Search results for: Real-Coded Genetic Algorithm
2585 Motion Area Estimated Motion Estimation with Triplet Search Patterns for H.264/AVC
Authors: T. Song, T. Shimamoto
Abstract:
In this paper a fast motion estimation method for H.264/AVC named Triplet Search Motion Estimation (TS-ME) is proposed. Similar to some of the traditional fast motion estimation methods and their improved proposals which restrict the search points only to some selected candidates to decrease the computation complexity, proposed algorithm separate the motion search process to several steps but with some new features. First, proposed algorithm try to search the real motion area using proposed triplet patterns instead of some selected search points to avoid dropping into the local minimum. Then, in the localized motion area a novel 3-step motion search algorithm is performed. Proposed search patterns are categorized into three rings on the basis of the distance from the search center. These three rings are adaptively selected by referencing the surrounding motion vectors to early terminate the motion search process. On the other hand, computation reduction for sub pixel motion search is also discussed considering the appearance probability of the sub pixel motion vector. From the simulation results, motion estimation speed improved by a factor of up to 38 when using proposed algorithm than that of the reference software of H.264/AVC with ignorable picture quality loss.Keywords: Motion estimation, VLSI, image processing, search patterns
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13322584 A Multi-Population Differential Evolution with Adaptive Mutation and Local Search for Global Optimization
Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang
Abstract:
This paper presents a multi population Differential Evolution (DE) with adaptive mutation and local search for global optimization, named AMMADE in order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better result than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.
Keywords: Differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4422583 K-Means for Spherical Clusters with Large Variance in Sizes
Authors: A. M. Fahim, G. Saake, A. M. Salem, F. A. Torkey, M. A. Ramadan
Abstract:
Data clustering is an important data exploration technique with many applications in data mining. The k-means algorithm is well known for its efficiency in clustering large data sets. However, this algorithm is suitable for spherical shaped clusters of similar sizes and densities. The quality of the resulting clusters decreases when the data set contains spherical shaped with large variance in sizes. In this paper, we introduce a competent procedure to overcome this problem. The proposed method is based on shifting the center of the large cluster toward the small cluster, and recomputing the membership of small cluster points, the experimental results reveal that the proposed algorithm produces satisfactory results.Keywords: K-Means, Data Clustering, Cluster Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32812582 Learning an Overcomplete Dictionary using a Cauchy Mixture Model for Sparse Decay
Authors: E. S. Gower, M. O. J. Hawksford
Abstract:
An algorithm for learning an overcomplete dictionary using a Cauchy mixture model for sparse decomposition of an underdetermined mixing system is introduced. The mixture density function is derived from a ratio sample of the observed mixture signals where 1) there are at least two but not necessarily more mixture signals observed, 2) the source signals are statistically independent and 3) the sources are sparse. The basis vectors of the dictionary are learned via the optimization of the location parameters of the Cauchy mixture components, which is shown to be more accurate and robust than the conventional data mining methods usually employed for this task. Using a well known sparse decomposition algorithm, we extract three speech signals from two mixtures based on the estimated dictionary. Further tests with additive Gaussian noise are used to demonstrate the proposed algorithm-s robustness to outliers.Keywords: expectation-maximization, Pitman estimator, sparsedecomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19482581 LumaCert: Conception and Creation of New Digital Certificate for Online User Authentication in e-Banking Systems
Authors: Artan Luma, Betim Prevalla, Besart Qoku, Bujar Raufi
Abstract:
Electronic banking must be secure and easy to use and many banks heavily advertise an apparent of 100% secure system which is contestable in many points. In this work, an alternative approach to the design of e-banking system, through a new solution for user authentication and security with digital certificate called LumaCert is introduced. The certificate applies new algorithm for asymmetric encryption by utilizing two mathematical operators called Pentors and UltraPentors. The public and private key in this algorithm represent a quadruple of parameters which are directly dependent from the above mentioned operators. The strength of the algorithm resides in the inability to find the respective Pentor and UltraPentor operator from the mentioned parameters.Keywords: Security, Digital Certificate, Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22122580 Automated Algorithm for Removing Continuous Flame Spectrum Based On Sampled Linear Bases
Authors: Luis Arias, Jorge E. Pezoa, Daniel Sbárbaro
Abstract:
In this paper, an automated algorithm to estimate and remove the continuous baseline from measured spectra containing both continuous and discontinuous bands is proposed. The algorithm uses previous information contained in a Continuous Database Spectra (CDBS) to obtain a linear basis, with minimum number of sampled vectors, capable of representing a continuous baseline. The proposed algorithm was tested by using a CDBS of flame spectra where Principal Components Analysis and Non-negative Matrix Factorization were used to obtain linear bases. Thus, the radical emissions of natural gas, oil and bio-oil flames spectra at different combustion conditions were obtained. In order to validate the performance in the baseline estimation process, the Goodness-of-fit Coefficient and the Root Mean-squared Error quality metrics were evaluated between the estimated and the real spectra in absence of discontinuous emission. The achieved results make the proposed method a key element in the development of automatic monitoring processes strategies involving discontinuous spectral bands.
Keywords: Flame spectra, removing baseline, recovering spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17522579 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Authors: Huihai Wu, Xiaohui Liu
Abstract:
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18862578 Optimization of Transmission Lines Loading in TNEP Using Decimal Codification Based GA
Authors: H. Shayeghi, M. Mahdavi
Abstract:
Transmission network expansion planning (TNEP) is a basic part of power system planning that determines where, when and how many new transmission lines should be added to the network. Up till now, various methods have been presented to solve the static transmission network expansion planning (STNEP) problem. But in all of these methods, lines adequacy rate has not been considered at the end of planning horizon, i.e., expanded network misses adequacy after some times and needs to be expanded again. In this paper, expansion planning has been implemented by merging lines loading parameter in the STNEP and inserting investment cost into the fitness function constraints using genetic algorithm. Expanded network will possess a maximum adequacy to provide load demand and also the transmission lines overloaded later. Finally, adequacy index could be defined and used to compare some designs that have different investment costs and adequacy rates. In this paper, the proposed idea has been tested on the Garvers network. The results show that the network will possess maximum efficiency economically.
Keywords: Adequacy Optimization, Transmission Expansion Planning, DCGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18112577 Upgraded Cuckoo Search Algorithm to Solve Optimisation Problems Using Gaussian Selection Operator and Neighbour Strategy Approach
Authors: Mukesh Kumar Shah, Tushar Gupta
Abstract:
An Upgraded Cuckoo Search Algorithm is proposed here to solve optimization problems based on the improvements made in the earlier versions of Cuckoo Search Algorithm. Short comings of the earlier versions like slow convergence, trap in local optima improved in the proposed version by random initialization of solution by suggesting an Improved Lambda Iteration Relaxation method, Random Gaussian Distribution Walk to improve local search and further proposing Greedy Selection to accelerate to optimized solution quickly and by “Study Nearby Strategy” to improve global search performance by avoiding trapping to local optima. It is further proposed to generate better solution by Crossover Operation. The proposed strategy used in algorithm shows superiority in terms of high convergence speed over several classical algorithms. Three standard algorithms were tested on a 6-generator standard test system and the results are presented which clearly demonstrate its superiority over other established algorithms. The algorithm is also capable of handling higher unit systems.
Keywords: Economic dispatch, Gaussian selection operator, prohibited operating zones, ramp rate limits, upgraded cuckoo search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6842576 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms
Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim
Abstract:
The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.
Keywords: BESS, PVDG, firefly algorithm, voltage fluctuation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13232575 A Parallel Algorithm for 2-D Cylindrical Geometry Transport Equation with Interface Corrections
Authors: Wei Jun-xia, Yuan Guang-wei, Yang Shu-lin, Shen Wei-dong
Abstract:
In order to make conventional implicit algorithm to be applicable in large scale parallel computers , an interface prediction and correction of discontinuous finite element method is presented to solve time-dependent neutron transport equations under 2-D cylindrical geometry. Domain decomposition is adopted in the computational domain.The numerical experiments show that our parallel algorithm with explicit prediction and implicit correction has good precision, parallelism and simplicity. Especially, it can reach perfect speedup even on hundreds of processors for large-scale problems.
Keywords: Transport Equation, Discontinuous Finite Element, Domain Decomposition, Interface Prediction And Correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16652574 Development of an Intelligent Tool for Planning the Operation
Authors: T. R. Alencar, P. T. Leite
Abstract:
Several optimization algorithms specifically applied to the problem of Operation Planning of Hydrothermal Power Systems have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. Thus, this paper presents the development of a computational tool for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique, Genetic Algorithms and programming language Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.Keywords: Energy, Optimization, Hydrothermal Power Systemsand Genetic Algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16972573 Cognitive Radio Spectrum Management
Authors: Swapnil Singhal, Santosh Kumar Singh
Abstract:
The emerging Cognitive Radio is combo of both the technologies i.e. Radio dynamics and software technology. It involve wireless system with efficient coding, designing, and making them artificial intelligent to take the decision according to the surrounding environment and adopt themselves accordingly, so as to deliver the best QoS. This is the breakthrough from fixed hardware and fixed utilization of the spectrum. This software-defined approach of research is centralized at user-definition and application driven model, various software method are used for the optimization of the wireless communication. This paper focused on the Spectrum allocation technique using genetic algorithm GA to evolve radio, represented by chromosomes. The chromosomes gene represents the adjustable parameters in given radio and by using GA, evolving over the generations, the optimized set of parameters are evolved, as per the requirement of user and availability of the spectrum, in our prototype the gene consist of 6 different parameters, and the best set of parameters are evolved according to the application need and availability of the spectrum holes and thus maintaining best QoS for user, simultaneously maintaining licensed user rights. The analyzing tool Matlab is used for the performance of the prototype.
Keywords: ASDR, Cognitive Radio, QoS, Spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20542572 Optimized Detection in Multi-Antenna System using Particle Swarm Algorithm
Authors: A. A. Khan, M. Naeem, S. Bashir, S. I. Shah
Abstract:
In this paper we propose a Particle Swarm heuristic optimized Multi-Antenna (MA) system. Efficient MA systems detection is performed using a robust stochastic evolutionary computation algorithm based on movement and intelligence of swarms. This iterative particle swarm optimized (PSO) detector significantly reduces the computational complexity of conventional Maximum Likelihood (ML) detection technique. The simulation results achieved with this proposed MA-PSO detection algorithm show near optimal performance when compared with ML-MA receiver. The performance of proposed detector is convincingly better for higher order modulation schemes and large number of antennas where conventional ML detector becomes non-practical.Keywords: Multi Antenna (MA), Multi-input Multi-output(MIMO), Particle Swarm Optimization (PSO), ML detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15052571 Optimal Compensation of Reactive Power in the Restructured Distribution Network
Authors: Atefeh Pourshafie, Mohsen. Saniei, S. S. Mortazavi, A. Saeedian
Abstract:
In this paper optimal capacitor placement problem has been formulated in a restructured distribution network. In this scenario the distribution network operator can consider reactive energy also as a service that can be sold to transmission system. Thus search for optimal location, size and number of capacitor banks with the objective of loss reduction, maximum income from selling reactive energy to transmission system and return on investment for capacitors, has been performed. Results is influenced with economic value of reactive energy, therefore problem has been solved for various amounts of it. The implemented optimization technique is genetic algorithm. For any value of reactive power economic value, when reverse of investment index increase and change from zero or negative values to positive values, the threshold value of selling reactive power has been obtained. This increasing price of economic parameter is reasonable until the network losses is less than loss before compensation.Keywords: capacitor placement, deregulated electric market, distribution network optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21232570 Towards a Framework for Embedded Weight Comparison Algorithm with Business Intelligence in the Plantation Domain
Authors: M. Pushparani, A. Sagaya
Abstract:
Embedded systems have emerged as important elements in various domains with extensive applications in automotive, commercial, consumer, healthcare and transportation markets, as there is emphasis on intelligent devices. On the other hand, Business Intelligence (BI) has also been extensively used in a range of applications, especially in the agriculture domain which is the area of this research. The aim of this research is to create a framework for Embedded Weight Comparison Algorithm with Business Intelligence (EWCA-BI). The weight comparison algorithm will be embedded within the plantation management system and the weighbridge system. This algorithm will be used to estimate the weight at the site and will be compared with the actual weight at the plantation. The algorithm will be used to build the necessary alerts when there is a discrepancy in the weight, thus enabling better decision making. In the current practice, data are collected from various locations in various forms. It is a challenge to consolidate data to obtain timely and accurate information for effective decision making. Adding to this, the unstable network connection leads to difficulty in getting timely accurate information. To overcome the challenges embedding is done on a portable device that will have the embedded weight comparison algorithm to also assist in data capture and synchronize data at various locations overcoming the network short comings at collection points. The EWCA-BI will provide real-time information at any given point of time, thus enabling non-latent BI reports that will provide crucial information to enable efficient operational decision making. This research has a high potential in bringing embedded system into the agriculture industry. EWCA-BI will provide BI reports with accurate information with uncompromised data using an embedded system and provide alerts, therefore, enabling effective operation management decision-making at the site.Keywords: Embedded business intelligence, weight comparison algorithm, oil palm plantation, embedded systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11822569 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR
Authors: Saeed Vaneshani, Hooshang Jazayeri-Rad
Abstract:
Fuzzy logic control (FLC) systems have been tested in many technical and industrial applications as a useful modeling tool that can handle the uncertainties and nonlinearities of modern control systems. The main drawback of the FLC methodologies in the industrial environment is challenging for selecting the number of optimum tuning parameters. In this paper, a method has been proposed for finding the optimum membership functions of a fuzzy system using particle swarm optimization (PSO) algorithm. A synthetic algorithm combined from fuzzy logic control and PSO algorithm is used to design a controller for a continuous stirred tank reactor (CSTR) with the aim of achieving the accurate and acceptable desired results. To exhibit the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the fuzzy model of a nonlinear CSTR system as a case study. It is clearly proved that the optimized membership functions (MFs) provided better performance than a fuzzy model for the same system, when the MFs were heuristically defined.Keywords: continuous stirred tank reactor (CSTR), fuzzy logiccontrol (FLC), membership function(MF), particle swarmoptimization (PSO)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32012568 Sequential Straightforward Clustering for Local Image Block Matching
Authors: Mohammad Akbarpour Sekeh, Mohd. Aizaini Maarof, Mohd. Foad Rohani, Malihe Motiei
Abstract:
Duplicated region detection is a technical method to expose copy-paste forgeries on digital images. Copy-paste is one of the common types of forgeries to clone portion of an image in order to conceal or duplicate special object. In this type of forgery detection, extracting robust block feature and also high time complexity of matching step are two main open problems. This paper concentrates on computational time and proposes a local block matching algorithm based on block clustering to enhance time complexity. Time complexity of the proposed algorithm is formulated and effects of two parameter, block size and number of cluster, on efficiency of this algorithm are considered. The experimental results and mathematical analysis demonstrate this algorithm is more costeffective than lexicographically algorithms in time complexity issue when the image is complex.Keywords: Copy-paste forgery detection, Duplicated region, Timecomplexity, Local block matching, Sequential block clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18322567 A P-SPACE Algorithm for Groebner Bases Computation in Boolean Rings
Authors: Quoc-Nam Tran
Abstract:
The theory of Groebner Bases, which has recently been honored with the ACM Paris Kanellakis Theory and Practice Award, has become a crucial building block to computer algebra, and is widely used in science, engineering, and computer science. It is wellknown that Groebner bases computation is EXP-SPACE in a general setting. In this paper, we give an algorithm to show that Groebner bases computation is P-SPACE in Boolean rings. We also show that with this discovery, the Groebner bases method can theoretically be as efficient as other methods for automated verification of hardware and software. Additionally, many useful and interesting properties of Groebner bases including the ability to efficiently convert the bases for different orders of variables making Groebner bases a promising method in automated verification.Keywords: Algorithm, Complexity, Groebner basis, Applications of Computer Science.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18332566 Suitable Die Shaping for a Rectangular Shape Bottle by Application of FEM and AI Technique
Authors: N. Ploysook, R. Rugsaj, C. Suvanjumrat
Abstract:
The characteristic requirement for producing rectangular shape bottles was a uniform thickness of the plastic bottle wall. Die shaping was a good technique which controlled the wall thickness of bottles. An advance technology which was the finite element method (FEM) for blowing parison to be a rectangular shape bottle was conducted to reduce waste plastic from a trial and error method of a die shaping and parison control method. The artificial intelligent (AI) comprised of artificial neural network and genetic algorithm was selected to optimize the die gap shape from the FEM results. The application of AI technique could optimize the suitable die gap shape for the parison blow molding which did not depend on the parison control method to produce rectangular bottles with the uniform wall. Particularly, this application can be used with cheap blow molding machines without a parison controller therefore it will reduce cost of production in the bottle blow molding process.
Keywords: AI, bottle, die shaping, FEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26202565 Equivalence Class Subset Algorithm
Authors: Jeffrey L. Duffany
Abstract:
The equivalence class subset algorithm is a powerful tool for solving a wide variety of constraint satisfaction problems and is based on the use of a decision function which has a very high but not perfect accuracy. Perfect accuracy is not required in the decision function as even a suboptimal solution contains valuable information that can be used to help find an optimal solution. In the hardest problems, the decision function can break down leading to a suboptimal solution where there are more equivalence classes than are necessary and which can be viewed as a mixture of good decision and bad decisions. By choosing a subset of the decisions made in reaching a suboptimal solution an iterative technique can lead to an optimal solution, using series of steadily improved suboptimal solutions. The goal is to reach an optimal solution as quickly as possible. Various techniques for choosing the decision subset are evaluated.Keywords: np-complete, complexity, algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13642564 An Intelligent Water Drop Algorithm for Solving Economic Load Dispatch Problem
Authors: S. Rao Rayapudi
Abstract:
Economic Load Dispatch (ELD) is a method of determining the most efficient, low-cost and reliable operation of a power system by dispatching available electricity generation resources to supply load on the system. The primary objective of economic dispatch is to minimize total cost of generation while honoring operational constraints of available generation resources. In this paper an intelligent water drop (IWD) algorithm has been proposed to solve ELD problem with an objective of minimizing the total cost of generation. Intelligent water drop algorithm is a swarm-based natureinspired optimization algorithm, which has been inspired from natural rivers. A natural river often finds good paths among lots of possible paths in its ways from source to destination and finally find almost optimal path to their destination. These ideas are embedded into the proposed algorithm for solving economic load dispatch problem. The main advantage of the proposed technique is easy is implement and capable of finding feasible near global optimal solution with less computational effort. In order to illustrate the effectiveness of the proposed method, it has been tested on 6-unit and 20-unit test systems with incremental fuel cost functions taking into account the valve point-point loading effects. Numerical results shows that the proposed method has good convergence property and better in quality of solution than other algorithms reported in recent literature.Keywords: Economic load dispatch, Transmission loss, Optimization, Valve point loading, Intelligent Water Drop Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36302563 Collision Detection Algorithm Based on Data Parallelism
Authors: Zhen Peng, Baifeng Wu
Abstract:
Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.
Keywords: Data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12352562 A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment
Authors: Hoi-Lam Ma, Sai-Ho Chung
Abstract:
In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.
Keywords: Transshipment, integrated berth allocation, variable-in-time quay crane assignment, quay crane assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7252561 Some Yield Parameters of Wheat Genotypes
Authors: Shatha A. Yousif, Hatem Jasim, Ali R. Abas, Dheya P. Yousef
Abstract:
To study the effect of the cross direction in bead wheat, three hybrid combinations (Babyle 113, Iratome), (Sawa, Tamose2) and (Al Hashymya, Al Iraq) were tested for plant height, spike and awn length, number of grains per spike, 1000-grain weight, number of tillers/m and grain yield. The results revealed that the direction of the crosses significantly effect on the number of grains/spike, number of tillers/m and grain yields. Grain yield was positively and significantly correlated with 1000-grain weight, number of grains per spike and tillers. Depend on the results of heritability and genetic advance it was suggested that 1000-grain weight, number of grains per spike and tillers should be given emphasis for future wheat yield improvement programs.
Keywords: Correlation, Genetic Advance, Heritability, Wheat, Yield Traits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26412560 Optimizing the Project Delivery Time with Time Cost Trade-offs
Authors: Wei Lo, Ming-En Kuo
Abstract:
While to minimize the overall project cost is always one of the objectives of construction managers, to obtain the maximum economic return is definitely one the ultimate goals of the project investors. As there is a trade-off relationship between the project time and cost, and the project delivery time directly affects the timing of economic recovery of an investment project, to provide a method that can quantify the relationship between the project delivery time and cost, and identify the optimal delivery time to maximize economic return has always been the focus of researchers and industrial practitioners. Using genetic algorithms, this study introduces an optimization model that can quantify the relationship between the project delivery time and cost and furthermore, determine the optimal delivery time to maximize the economic return of the project. The results provide objective quantification for accurately evaluating the project delivery time and cost, and facilitate the analysis of the economic return of a project.Keywords: Time-Cost Trade-Off, Genetic Algorithms, Resource Integration, Economic return.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17732559 Accelerating GLA with an M-Tree
Authors: Olli Luoma, Johannes Tuikkala, Olli Nevalainen
Abstract:
In this paper, we propose a novel improvement for the generalized Lloyd Algorithm (GLA). Our algorithm makes use of an M-tree index built on the codebook which makes it possible to reduce the number of distance computations when the nearest code words are searched. Our method does not impose the use of any specific distance function, but works with any metric distance, making it more general than many other fast GLA variants. Finally, we present the positive results of our performance experiments.Keywords: Clustering, GLA, M-Tree, Vector Quantization .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15242558 Improving the Convergence of the Backpropagation Algorithm Using Local Adaptive Techniques
Authors: Z. Zainuddin, N. Mahat, Y. Abu Hassan
Abstract:
Since the presentation of the backpropagation algorithm, a vast variety of improvements of the technique for training a feed forward neural networks have been proposed. This article focuses on two classes of acceleration techniques, one is known as Local Adaptive Techniques that are based on weightspecific only, such as the temporal behavior of the partial derivative of the current weight. The other, known as Dynamic Adaptation Methods, which dynamically adapts the momentum factors, α, and learning rate, η, with respect to the iteration number or gradient. Some of most popular learning algorithms are described. These techniques have been implemented and tested on several problems and measured in terms of gradient and error function evaluation, and percentage of success. Numerical evidence shows that these techniques improve the convergence of the Backpropagation algorithm.
Keywords: Backpropagation, Dynamic Adaptation Methods, Local Adaptive Techniques, Neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21712557 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel
Authors: Tatjana Eitrich, Bruno Lang
Abstract:
This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.
Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14432556 Study of the Effect of Inclusion of TiO2 in Active Flux on Submerged Arc Welding of Low Carbon Mild Steel Plate and Parametric Optimization of the Process by Using DEA Based Bat Algorithm
Authors: Sheetal Kumar Parwar, J. Deb Barma, A. Majumder
Abstract:
Submerged arc welding is a very complex process. It is a very efficient and high performance welding process. In this present study an attempt have been done to reduce the welding distortion by increased amount of oxide flux through TiO2 in submerged arc welding process. Care has been taken to avoid the excessiveness of the adding agent for attainment of significant results. Data Envelopment Analysis (DEA) based BAT algorithm is used for the parametric optimization purpose in which DEA is used to convert multi response parameters into a single response parameter. The present study also helps to know the effectiveness of the addition of TiO2 in active flux during submerged arc welding process.Keywords: BAT algorithm, design of experiment, optimization, submerged arc welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007