Search results for: Cancer prediction
272 An In-Depth Inquiry into the Impact of Poor Teacher-Student Relationships on Chronic Absenteeism in Secondary Schools of West Java Province, Indonesia
Authors: Yenni Anggrayni
Abstract:
The lack of awareness of the significant prevalence of school absenteeism in Indonesia, which ultimately results in high rates of school dropouts, is an unresolved issue. Therefore, this study aims to investigate the root causes of chronic absenteeism qualitatively and quantitatively using the bioecological systems paradigm in secondary schools for any reason. This study used an open-ended questionnaire to collect data from 1,148 students in six West Java Province districts/cities. Univariate and stepwise multiple logistic regression analyses produced a prediction model for the components. Analysis results show that poor teacher-student relationships, bullying by peers or teachers, negative perception of education, and lack of parental involvement in learning activities are the leading causes of chronic absenteeism. Another finding is to promote home-school partnerships to improve school climate and parental involvement in learning to address chronic absenteeism.
Keywords: Bullying, chronic absenteeism, dropout of school, home-school partnerships, parental involvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 136271 A Study of Panel Logit Model and Adaptive Neuro-Fuzzy Inference System in the Prediction of Financial Distress Periods
Authors: Ε. Giovanis
Abstract:
The purpose of this paper is to present two different approaches of financial distress pre-warning models appropriate for risk supervisors, investors and policy makers. We examine a sample of the financial institutions and electronic companies of Taiwan Security Exchange (TSE) market from 2002 through 2008. We present a binary logistic regression with paned data analysis. With the pooled binary logistic regression we build a model including more variables in the regression than with random effects, while the in-sample and out-sample forecasting performance is higher in random effects estimation than in pooled regression. On the other hand we estimate an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell (Gbell) functions and we find that ANFIS outperforms significant Logit regressions in both in-sample and out-of-sample periods, indicating that ANFIS is a more appropriate tool for financial risk managers and for the economic policy makers in central banks and national statistical services.Keywords: ANFIS, Binary logistic regression, Financialdistress, Panel data
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344270 Microscopic Emission and Fuel Consumption Modeling for Light-duty Vehicles Using Portable Emission Measurement System Data
Authors: Wei Lei, Hui Chen, Lin Lu
Abstract:
Microscopic emission and fuel consumption models have been widely recognized as an effective method to quantify real traffic emission and energy consumption when they are applied with microscopic traffic simulation models. This paper presents a framework for developing the Microscopic Emission (HC, CO, NOx, and CO2) and Fuel consumption (MEF) models for light-duty vehicles. The variable of composite acceleration is introduced into the MEF model with the purpose of capturing the effects of historical accelerations interacting with current speed on emission and fuel consumption. The MEF model is calibrated by multivariate least-squares method for two types of light-duty vehicle using on-board data collected in Beijing, China by a Portable Emission Measurement System (PEMS). The instantaneous validation results shows the MEF model performs better with lower Mean Absolute Percentage Error (MAPE) compared to other two models. Moreover, the aggregate validation results tells the MEF model produces reasonable estimations compared to actual measurements with prediction errors within 12%, 10%, 19%, and 9% for HC, CO, NOx emissions and fuel consumption, respectively.Keywords: Emission, Fuel consumption, Light-duty vehicle, Microscopic, Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009269 On the Thermal Behavior of the Slab in a Reheating Furnace with Radiation
Authors: Gyo Woo Lee, Man Young Kim
Abstract:
A mathematical heat transfer model for the prediction of transient heating of the slab in a direct-fired walking beam type reheating furnace has been developed by considering the nongray thermal radiation with given furnace environments. The furnace is modeled as radiating nongray medium with carbon dioxide and water with five-zoned gas temperature and the furnace wall is considered as a constant temperature lower than furnace gas one. The slabs are moving with constant velocity depending on the residence time through the non-firing, charging, preheating, heating, and final soaking zones. Radiative heat flux obtained by considering the radiative heat exchange inside the furnace as well as convective one from the surrounding hot gases are introduced as boundary condition of the transient heat conduction within the slab. After validating thermal radiation model adopted in this work, thermal fields in both model and real reheating furnace are investigated in terms of radiative heat flux in the furnace and temperature inside the slab. The results show that the slab in the furnace can be more heated with higher slab emissivity and residence time.
Keywords: Reheating Furnace, Steel Slab, Radiative Heat Transfer, WSGGM, Emissivity, Residence Time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4176268 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC
Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan
Abstract:
Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.
Keywords: Concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, direct tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074267 A Numerical Framework to Investigate Intake Aerodynamics Behavior in Icing Conditions
Authors: Ali Mirmohammadi, Arash Taheri, Meysam Mohammadi-Amin
Abstract:
One of the major parts of a jet engine is air intake, which provides proper and required amount of air for the engine to operate. There are several aerodynamic parameters which should be considered in design, such as distortion, pressure recovery, etc. In this research, the effects of lip ice accretion on pitot intake performance are investigated. For ice accretion phenomenon, two supervised multilayer neural networks (ANN) are designed, one for ice shape prediction and another one for ice roughness estimation based on experimental data. The Fourier coefficients of transformed ice shape and parameters include velocity, liquid water content (LWC), median volumetric diameter (MVD), spray time and temperature are used in neural network training. Then, the subsonic intake flow field is simulated numerically using 2D Navier-Stokes equations and Finite Volume approach with Hybrid mesh includes structured and unstructured meshes. The results are obtained in different angles of attack and the variations of intake aerodynamic parameters due to icing phenomenon are discussed. The results show noticeable effects of ice accretion phenomenon on intake behavior.Keywords: Artificial Neural Network, Ice Accretion, IntakeAerodynamics, Design Parameters, Finite Volume Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2204266 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation
Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders
Abstract:
Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.
Keywords: Digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2017265 Analysis of Foaming Flow Instabilities for Dynamic Liquid Saturation in Trickle Bed Reactor
Authors: Vijay Sodhi, Ajay Bansal
Abstract:
The effects of different parameters on the hydrodynamics of trickle bed reactors were discussed for Newtonian and non-Newtonian foaming systems. The varying parameters are varying liquid velocities, gas flow velocities and surface tension. The range for gas velocity is particularly large, thanks to the use of dense gas to simulate very high pressure conditions. This data bank has been used to compare the prediction accuracy of the different trendlines and transition points from the literature. More than 240 experimental points for the trickle flow (GCF) and foaming pulsing flow (PF/FPF) regime were obtained for present study. Hydrodynamic characteristics involving dynamic liquid saturation significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, dynamic liquid saturation decreases with higher liquid and gas flow rates considerably in high interaction regime. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, effect was more pronounced with decreases dynamic liquid saturation very sharply during regime transition significantly at both low liquid and gas flow rates.Keywords: Trickle Bed Reactor, Dynamic Liquid Saturation, Foaming, Flow Regime Transition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835264 Geometric Simplification Method of Building Energy Model Based on Building Performance Simulation
Authors: Yan Lyu, Yiqun Pan, Zhizhong Huang
Abstract:
In the design stage of a new building, the energy model of this building is often required for the analysis of the performance on energy efficiency. In practice, a certain degree of geometric simplification should be done in the establishment of building energy models, since the detailed geometric features of a real building are hard to be described perfectly in most energy simulation engine, such as ESP-r, eQuest or EnergyPlus. Actually, the detailed description is not necessary when the result with extremely high accuracy is not demanded. Therefore, this paper analyzed the relationship between the error of the simulation result from building energy models and the geometric simplification of the models. Finally, the following two parameters are selected as the indices to characterize the geometric feature of in building energy simulation: the southward projected area and total side surface area of the building. Based on the parameterization method, the simplification from an arbitrary column building to a typical shape (a cuboid) building can be made for energy modeling. The result in this study indicates that no more than 7% prediction error of annual cooling/heating load will be caused by the geometric simplification for those buildings with the ratio of southward projection length to total perimeter of the bottom of 0.25~0.35, which means this method is applicable for building performance simulation.
Keywords: building energy model, simulation, geometric simplification, design, regression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 628263 Kinematic Hardening Parameters Identification with Respect to Objective Function
Authors: Marina Franulovic, Robert Basan, Bozidar Krizan
Abstract:
Constitutive modeling of material behavior is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behavior of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behavior modeling.
Keywords: Genetic algorithm, kinematic hardening, material model, objective function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3801262 Prediction for the Pressure Drop of Gas-Liquid Cylindrical Cyclone in Sub-Sea Production System
Authors: Xu Rumin, Chen Jianyi, Yue Ti, Wang Yaan
Abstract:
With the rapid development of subsea oil and gas exploitation, the demand for the related underwater process equipment is increasing fast. In order to reduce the energy consuming, people tend to separate the gas and oil phase directly on the seabed. Accordingly, an advanced separator is needed. In this paper, the pressure drop of a new type of separator named Gas Liquid Cylindrical Cyclone (GLCC) which is used in the subsea system is investigated by both experiments and numerical simulation. In the experiments, the single phase flow and gas-liquid two phase flow in GLCC were tested. For the simulation, the performance of GLCC under both laboratory and industrial conditions was calculated. The Eulerian model was implemented to describe the mixture flow field in the GLCC under experimental conditions and industrial oil-natural gas conditions. Furthermore, a relationship among Euler number (Eu), Reynolds number (Re), and Froude number (Fr) is generated according to similarity analysis and simulation data, which can present the GLCC separation performance of pressure drop. These results can give reference to the design and application of GLCC in deep sea.
Keywords: Dimensionless analysis, gas-liquid cylindrical cyclone, numerical simulation; pressure drop.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012261 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems
Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo
Abstract:
Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.
Keywords: Electrodeposition, kinetics diagrams, modeling, voltammetry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813260 Artificial Intelligence Support for Interferon Treatment Decision in Chronic Hepatitis B
Authors: Alexandru George Floares
Abstract:
Chronic hepatitis B can evolve to cirrhosis and liver cancer. Interferon is the only effective treatment, for carefully selected patients, but it is very expensive. Some of the selection criteria are based on liver biopsy, an invasive, costly and painful medical procedure. Therefore, developing efficient non-invasive selection systems, could be in the patients benefit and also save money. We investigated the possibility to create intelligent systems to assist the Interferon therapeutical decision, mainly by predicting with acceptable accuracy the results of the biopsy. We used a knowledge discovery in integrated medical data - imaging, clinical, and laboratory data. The resulted intelligent systems, tested on 500 patients with chronic hepatitis B, based on C5.0 decision trees and boosting, predict with 100% accuracy the results of the liver biopsy. Also, by integrating the other patients selection criteria, they offer a non-invasive support for the correct Interferon therapeutic decision. To our best knowledge, these decision systems outperformed all similar systems published in the literature, and offer a realistic opportunity to replace liver biopsy in this medical context.Keywords: Interferon, chronic hepatitis B, intelligent virtualbiopsy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459259 A Low-Cost Air Quality Monitoring Internet of Things Platform
Authors: Christos Spandonidis, Stefanos Tsantilas, Elias Sedikos, Nektarios Galiatsatos, Fotios Giannopoulos, Panagiotis Papadopoulos, Nikolaos Demagos, Dimitrios Reppas, Christos Giordamlis
Abstract:
In the present paper, a low cost, compact and modular Internet of Things (IoT) platform for air quality monitoring in urban areas is presented. This platform comprises of dedicated low cost, low power hardware and the associated embedded software that enable measurement of particles (PM2.5 and PM10), NO, CO, CO2 and O3 concentration in the air, along with relative temperature and humidity. This integrated platform acts as part of a greater air pollution data collecting wireless network that is able to monitor the air quality in various regions and neighborhoods of an urban area, by providing sensor measurements at a high rate that reaches up to one sample per second. It is therefore suitable for Big Data analysis applications such as air quality forecasts, weather forecasts and traffic prediction. The first real world test for the developed platform took place in Thessaloniki, Greece, where 16 devices were installed in various buildings in the city. In the near future, many more of these devices are going to be installed in the greater Thessaloniki area, giving a detailed air quality map of the city.Keywords: Distributed sensor system, environmental monitoring, Internet of Things, IoT, Smart Cities.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828258 Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor Cold Leg Small-Break Loss-of-Coolant Accident without Scram
Authors: Takeshi Takeda
Abstract:
The author conducted post-test analysis with the RELAP5/MOD3.3 code for an experiment using the ROSA/LSTF (rig of safety assessment/large-scale test facility) that simulated a 1% cold leg small-break loss-of-coolant accident under the failure of scram in a pressurized water reactor. The LSTF test assumed total failure of high-pressure injection system of emergency core cooling system. In the LSTF test, natural circulation contributed to maintain core cooling effect for a relatively long time until core uncovery occurred. The post-test analysis result confirmed inadequate prediction of the primary coolant distribution. The author created the phenomena identification and ranking table (PIRT) for each component. The author investigated the influences of uncertain parameters determined by the PIRT on the cladding surface temperature at a certain time during core uncovery within the defined uncertain ranges.
Keywords: LSTF, LOCA, scram, RELAP5.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772257 Investigations Into the Turning Parameters Effect on the Surface Roughness of Flame Hardened Medium Carbon Steel with TiN-Al2O3-TiCN Coated Inserts based on Taguchi Techniques
Authors: Samir Khrais, Adel Mahammod Hassan , Amro Gazawi
Abstract:
The aim of this research is to evaluate surface roughness and develop a multiple regression model for surface roughness as a function of cutting parameters during the turning of flame hardened medium carbon steel with TiN-Al2O3-TiCN coated inserts. An experimental plan of work and signal-to-noise ratio (S/N) were used to relate the influence of turning parameters to the workpiece surface finish utilizing Taguchi methodology. The effects of turning parameters were studied by using the analysis of variance (ANOVA) method. Evaluated parameters were feed, cutting speed, and depth of cut. It was found that the most significant interaction among the considered turning parameters was between depth of cut and feed. The average surface roughness (Ra) resulted by TiN-Al2O3- TiCN coated inserts was about 2.44 μm and minimum value was 0.74 μm. In addition, the regression model was able to predict values for surface roughness in comparison with experimental values within reasonable limit.Keywords: Medium carbon steel, Prediction, Surface roughness, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1772256 A Study of Behavioral Phenomena Using ANN
Authors: Yudhajit Datta
Abstract:
Behavioral aspects of experience such as will power are rarely subjected to quantitative study owing to the numerous complexities involved. Will is a phenomenon that has puzzled humanity for a long time. It is a belief that will power of an individual affects the success achieved by them in life. It is also thought that a person endowed with great will power can overcome even the most crippling setbacks in life while a person with a weak will cannot make the most of life even the greatest assets. This study is an attempt to subject the phenomena of will to the test of an artificial neural network through a computational model. The claim being tested is that will power of an individual largely determines success achieved in life. It is proposed that data pertaining to success of individuals be obtained from an experiment and the phenomenon of will be incorporated into the model, through data generated recursively using a relation between will and success characteristic to the model. An artificial neural network trained using part of the data, could subsequently be used to make predictions regarding data points in the rest of the model. The procedure would be tried for different models and the model where the networks predictions are found to be in greatest agreement with the data would be selected; and used for studying the relation between success and will.
Keywords: Will Power, Success, ANN, Time Series Prediction, Sliding Window, Computational Model, Behavioral Phenomena.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930255 Prediction of Binding Free Energies for Dyes Removal Using Computational Chemistry
Authors: R. Chanajaree, D. Luanwiset, K. Pongpratea
Abstract:
Dye removal is an environmental concern because the textile industries have been increasing by world population and industrialization. Adsorption is the technique to find adsorbents to remove dyes from wastewater. This method is low-cost and effective for dye removal. This work tries to develop effective adsorbents using the computational approach because it will be able to predict the possibility of the adsorbents for specific dyes in terms of binding free energies. The computational approach is faster and cheaper than the experimental approach in case of finding the best adsorbents. All starting structures of dyes and adsorbents are optimized by quantum calculation. The complexes between dyes and adsorbents are generated by the docking method. The obtained binding free energies from docking are compared to binding free energies from the experimental data. The calculated energies can be ranked as same as the experimental results. In addition, this work also shows the possible orientation of the complexes. This work used two experimental groups of the complexes of the dyes and adsorbents. In the first group, there are chitosan (adsorbent) and two dyes (reactive red (RR) and direct sun yellow (DY)). In the second group, there are poly(1,2-epoxy-3-phenoxy) propane (PEPP), which is the adsorbent, and 2 dyes of bromocresol green (BCG) and alizarin yellow (AY).
Keywords: Dye removal, binding free energies, quantum calculation, docking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 723254 Effect of Ply Orientation on Roughness for the Trimming Process of CFRP Laminates
Authors: Jean François Chatelain, Imed Zaghbani, Joseph Monier
Abstract:
The machining of Carbon Fiber Reinforced Plastics has come to constitute a significant challenge for many fields of industry. The resulting surface finish of machined parts is of primary concern for several reasons, including contact quality and impact on the assembly. Therefore, the characterization and prediction of roughness based on machining parameters are crucial for costeffective operations. In this study, a PCD tool comprised of two straight flutes was used to trim 32-ply carbon fiber laminates in a bid to analyze the effects of the feed rate and the cutting speed on the surface roughness. The results show that while the speed has but a slight impact on the surface finish, the feed rate for its part affects it strongly. A detailed study was also conducted on the effect of fiber orientation on surface roughness, for quasi-isotropic laminates used in aerospace. The resulting roughness profiles for the four-ply orientation lay-up were compared, and it was found that fiber angle is a critical parameter relating to surface roughness. One of the four orientations studied led to very poor surface finishes, and characteristic roughness profiles were identified and found to only relate to the ply orientations of multilayer carbon fiber laminates.Keywords: Roughness, Detouring, Composites, Aerospace
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2699253 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1982252 Extraction of Symbolic Rules from Artificial Neural Networks
Authors: S. M. Kamruzzaman, Md. Monirul Islam
Abstract:
Although backpropagation ANNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, it is desirable to extract knowledge from trained ANNs for the users to gain a better understanding of how the networks solve the problems. A new rule extraction algorithm, called rule extraction from artificial neural networks (REANN) is proposed and implemented to extract symbolic rules from ANNs. A standard three-layer feedforward ANN is the basis of the algorithm. A four-phase training algorithm is proposed for backpropagation learning. Explicitness of the extracted rules is supported by comparing them to the symbolic rules generated by other methods. Extracted rules are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy. Extensive experimental studies on several benchmarks classification problems, such as breast cancer, iris, diabetes, and season classification problems, demonstrate the effectiveness of the proposed approach with good generalization ability.Keywords: Backpropagation, clustering algorithm, constructivealgorithm, continuous activation function, pruning algorithm, ruleextraction algorithm, symbolic rules.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617251 Young’s Modulus Variability: Influence on Masonry Vault Behavior
Authors: A. Zanaz, S. Yotte, F. Fouchal, A. Chateauneuf
Abstract:
This paper presents a methodology for probabilistic assessment of bearing capacity and prediction of failure mechanism of masonry vaults at the ultimate state with consideration of the natural variability of Young’s modulus of stones. First, the computation model is explained. The failure mode corresponds to the four-hinge mechanism. Based on this consideration, the study of a vault composed of 16 segments is presented. The Young’s modulus of the segments is considered as random variable defined by a mean value and a coefficient of variation. A relationship linking the vault bearing capacity to the voussoirs modulus variation is proposed. The most probable failure mechanisms, in addition to that observed in the deterministic case, are identified for each variability level as well as their probability of occurrence. The results show that the mechanism observed in the deterministic case has decreasing probability of occurrence in terms of variability, while the number of other mechanisms and their probability of occurrence increases with the coefficient of variation of Young’s modulus. This means that if a significant change in the Young’s modulus of the segments is proven, taking it into account in computations becomes mandatory, both for determining the vault bearing capacity and for predicting its failure mechanism.Keywords: Masonry, mechanism, probability, variability, vault.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006250 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso
Abstract:
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.
Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617249 Short-Term Load Forecasting Based on Variational Mode Decomposition and Least Square Support Vector Machine
Authors: Jiangyong Liu, Xiangxiang Xu, Bote Luo, Xiaoxue Luo, Jiang Zhu, Lingzhi Yi
Abstract:
To address the problems of non-linearity and high randomness of the original power load sequence causing the degradation of power load forecasting accuracy, a short-term load forecasting method is proposed. The method is based on the least square support vector machine (LSSVM) optimized by an improved sparrow search algorithm combined with the variational mode decomposition proposed in this paper. The application of the variational mode decomposition technique decomposes the raw power load data into a series of intrinsic mode functions components, which can reduce the complexity and instability of the raw data while overcoming modal confounding; the proposed improved sparrow search algorithm can solve the problem of difficult selection of learning parameters in the LSSVM. Finally, through comparison experiments, the results show that the method can effectively improve prediction accuracy.
Keywords: Load forecasting, variational mode decomposition, improved sparrow search algorithm, least square support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 61248 Pavement Roughness Prediction Systems: A Bump Integrator Approach
Authors: Manish Pal, Rumi Sutradhar
Abstract:
Pavement surface unevenness plays a pivotal role on roughness index of road which affects on riding comfort ability. Comfort ability refers to the degree of protection offered to vehicle occupants from uneven elements in the road surface. So, it is preferable to have a lower roughness index value for a better riding quality of road users. Roughness is generally defined as an expression of irregularities in the pavement surface which can be measured using different equipments like MERLIN, Bump integrator, Profilometer etc. Among them Bump Integrator is quite simple and less time consuming in case of long road sections. A case study is conducted on low volume roads in West District in Tripura to determine roughness index (RI) using Bump Integrator at the standard speed of 32 km/h. But it becomes too tough to maintain the requisite standard speed throughout the road section. The speed of Bump Integrator (BI) has to lower or higher in some distinctive situations. So, it becomes necessary to convert these roughness index values of other speeds to the standard speed of 32 km/h. This paper highlights on that roughness index conversional model. Using SPSS (Statistical Package of Social Sciences) software a generalized equation is derived among the RI value at standard speed of 32 km/h and RI value at other speed conditions.
Keywords: Bump Integrator, Pavement Distresses, Roughness Index, SPSS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6671247 A Resource Survey of Lateritic Soils and Impact Evaluation toward Community Members Living Nearby the Excavation Pits
Authors: Ratchasak Suvannatsiri
Abstract:
The objectives of the research are to find the basic engineering properties of lateritic soil and to predict the impact on community members who live nearby the excavation pits in the area of Amphur Pak Thor, Ratchaburi Province in the western area of Thailand. The research was conducted by collecting soil samples from four excavation pits for basic engineering properties, testing and collecting questionnaire data from 120 community members who live nearby the excavation pits, and applying statistical analysis. The results found that the basic engineering properties of lateritic soil can be classified into silt soil type which is cohesionless as the loess or collapsible soil which is not suitable to be used for a pavement structure for commuting highway because it could lead to structural and functional failure in the long run. In terms of opinion from community members toward the impact, the highest impact was on the dust from excavation activities. The prediction from the logistic regression in terms of impact on community members was at 84.32 which can be adapted and applied onto other areas with the same context as a guideline for risk prevention and risk communication since it could impact the infrastructures and also impact the health of community members.
Keywords: Lateritic soil, excavation pits, engineering properties, impact on community members
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768246 Phase Behaviors and Fuel Properties of Bio-Oil-Diesel-Alcohol Blends
Authors: P. Weerachanchai, C. Tangsathitkulchai, M. Tangsathitkulchai
Abstract:
Attempt was made to improve certain characteristics of bio-oil derived from palm kernel pyrolysis by blending it with diesel fuel and alcohols. Two types of alcohol, ethanol or butanol, was used as cosolvent to stabilize the phase of ternary systems. Phase behaviors and basic fuel properties of palm kernel bio-oildiesel- alcohol systems were investigated in this study. Alcohol types showed a significant influence on the phase characteristics with palm kernel bio-oil-diesel-butanol system giving larger soluble area than that of palm kernel bio-oil-diesel-ethanol system. For fuel properties, blended fuels showed superior properties including lower values of density (~860 kg/m3 at 25°C), viscosity (~4.12 mm2/s at 40°C), carbon residue (1.02-2.53 wt%), ash (0.018-0.034 wt%) and pour point (<-25 to -7 °C), increased pH (~ 6.4) and giving reasonable heating values of 32.5-41.2 MJ/kg. To enable the prediction of some properties of fuel mixtures, the measured fuel properties including heating value, density, ash content and pH were fitted by Kay-s mixing rule, whereas the viscosities of blended fuels at different temperatures were correlated by the modified Grunberg-Nissan equation and Andrade equation.
Keywords: Bio-oil, fuel blend, fuel properties, phase behaviour.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3833245 Memory Estimation of Internet Server Using Queuing Theory: Comparative Study between M/G/1, G/M/1 and G/G/1 Queuing Model
Authors: L. K. Singh, Riktesh Srivastava
Abstract:
How to effectively allocate system resource to process the Client request by Gateway servers is a challenging problem. In this paper, we propose an improved scheme for autonomous performance of Gateway servers under highly dynamic traffic loads. We devise a methodology to calculate Queue Length and Waiting Time utilizing Gateway Server information to reduce response time variance in presence of bursty traffic. The most widespread contemplation is performance, because Gateway Servers must offer cost-effective and high-availability services in the elongated period, thus they have to be scaled to meet the expected load. Performance measurements can be the base for performance modeling and prediction. With the help of performance models, the performance metrics (like buffer estimation, waiting time) can be determined at the development process. This paper describes the possible queue models those can be applied in the estimation of queue length to estimate the final value of the memory size. Both simulation and experimental studies using synthesized workloads and analysis of real-world Gateway Servers demonstrate the effectiveness of the proposed system.Keywords: M/M/1, M/G/1, G/M/1, G/G/1, Gateway Servers, Buffer Estimation, Waiting Time, Queuing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937244 Evaluation of Best-Fit Probability Distribution for Prediction of Extreme Hydrologic Phenomena
Authors: Karim Hamidi Machekposhti, Hossein Sedghi
Abstract:
The probability distributions are the best method for forecasting of extreme hydrologic phenomena such as rainfall and flood flows. In this research, in order to determine suitable probability distribution for estimating of annual extreme rainfall and flood flows (discharge) series with different return periods, precipitation with 40 and discharge with 58 years time period had been collected from Karkheh River at Iran. After homogeneity and adequacy tests, data have been analyzed by Stormwater Management and Design Aid (SMADA) software and residual sum of squares (R.S.S). The best probability distribution was Log Pearson Type III with R.S.S value (145.91) and value (13.67) for peak discharge and Log Pearson Type III with R.S.S values (141.08) and (8.95) for maximum discharge in Jelogir Majin and Pole Zal stations, respectively. The best distribution for maximum precipitation in Jelogir Majin and Pole Zal stations was Log Pearson Type III distribution with R.S.S values (1.74&1.90) and then Pearson Type III distribution with R.S.S values (1.53&1.69). Overall, the Log Pearson Type III distributions are acceptable distribution types for representing statistics of extreme hydrologic phenomena in Karkheh River at Iran with the Pearson Type III distribution as a potential alternative.
Keywords: Karkheh river, log pearson type III, probability distribution, residual sum of squares.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886243 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834