Search results for: Low contrast image.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1786

Search results for: Low contrast image.

736 Learning Block Memories with Metric Networks

Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez

Abstract:

An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.

Keywords: Hebbian learning, image recognition, small world, spatial information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1864
735 Wavelet Compression of ECG Signals Using SPIHT Algorithm

Authors: Mohammad Pooyan, Ali Taheri, Morteza Moazami-Goudarzi, Iman Saboori

Abstract:

In this paper we present a novel approach for wavelet compression of electrocardiogram (ECG) signals based on the set partitioning in hierarchical trees (SPIHT) coding algorithm. SPIHT algorithm has achieved prominent success in image compression. Here we use a modified version of SPIHT for one dimensional signals. We applied wavelet transform with SPIHT coding algorithm on different records of MIT-BIH database. The results show the high efficiency of this method in ECG compression.

Keywords: ECG compression, wavelet, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2397
734 Towards Finite Element Modeling of the Accoustics of Human Head

Authors: Maciej Paszynski, Leszek Demkowicz, Jason Kurtz

Abstract:

In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.

Keywords: finite element method, acoustics, coupled problems, biomechanics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
733 Using the Students-as-Customers Concept in Technology Disciplines: Students- Perspectives

Authors: Boonlert Watjatrakul

Abstract:

Educational institutions increasingly adopt the students-as-customers concept to satisfy their students. Understanding students- perspectives on the use of this business concept in educational institutions is necessary for the institutions to effectively align these perspectives with their management practice. The study investigates whether students in technology and business disciplines have significantly different attitudes toward using the students-as-customers concept in educational institutions and explores the impact of treating students as customers in technology disciplines under students- perspectives. The results from quantitative and qualitative data analyses show that technology students, in contrast to business students, fairly disagree with educational institutions to treat students as customers. Treating students as customers in technology disciplines will have a negative influence on teaching performance, instructor-student relationships and educational institutions- aim, but a positive influence on service quality in educational institutions. The paper discusses the findings and concludes with implications and limitations of the study.

Keywords: Education, information technology, students-ascustomers, technology disciplines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
732 Modeling and Simulating of Gas Turbine Cooled Blades

Authors: А. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Modeling, Simulating, Gas Turbine, Cooled Blades.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
731 Forecasting Enrollment Model Based on First-Order Fuzzy Time Series

Authors: Melike Şah, Konstantin Y.Degtiarev

Abstract:

This paper proposes a novel improvement of forecasting approach based on using time-invariant fuzzy time series. In contrast to traditional forecasting methods, fuzzy time series can be also applied to problems, in which historical data are linguistic values. It is shown that proposed time-invariant method improves the performance of forecasting process. Further, the effect of using different number of fuzzy sets is tested as well. As with the most of cited papers, historical enrollment of the University of Alabama is used in this study to illustrate the forecasting process. Subsequently, the performance of the proposed method is compared with existing fuzzy time series time-invariant models based on forecasting accuracy. It reveals a certain performance superiority of the proposed method over methods described in the literature.

Keywords: Forecasting, fuzzy time series, linguistic values, student enrollment, time-invariant model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
730 Wear Mechanisms in High Speed Steel Gear Cutting Tools

Authors: M. Jalali Azizpour, H. Mohammadi majd

Abstract:

In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.

Keywords: abrasion, adhesion, cutting speed, hobbing, wear mechanism

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3295
729 A Control Model for the Dismantling of Industrial Plants

Authors: Florian Mach, Eric Hund, Malte Stonis

Abstract:

The dismantling of disused industrial facilities such as nuclear power plants or refineries is an enormous challenge for the planning and control of the logistic processes. Existing control models do not meet the requirements for a proper dismantling of industrial plants. Therefore, the paper presents an approach for the control of dismantling and post-processing processes (e.g. decontamination) in plant decommissioning. In contrast to existing approaches, the dismantling sequence and depth are selected depending on the capacity utilization of required post-processing processes by also considering individual characteristics of respective dismantling tasks (e.g. decontamination success rate, uncertainties regarding the process times). The results can be used in the dismantling of industrial plants (e.g. nuclear power plants) to reduce dismantling time and costs by avoiding bottlenecks such as capacity constraints.

Keywords: Dismantling management, logistics planning and control models, nuclear power plant dismantling, reverse logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
728 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm

Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata

Abstract:

In previous study, technique to estimate a self-location by using a lunar image is proposed.We consider the improvement of the conventional method in consideration of FPGA implementationin this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time.In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.

Keywords: SLIM, Artificial Bee Colony Algorithm, Location Estimate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1979
727 A Simple and Empirical Refraction Correction Method for UAV-Based Shallow-Water Photogrammetry

Authors: I GD Yudha Partama, A. Kanno, Y. Akamatsu, R. Inui, M. Goto, M. Sekine

Abstract:

The aerial photogrammetry of shallow water bottoms has the potential to be an efficient high-resolution survey technique for shallow water topography, thanks to the advent of convenient UAV and automatic image processing techniques Structure-from-Motion (SfM) and Multi-View Stereo (MVS)). However, it suffers from the systematic overestimation of the bottom elevation, due to the light refraction at the air-water interface. In this study, we present an empirical method to correct for the effect of refraction after the usual SfM-MVS processing, using common software. The presented method utilizes the empirical relation between the measured true depth and the estimated apparent depth to generate an empirical correction factor. Furthermore, this correction factor was utilized to convert the apparent water depth into a refraction-corrected (real-scale) water depth. To examine its effectiveness, we applied the method to two river sites, and compared the RMS errors in the corrected bottom elevations with those obtained by three existing methods. The result shows that the presented method is more effective than the two existing methods: The method without applying correction factor and the method utilizes the refractive index of water (1.34) as correction factor. In comparison with the remaining existing method, which used the additive terms (offset) after calculating correction factor, the presented method performs well in Site 2 and worse in Site 1. However, we found this linear regression method to be unstable when the training data used for calibration are limited. It also suffers from a large negative bias in the correction factor when the apparent water depth estimated is affected by noise, according to our numerical experiment. Overall, the good accuracy of refraction correction method depends on various factors such as the locations, image acquisition, and GPS measurement conditions. The most effective method can be selected by using statistical selection (e.g. leave-one-out cross validation).

Keywords: Bottom elevation, multi-view stereo, river, structure-from-motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
726 Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R. Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Gas turbine, cooled blade, nozzle blade, temperature field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 615
725 Subcritical Water Extraction of Mannitol from Olive Leaves

Authors: S. M. Ghoreishi, R. Gholami Shahrestani, S. H. Ghaziaskar

Abstract:

Subcritical water extraction was investigated as a novel and alternative technology in the food and pharmaceutical industry for the separation of Mannitol from olive leaves and its results was compared with those of Soxhlet extraction. The effects of temperature, pressure, and flow rate of water and also momentum and mass transfer dimensionless variables such as Reynolds and Peclet Numbers on extraction yield and equilibrium partition coefficient were investigated. The 30-110 bars, 60-150°C, and flow rates of 0.2-2 mL/min were the water operating conditions. The results revealed that the highest Mannitol yield was obtained at 100°C and 50 bars. However, extraction of Mannitol was not influenced by the variations of flow rate. The mathematical modeling of experimental measurements was also investigated and the model is capable of predicting the experimental measurements very well. In addition, the results indicated higher extraction yield for the subcritical water extraction in contrast to Soxhlet method.

Keywords: Extraction, Mannitol, Modeling, Olive leaves, Soxhlet extraction, Subcritical water.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064
724 The Different Roles between Sodium and Potassium Ions in Ion Exchange of WO3/SiO2 Catalysts

Authors: K. Pipitthapan, S. Maksasithorn, P. Praserthdam, J. Panpranot, K. Suriye, S. Kunjara Na Ayudhya

Abstract:

WO3/SiO2 catalysts were modified by an ion exchange method with sodium hydroxide or potassium hydroxide solution. The performance of the modified catalysts was tested in the metathesis of ethylene and trans-2-butene to propylene. During ion exchange, sodium and potassium ions played different roles. Sodium modified catalysts revealed constant trans-2-butene conversion and propylene selectivity when the concentrations of sodium in the solution were varied. In contrast, potassium modified catalysts showed reduction of the conversion and increase of the selectivity. From these results, potassium hydroxide may affect the transformation of tungsten oxide active species, resulting in the decrease in conversion whereas sodium hydroxide did not. Moreover, the modification of catalysts by this method improved the catalyst stability by lowering the amount of coke deposited on the catalyst surface.

Keywords: Acid sites, alkali metals, isomerization, metathesis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1711
723 The Effect of Granule Size on the Digestibility of Wheat Starch Using an in vitro Model

Authors: Mee-Lin Lim Chai Teo, Darryl M. Small

Abstract:

Wheat has a bimodal starch granule population and the dependency of the rate of enzymatic hydrolysis on particle size has been investigated. Ungelatinised wheaten starch granules were separated into two populations by sedimentation and decantation. Particle size was analysed by laser diffraction and morphological characteristics were viewed using SEM. The sedimentation technique though lengthy, gave satisfactory separation of the granules. Samples (<10μm, >10μm and original) were digested with a-amylase using a dialysis model. Granules of <10μm showed significantly higher rate of reducing sugar release than those >10μm (p<0.05). In contrast, the rate was not significantly different between the original sample and granules >10μm. Moreover, the digestion rate was dependent on particle size whereby smaller granules produced higher rate of release. The methodology and results reported here can be used as a basis for further evaluations designed to delay the release of glucose during the digestion of native starches.

Keywords: in vitro Digestion, a-amylase, wheat starch, granule size.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2841
722 Development System for Emotion Detection Based on Brain Signals and Facial Images

Authors: Suprijanto, Linda Sari, Vebi Nadhira , IGN. Merthayasa. Farida I.M

Abstract:

Detection of human emotions has many potential applications. One of application is to quantify attentiveness audience in order evaluate acoustic quality in concern hall. The subjective audio preference that based on from audience is used. To obtain fairness evaluation of acoustic quality, the research proposed system for multimodal emotion detection; one modality based on brain signals that measured using electroencephalogram (EEG) and the second modality is sequences of facial images. In the experiment, an audio signal was customized which consist of normal and disorder sounds. Furthermore, an audio signal was played in order to stimulate positive/negative emotion feedback of volunteers. EEG signal from temporal lobes, i.e. T3 and T4 was used to measured brain response and sequence of facial image was used to monitoring facial expression during volunteer hearing audio signal. On EEG signal, feature was extracted from change information in brain wave, particularly in alpha and beta wave. Feature of facial expression was extracted based on analysis of motion images. We implement an advance optical flow method to detect the most active facial muscle form normal to other emotion expression that represented in vector flow maps. The reduce problem on detection of emotion state, vector flow maps are transformed into compass mapping that represents major directions and velocities of facial movement. The results showed that the power of beta wave is increasing when disorder sound stimulation was given, however for each volunteer was giving different emotion feedback. Based on features derived from facial face images, an optical flow compass mapping was promising to use as additional information to make decision about emotion feedback.

Keywords: Multimodal Emotion Detection, EEG, Facial Image, Optical Flow, compass mapping, Brain Wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2291
721 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: Daily rainfall, Image processing, Approximation, Pixel value data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756
720 Mathematical Modeling of Gas Turbine Blade Cooling

Authors: А. Pashayev, C. Ardil, D. Askerov, R. Sadiqov, A. Samedov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Mathematical Modeling, Gas Turbine Blade Cooling, Neural Networks, BIEM and FDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2091
719 Calibration Method for an Augmented Reality System

Authors: S. Malek, N. Zenati-Henda, M. Belhocine, S. Benbelkacem

Abstract:

In geometrical camera calibration, the objective is to determine a set of camera parameters that describe the mapping between 3D references coordinates and 2D image coordinates. In this paper, a technique of calibration and tracking based on both a least squares method is presented and a correlation technique developed as part of an augmented reality system. This approach is fast and it can be used for a real time system

Keywords: Camera calibration, pinhole model, least squares method, augmented reality, strong calibration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2000
718 Person Identification using Gait by Combined Features of Width and Shape of the Binary Silhouette

Authors: M.K. Bhuyan, Aragala Jagan.

Abstract:

Current image-based individual human recognition methods, such as fingerprints, face, or iris biometric modalities generally require a cooperative subject, views from certain aspects, and physical contact or close proximity. These methods cannot reliably recognize non-cooperating individuals at a distance in the real world under changing environmental conditions. Gait, which concerns recognizing individuals by the way they walk, is a relatively new biometric without these disadvantages. The inherent gait characteristic of an individual makes it irreplaceable and useful in visual surveillance. In this paper, an efficient gait recognition system for human identification by extracting two features namely width vector of the binary silhouette and the MPEG-7-based region-based shape descriptors is proposed. In the proposed method, foreground objects i.e., human and other moving objects are extracted by estimating background information by a Gaussian Mixture Model (GMM) and subsequently, median filtering operation is performed for removing noises in the background subtracted image. A moving target classification algorithm is used to separate human being (i.e., pedestrian) from other foreground objects (viz., vehicles). Shape and boundary information is used in the moving target classification algorithm. Subsequently, width vector of the outer contour of binary silhouette and the MPEG-7 Angular Radial Transform coefficients are taken as the feature vector. Next, the Principal Component Analysis (PCA) is applied to the selected feature vector to reduce its dimensionality. These extracted feature vectors are used to train an Hidden Markov Model (HMM) for identification of some individuals. The proposed system is evaluated using some gait sequences and the experimental results show the efficacy of the proposed algorithm.

Keywords: Gait Recognition, Gaussian Mixture Model, PrincipalComponent Analysis, MPEG-7 Angular Radial Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
717 New Technologies for Modeling of Gas Turbine Cooled Blades

Authors: A. Pashayev, D. Askerov, R.Sadiqov, A. Samedov, C. Ardil

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and cvazistationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine 1st stage nozzle blade

Keywords: multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651
716 Numerical Modeling of Gas Turbine Engines

Authors: A. Pashayev, D. Askerov, C. Ardil, R. Sadiqov

Abstract:

In contrast to existing methods which do not take into account multiconnectivity in a broad sense of this term, we develop mathematical models and highly effective combination (BIEM and FDM) numerical methods of calculation of stationary and quasi-stationary temperature field of a profile part of a blade with convective cooling (from the point of view of realization on PC). The theoretical substantiation of these methods is proved by appropriate theorems. For it, converging quadrature processes have been developed and the estimations of errors in the terms of A.Ziqmound continuity modules have been received. For visualization of profiles are used: the method of the least squares with automatic conjecture, device spline, smooth replenishment and neural nets. Boundary conditions of heat exchange are determined from the solution of the corresponding integral equations and empirical relationships. The reliability of designed methods is proved by calculation and experimental investigations heat and hydraulic characteristics of the gas turbine first stage nozzle blade.

Keywords: Multiconnected systems, method of the boundary integrated equations, splines, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
715 2D Graphical Analysis of Wastewater Influent Capacity Time Series

Authors: Monika Chuchro, Maciej Dwornik

Abstract:

The extraction of meaningful information from image could be an alternative method for time series analysis. In this paper, we propose a graphical analysis of time series grouped into table with adjusted colour scale for numerical values. The advantages of this method are also discussed. The proposed method is easy to understand and is flexible to implement the standard methods of pattern recognition and verification, especially for noisy environmental data.

Keywords: graphical analysis, time series, seasonality, noisy environmental data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
714 A Selective Markovianity Approach for Image Segmentation

Authors: A. Melouah, H. Merouani

Abstract:

A new Markovianity approach is introduced in this paper. This approach reduces the response time of classic Markov Random Fields approach. First, one region is determinated by a clustering technique. Then, this region is excluded from the study. The remaining pixel form the study zone and they are selected for a Markovianity segmentation task. With Selective Markovianity approach, segmentation process is faster than classic one.

Keywords: Markovianity, response time, segmentation, study zone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1457
713 An Efficient Segmentation Method Based on Local Entropy Characteristics of Iris Biometrics

Authors: Ali Shojaee Bakhtiari, Ali Asghar Beheshti Shirazi, Amir Sepasi Zahmati

Abstract:

An efficient iris segmentation method based on analyzing the local entropy characteristic of the iris image, is proposed in this paper and the strength and weaknesses of the method are analyzed for practical purposes. The method shows special strength in providing designers with an adequate degree of freedom in choosing the proper sections of the iris for their application purposes.

Keywords: Iris segmentation, entropy, biocryptosystem, biometric identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
712 Surveillance of Super-Extended Objects: Bimodal Approach

Authors: Andrey V. Timofeev, Dmitry Egorov

Abstract:

This paper describes an effective solution to the task of a remote monitoring of super-extended objects (oil and gas pipeline, railways, national frontier). The suggested solution is based on the principle of simultaneously monitoring of seismoacoustic and optical/infrared physical fields. The principle of simultaneous monitoring of those fields is not new but in contrast to the known solutions the suggested approach allows to control super-extended objects with very limited operational costs. So-called C-OTDR (Coherent Optical Time Domain Reflectometer) systems are used to monitor the seismoacoustic field. Far-CCTV systems are used to monitor the optical/infrared field. A simultaneous data processing provided by both systems allows effectively detecting and classifying target activities, which appear in the monitored objects vicinity. The results of practical usage had shown high effectiveness of the suggested approach.

Keywords: Bimodal processing, C-OTDR monitoring system, LPboost, SVM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
711 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1427
710 Design of Wireless and Traceable Sensors for Internally Illuminated Photoreactors

Authors: Alexander Sutor, David Demetz

Abstract:

We present methods for developing wireless and traceable sensors for photobioreactors or photoreactors in general. The main focus of application are reactors which are wirelessly powered. Due to the promising properties of the propagation of magnetic fields under water we implemented an inductive link with an on/off switched hartley-oscillator as transmitter and an LC-tank as receiver. For this inductive link we used a carrier frequency of 298 kHz. With this system we performed measurements to demonstrate the independence of the magnetic field from water or salty water. In contrast we showed the strongly reduced range of RF-transmitter-receiver systems at higher frequencies (433 MHz and 2.4 GHz) in water and in salty water. For implementing the traceability of the sensors, we performed measurements to show the well defined orientation of the magnetic field of a coil. This information will be used in future work for implementing an inductive link based traceability system for our sensors.

Keywords: Wireless sensors, traceable sensors, photoreactor, internal illumination, wireless power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 792
709 Influence of Transformation Leadership Style on Employee Engagement among Generation Y

Authors: Z. D. Mansor, C. P. Mun, B. S. Nurul Farhana, Wan Aisyah Nasuha Wan Mohamed Tarmizi

Abstract:

The aim of this research is to determine the influence of transformation leadership style on employee engagement among Generation Y. The growing of Generation Y employees in Malaysia has raised concerns about how to engage and motivate this cohort. Transformation Leadership style is one of the key factors to increase employee engagement levels in the organization. This study has proven to be important for the researchers and the organization to properly understand the concept of employee engagement, transformation leadership style and their relationship. The samples in this study included 221 respondents of Generation Y who are currently working in Selangor and Klang Valley area in Malaysia. The data were collected using questionnaires and analyzed by using Statistical Package for Social Science (SPSS). The results show that there is a significant relationship between the dimension of intellectual stimulation, inspiration motivation and individual consideration on employee engagement. In contrast, the results have revealed that there is no significant relationship between idealized influences of a leader on employee engagement among Generation Y.

Keywords: Employee engagement, gen Y, transformational leadership styles, survey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2893
708 Multidimensional Performance Management

Authors: David Wiese

Abstract:

In order to maximize efficiency of an information management platform and to assist in decision making, the collection, storage and analysis of performance-relevant data has become of fundamental importance. This paper addresses the merits and drawbacks provided by the OLAP paradigm for efficiently navigating large volumes of performance measurement data hierarchically. The system managers or database administrators navigate through adequately (re)structured measurement data aiming to detect performance bottlenecks, identify causes for performance problems or assessing the impact of configuration changes on the system and its representative metrics. Of particular importance is finding the root cause of an imminent problem, threatening availability and performance of an information system. Leveraging OLAP techniques, in contrast to traditional static reporting, this is supposed to be accomplished within moderate amount of time and little processing complexity. It is shown how OLAP techniques can help improve understandability and manageability of measurement data and, hence, improve the whole Performance Analysis process.

Keywords: Data Warehousing, OLAP, Multidimensional Navigation, Performance Diagnosis, Performance Management, Performance Tuning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
707 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites

Authors: Nisrin R. Abdelal, Steven L. Donaldson

Abstract:

Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.

Keywords: Carbon, delamination, Kevlar, mode I, nylon, stitching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1221