is used to discern different
spatial locations of modulations of the μ-rhythm originating in
the somatosensory cortex. In emotion research, the anatomical
origin of asymmetrical cortical activation during emotional
processing still needs to be unraveled [14], [15].

While CSP can be seen as a tool to localize and detect
event-related power changes in localized cortical areas, frontal
asymmetry is just the broad manifestation of cortical activation
whose origin is not well understood. Thus, CSP might not be
the most appropriate tool to detect differences of activation
in cortical structures underlying the frontal asymmetry. The
complex CSP method depends upon several hyperparameters,
(i.e., frequency band, time interval, filters) which can have
significant influence on the classification performance. CSP
method also requires proper estimation of the covariance
matrices, as, e.g., insufficient number of trials can lead to poor
covariance estimation. Further optimization of the presented
method may improve classification performance.

Another reason for poor classification results might be in
the fact that affective pictures fail to evoke emotional or
motivational intensity sufficient to engage asymmetrical frontal
cortical activations. Recent studies indicate that asymmetrical

frontal cortical activity might be more sensitive to motivational
direction than affective valence. For example, in a meta-
analysis of 106 PET and fMRI studies of human emotions
Murphy et al. [16] observed greater-left activity for approach
emotions. In contrast, the pattern of neural activity associated
with both positive and negative emotions was found to be
relatively symmetrical. Furthermore, over a dozen published
EEG studies have shown that anger, an approach-oriented
negative emotion, relates to relatively greater left frontal
cortical activity [17].

Emotional activations in the brain can be detected more
readily by using fMRI [18], [19]. Johnson et al. [20] identi-
fied the amygdalae (MDL, medial temporal lobe) and insula
(VLPFC, ventrolateral prefrontal cortex) areas as the brain
structures that predominantly contribute to the processing
of emotional content. When affective pictures are used as
stimuli, people can up-regulate the activation correlated with
negative emotions by self-monitoring the brain activity in these
areas through fMRI neurofeedback. Knowing that emotions
are mainly processed in deeper brain structures [21], it is
reasonable to expect that activations in these structures will
contribute far less to the scalp EEG than cortical activations
of pyramidal cells uniformly oriented perpendicular to the
cortical surface.

VI. CONCLUSION

The classification of emotional valence from EEG signals
utilizing ”frontal EEG alpha asymmetry” proved to be difficult.
While the frontal EEG asymmetry phenomenon is well docu-
mented, we were not able to replicate the predicted asymmetry
averaging within subject as well as on a single trial basis. The
classification task therefore becomes very hard as reflected by
poor classifier performance. We found an indication for better-
than-chance performance only for two out of nine subjects.

As a future work we can employ different methods for
emotion elicitation, which might lead to more promising
results. The results in Chanel et al. [7] obtained by emotional
recall show a promising direction. Another option would be to
follow the approach of Li and Lu [22] in using gamma band
activity in combination with CSP for distinguishing happiness
and sadness from pictures showing facial expressions.

Keeping in mind the reliability problem, measuring emo-
tions over a prolonged period of time may facilitate the
exploitation of asymmetrical cortical activations. Also mon-
itoring the fMRI activation of the brain having the same
experimental design might provide us with more insight in
understanding the relation between the frontal EEG asymmetry
and the emotional valence.

APPENDIX A
COMMON SPATIAL PATTERNS

The Common Spatial Patterns (CSP) algorithm can be
described as follows. Let X ∈ R

C×T denote a band-pass
filtered EEG trial, where C is the number of channels and T
is the number of sampled time points in a trial. The estimates
of covariance matrices of the EEG in the two conditions (e.g.
positive vs. negative valence) Σ(+) and Σ(−) are then obtained
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by averaging the covariance matrices of each trial XXT over
the trials of each group.

The whitening transformation which converts the composite
covariance matrix Σ(+) + Σ(−) into the identity matrix I is
given by

P := Q1/2DT (1)

where Σ(+)+Σ(−) = QDQT , Q is the matrix of eigenvectors,
and D is the diagonal matrix of corresponding eigenvalues.

The covariance matrices of the whitened data S(+) :=
PΣ(+)PT and S(−) := PΣ(−)PT share the same eigenvec-
tors and their eigenvalues will sum to one, i.e.,

S(+) = ΦΛΦT ⇒ S(−) = I − S(+) = Φ(I − Λ)ΦT . (2)

Here I is the identity matrix, Φ is the matrix of eigenvectors
of S(+), and Λ is the diagonal matrix of corresponding
eigenvalues.

It follows that

ΦT PΣ(+)PT Φ = ΦT S(+)Φ = Λ

ΦT PΣ(−)PT Φ = ΦT S(−)Φ = I − Λ.
(3)

Each row vector wj ∈ R
C of the projection matrix

W := ΦT P is called a spatial filter. A large eigenvalue (of
S(+)) indicates that the corresponding spatial filter wj yields
high variance in one condition and low variance in the other
condition. Thus the variance of the projection of (band-pass
filtered) EEG trials onto W := ΦT P gives features that are
useful for discrimination. The columns of W−1 are called the
common spatial patterns.
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